• Aucun résultat trouvé

Optimal location of resources maximizing the total population size in logistic models

N/A
N/A
Protected

Academic year: 2022

Partager "Optimal location of resources maximizing the total population size in logistic models"

Copied!
35
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal de Mathématiques Pures et Appliquées

www.elsevier.com/locate/matpur

Optimal location of resources maximizing the total population size in logistic models

,✩✩

Idriss Mazaria, Grégoire Nadinb, Yannick Privatc,∗

a SorbonneUniversités,UPMCUnivParis06,UMR7598,LaboratoireJacques-LouisLions,F-75005, Paris,France

bCNRS,SorbonneUniversités,UPMCUnivParis06,UMR7598,LaboratoireJacques-LouisLions, F-75005,Paris,France

cIRMA,UniversitédeStrasbourg,CNRSUMR7501,7rueRenéDescartes,67084Strasbourg,France

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received16May2018 Availableonlinexxxx

MSC:

49K20 35Q92 49J30 34B15

Keywords:

Diffusivelogisticequation Rearrangementinequalities Symmetrization

Optimalcontrol Shapeoptimization Optimalityconditions

Inthis article, weconsider a species whose populationdensity solvesthe steady diffusivelogisticequationinaheterogeneousenvironmentmodeledwiththehelpof aspatiallynonconstantcoefficientstandingforaresourcesdistribution.Weaddress the issue of maximizing the total population size with respect to the resources distribution,consideringsomeuniformpointwiseboundsaswellasprescribingthe totalamountofresources.Byassumingthediffusionrateofthespecieslargeenough, weprovethatanyoptimalconfigurationisbang-bang(inotherwordsanextreme point oftheadmissible set)meaning thatthisproblem can berecastas a shape optimizationproblem,theunknowndomainstandingfortheresourceslocation.In theone-dimensionalcase, thisproblem isdeeplyanalyzed,andforlargediffusion rates,all optimalconfigurationsareexhibited.Thisstudyiscompletedby several numericalsimulationsintheonedimensionalcase.

©2019ElsevierMassonSAS.Allrightsreserved.

r é s u m é

Dans cet article, nous considérons une espèce dont la densité de population résoutl’équationlogistiquediffusivestationairedansunenvironnementhétérogène modélisé à l’aide d’un coefficient non constant en espace représentant une distributionderessources.Nousabordonslaquestiondelamaximisationdelataille totaledelapopulationparrapportàlarépartitiondesressources,enconsidérant des contraintes ponctuelles uniformes et en prescrivant la quantité totale des ressources. En supposant que le taux de diffusion de l’espèce est suffisamment grand, nous prouvons que toute configuration optimale est bang-bang (c’est-à- dire unpointextrêmaldel’ensemble admissible),ce quisignifie que ceproblème peut être transformé en problème d’optimisation de forme, le domaine inconnu représentantl’emplacementdesressources.Danslecasunidimensionnel,ceproblème estanalyséprécisément,ainsiquepourdesvitessesdediffusionélevées,toutesles

TheauthorswerepartiallysupportedbytheProject“Analysisandsimulationofoptimalshapesapplicationtolifesciences”

oftheParisCityHall.

✩✩ I. Mazari andY. Privat were partially supportedby the ANR Project SHAPO (ANR-18-CE40-0013 SHAPO SHAPE OPTIMIZATION(2018)).

* Correspondingauthor.

E-mailaddresses:idriss.mazari@sorbonne-universite.fr(I. Mazari),gregoire.nadin@sorbonne-universite.fr(G. Nadin), yannick.privat@unistra.fr(Y. Privat).

https://doi.org/10.1016/j.matpur.2019.10.008

0021-7824/©2019ElsevierMassonSAS.Allrightsreserved.

(2)

configurations optimales sont exhibées. Cette étude est complétée par plusieurs simulationsnumériquesdanslecasunidimensionnel.

©2019ElsevierMassonSAS.Allrightsreserved.

1. Introduction

1.1. Motivationsandstateof theart

Inthisarticle,weinvestigateanoptimalcontrolproblemarisinginpopulationdynamics.Letusconsider the populationdensityθm,μ ofagivenspeciesevolvinginabounded andconnected domainΩ in Rn with n N, having aC2 boundary.In whatfollows, wewill assumethat θm,μ is thepositive solutionof the steady logistic-diffusiveequation (denoted(LDE) inthesequel) whichwrites

μΔθm,μ(x) + (m(x)−θm,μ(x))θm,μ(x) = 0 x∈Ω,

∂θm,μ

∂ν = 0 x∈∂Ω, (LDE)

where m ∈L(Ω) stands for the resources distribution and μ >0 stands for thedispersal abilityof the species,alsocalleddiffusionrate.Fromabiologicalpointofview,therealnumberm(x) isthelocalintrinsic growthrateofspeciesatlocationxofthehabitatΩ andcanbeseenasameasureoftheresourcesavailable at x.

As will be explained below,we will only consider non-negative resourcedistributions m, i.e. such that m ∈L+(Ω) ={m∈L(Ω), m≥0 a.e}.Inviewof investigatingthe influenceofspatial heterogeneityon themodel,weconsider theoptimalcontrolproblemofmaximizing thefunctional

Fμ:L+(Ω)m→

Ω

θm,μ,

wherethenotationffl

denotestheaverageoperator,inotherwordsffl

Ωf = |Ω1|´

Ωf.ThefunctionalF stands for thetotal populationsize,inorder to furtherourunderstandingof spatial heterogeneityonpopulation dynamics.

In theframeworkofpopulation dynamics,thedensityθm,μ solvingEquation(LDE) canbe interpreted as asteadystateassociatedto thefollowingevolutionequation

⎧⎪

⎪⎩

∂u

∂t(t, x) =μΔu(t, x) +u(t, x)(m(x)−u(t, x)) t >0, xΩ

∂u

∂ν(t, x) = 0 t >0, x∈∂Ω

u(0, x) =u0(x)0, u0= 0 x∈Ω

(LDEE)

modelingthespatiotemporalbehaviorofapopulationdensityuinadomainΩ withthespatiallyheteroge- neousresourcetermm.

ThepioneeringworksbyFisher[1],Kolmogorov-Petrovski-Piskounov [2] and Skellam[3] onthelogistic diffusive equation weremainly concerned withthe spatiallyhomogeneous case.Thereafter, many authors investigated the influence of spatial heterogeneity on population dynamics and species survival. In [4], propagation properties ina patch model environment are studied. In [5], aspectral condition for species survivalinheterogeneousenvironmentshasbeenderived,while[6] dealswiththeinfluenceoffragmentation and concentrationof resources onpopulation dynamics.These workswerefollowedby [7] dedicatedto an optimaldesignproblem,thatwill becommentedinthesequel.

Investigating existence anduniquenessproperties ofsolutionsfor thetwo previousequations as well as theirregularity propertiesboils downtothestudyofspectral propertiesforthelinearizedoperator

(3)

L:D(L)f →μΔf+mf,

wherethedomainofLisD(L)={f ∈L2(Ω)|Δf ∈L2(Ω)}andofitsfirsteigenvalueλ1(m,μ),character- izedbytheCourant-Fischerformula

λ1(m, μ) := sup

f∈W1,2(Ω),´

Ωf2=1

⎧⎨

−μ ˆ

Ω

|∇f|2+ ˆ

Ω

mf2

⎫⎬

. (1) Indeed,thepositivenessofλ(m,μ) isasufficientconditionensuringthewell-posednessofequations(LDEE) and (LDE) ([7]). Then, Equation(LDE) has auniquepositivesolution θm,μ ∈W1,2(Ω).Furthermore,for anyp≥1,θm,μ belongstoW2,p(Ω),and thereholds

0<inf

Ω

θm,μ≤θm,μ≤ mL(Ω). (2)

Moreover, thesteady stateθm,μ is globallyasymptotically stable:for anyu0 ∈W1,2(Ω) such thatu0 0 a.e.inΩ andu0= 0,onehas

u(t,·)−θm,μL(Ω)t→+∞−→ 0,

where udenotes the unique solutionof (LDEE) with initial state u0 (belonging to L2(0,T;W1,2(Ω)) for everyT >0).

The importance of λ1(m,μ) forstability issues related to population dynamics models was first noted in simple cases by Ludwig, Aronson and Weinberger [8]. Let us mention [9] where the case of diffusive Lotka-Volterraequationsisinvestigated.

To guarantee that λ1(m,μ)> 0, it is enough to work with distributions of resources m satisfying the assumption

m∈L+(Ω) where L+(Ω) =

⎧⎨

m∈L(Ω), ˆ

Ω

m >0

⎫⎬

. (H1) Notethattheissueofmaximizingthisprincipaleigenvaluewasaddressedforinstancein[10–14].

Inthe survey article[15], Lou suggeststhefollowing problem: theparameter μ>0 beingfixed, which weightmmaximizesthetotalpopulation sizeamong alluniformly boundedelementsof L(Ω)?

Inthis article, weaim at providingpartial answersto this issue,and moregenerallynew resultsabout theinfluenceof thespatial heterogeneitym(·) onthetotalpopulationsize.

Forthatpurpose,letusintroducethetotalpopulation sizefunctional,definedforagivenμ>0 by Fμ:L+(Ω)m−→

Ω

θm,μ, (3)

whereθm,μ denotesthesolutionofequation(LDE).

Letus mentionseveral previousworksdealingwiththemaximizationof thetotalpopulation size func- tional.Itisshownin[16] that,amongallweightsmsuchthatffl

Ωm=m0,thereholds Fμ(m)≥ Fμ(m0)= m0; this inequality is strict whenever m is nonconstant. Moreover, it is also shown that the problem of maximizingFμ overL+(Ω) has nosolution.

(4)

Remark 1.The fact that m m0 is a minimum for Fμ among the resources distributions m satisfying ffl

Ωm=m0relies onthefollowingobservation:multiplying(LDE) by θ1

m,μ and integratingbypartsyields μ

Ω

|∇θm,μ|2 θm,μ2 +

Ω

(m−θm,μ) = 0 (4)

and therefore, Fμ(m)=m0+μ´

Ω

|∇θm,μ|2

θm,μ2 ≥m0 =Fμ(m0) forall m∈ L+(Ω) such thatffl

Ωm =m0. It follows thattheconstantfunctionequaltom0isaglobalminimizerofFμ over{m∈L+(Ω),

Ωm=m0}. Intherecentarticle[17],itisshownthat,whenΩ= (0,),onehas

∀μ >0, ∀m∈L+(Ω)|m≥0 a.e.,

Ω

θm,μ 3

Ω

m.

This inequalityissharp, althoughtheright-handsideisneverreached,andtheauthorsexhibit asequence (mkk)k∈N suchthatffl

Ωθmkk/

Ωmk3 ask→+,butforsuchasequencethereholdsmkL(Ω) +andμk 0 ask→+.

In[15],itisprovedthat,withoutL1 orLboundsontheweightfunctionm,themaximizationproblem is ill-posed. It isthus naturalto introducetwo parametersκ,m0 >0,and to restrict ourinvestigation to theclass

Mm0(Ω) :=

⎧⎨

m∈L(Ω),0≤m≤κa.e ,

Ω

m=m0

⎫⎬

. (5) It isnotablethatin[18], themoregeneralfunctionalJB definedby

JB(m) = ˆ

Ω

m,μ−Bm2) forB 0

is introduced.Inthe caseB= 0, theauthorsapply theso-calledPontryagin principle,showtheGâteaux- differentiabilityofJB andcarryoutnumericalsimulationsbackinguptheconjecturethatmaximizersofJ0 over Mm0(Ω) areofbang-bangtype.

However, proving this bang-bang property is a challenge. The analysis of optimal conditions is quite complex, because the sensitivity of the functional “total population size” with respect to m(·) isdirectly related to thesolution of anadjoint state, solvinga linearizedversion of (LDE).Deriving and exploiting the propertiesofoptimal configurationstherefore requires athoroughunderstandingof theθm,μ behavior as wellastheassociatedstate.Todothis,weareintroducinganewasymptoticmethodto exploitoptimal conditions.

Wewill investigatetwo propertiesofthemaximizersofthetotalpopulationsize functionFμ.

1. Pointwiseconstraints.Themainissuethatwillbeaddressedinwhatfollowsisthebang-bangcharacter ofoptimalweightsm(·),inotherwords,whetherm isequalto0orκalmosteverywhere.Notingthat Mm0(Ω) isaconvexset andthatbang-bang functionsare theextreme pointsofthisconvexset,this questionrewrites:

Arethemaximizersm extremepointsof thesetMm0(Ω)?

(5)

Fig. 1.Ω = (0,1)2. The left distribution is “concentrated” (connected) whereas the right one is fragmented (disconnected).

Inourmainresult(Theorem1)weprovideapositiveanswerforlargediffusivities.Itisnotablethatour proof restsuponawell-adaptedexpansionofthesolutionθm,μ of(LDE) withrespectto thediffusivity μ.

This approachcould be consideredunusual, since such resultsare usually obtainedby an analysis of the propertiesof theadjointstate (orswitching function). However,sincethe switchingfunction very implicitly dependsonthedesignvariablem(·),wedidnotobtainthisresultinthis way.

2. Concentration-fragmentation. Itis wellknownthatresourceconcentration(whichmeansthatthedis- tribution of resourcesm decreasesinalldirections,see Definition2foraspecific statement)promotes the survival of species[7]. On the contrary, we will saythat aresource distributionm =κχE, where E isasubsetofΩ,isfragmented whentheE set isdisconnected.IntheFig.1, Ω isasquare,and the intuitivenotionofconcentration-fragmentationofresourcedistributionisillustrated.

A naturalissuerelatedto qualitativepropertiesofmaximizersisthus Aremaximizersm concentrated? Fragmentated?

InTheorem2,weconsiderthecaseofaorthotopeshapehabitat,andweshowthatconcentrationoccurs forlargediffusivities:ifmμmaximizesFμoverMm0(Ω),thesequence{mμ}μ>0stronglyconvergesin L1(Ω) toaconcentrateddistributionas μ→ ∞.

In the one-dimensional case, we also prove thatif the diffusivity is large enough, there are only two maximizers, thatareplottedin Fig.2(seeTheorem 3).

Finally, inthe one-dimensionalcase, weobtain asurprising result:fragmentation may bebetter than concentrationforsmalldiffusivities(seeTheorem 4andFig.3).

This issurprising becauseinmanyproblemsofoptimizingthelogistic-diffusiveequation,itisexpected thatthebestdispositionofresourceswillbe concentrated.

1.2. Main results

Inthewholearticle, thenotation χI will be used todenote the characteristicfunction ofameasurable subsetI ofRn,inotherwords, thefunctionequalto1inI and0elsewhere.

For the reasons mentioned inSection 1.1, it is biologically relevant to consider theclass of admissible weights Mm0(Ω) defined by (5), where κ > 0 and m0 > 0 denote two positive parameters such that m0< κ (sothatthis setisnontrivial).

Wewillhenceforthconsiderthefollowing optimaldesignproblem.

(6)

Fig. 2.Ω = (0,1). Plot of the only two maximizers ofFμoverMm0(Ω).

Fig. 3.Ω = (0,1). A double crenel (on the left) is better than a single one (on the right).

Optimaldesign problem. Fix n N, μ >0, κ>0, m0 (0,κ) and let Ω be a bounded connected domain ofRn having aC2 boundary. Weconsidertheoptimization problem

sup

m∈Mκ,m0(Ω)Fμ(m). (Pμn)

As will be highlighted in thesequel, the existence of amaximizer follows from adirect argument. We will thusinvestigatethequalitativepropertiesofmaximizersdescribed intheprevioussection(bang-bang character,concentration/fragmentationphenomena).

Forthesakeofreadability,almostalltheproofsarepostponedtoSection2.

Let us stress that the bang-bang character of maximizer is of practical interest in view of spreading resources inanoptimalway.Indeed,inthecasewhereamaximizerm writesm=κχE,thetotalsize of population ismaximizedbylocatingalltheresourcesonE.

(7)

1.2.1. Firstproperty

Westart withapreliminaryresultrelated tothe saturationofpointwise constraintsforProblem (Pμn), valid for all diffusivities μ. It is obtained by exploitingthe first order optimality conditions for Problem (Pμn),writtenintermsofanadjointstate.

Proposition1.Letn∈N,μ>0,κ>0,m0(0,κ).Letm beasolutionof Problem (Pμn).Then, theset {m=κ}∪ {m= 0}hasapositive measure

1.2.2. Thebang-bangproperty holdsforlarge diffusivities

For large values of μ, we will prove that the variational problem can be recast in terms of a shape optimizationproblem,as underlinedinthenextresults.

Theorem 1.Letn N,κ>0,m0 (0,κ). Thereexists a positivenumber μ =μ(Ω,κ,m0) such that, forevery μ≥μ,thefunctional Fμ isstrictly convex.Asaconsequence, forμ≥μ,any maximizerof Fμ

overMm0(Ω) (orsimilarlyany solution ofProblem (Pμn))ismoreover of bang-bangtype.1

WeemphasizethattheproofofTheorem1is quiteoriginal, sinceitdoesnotrestupontheexploitation ofadjointstateproperties,butupontheuseofapowerseriesexpansionsinthediffusivityμofthesolution θm,μof(LDE),aswellastheirderivativewithrespecttothedesignvariablem.Inparticular,thisexpansion isusedtoprovethat,ifμislargeenough,thenthefunctionFμ isstrictlyconvex.Sincetheextremepoints ofMm0(Ω) arebang-bangresourcesfunctions,theconclusionreadilyfollows.

Thistheorem justifiesthatProblem(Pμn) canbe recast asashapeoptimizationproblem.Indeed,every maximizerm isoftheform m=κχE whereE isameasurablesubsetsuchthat|E|=m0|Ω|/κ.

Remark2.Wecanrewritethis resultintermsofshapeoptimization,byconsideringasmain unknownthe subset E of Ω where resources are located: indeed, under the assumptions of Theorem 1, there exists a positivenumberμ=μ(Ω,κ,m0) suchthat,foreveryμ≥μ, theshape optimizationproblem

sup

E⊂Ω,|E|=m0|Ω|/κFμ(κχE), (6) where thesupremum istaken overallmeasurable subset E Ω such that|E|=m0|Ω|/κ,has asolution.

We underline the fact that, for such a shape functional, which is “non-energetic” in the sense that the solutionof thePDEinvolved cannotbe seenas aminimizerof thesamefunctional,proving theexistence ofmaximizersisusuallyintricate.

1.2.3. Concentrationoccurs forlargediffusivities

Inthissection,westatetworesultssuggestingconcentrationpropertiesforthesolutionsofProblem(Pμn) mayholdforlargediffusivities.

Forthatpurpose,letusintroducethefunctionspace

X :=W1,2(Ω)

⎧⎨

u∈W1,2(Ω),

Ω

u= 0

⎫⎬

⎭ (7)

andtheenergyfunctional

1 Inotherwords,itis,anelementofMm0(Ω) equala.e.to0orκinΩ.

(8)

Em:X u→ 1 2

Ω

|∇u|2−m0 Ω

mu. (8)

Theorem 2.[Γ-convergenceproperty]

1. LetΩbe adomain witha C2 boundary.Forany μ>0,letmμ bea solutionof Problem (Pμn).Any L1 closure pointof {mμ}μ>0 asμ→ ∞ isasolution oftheoptimaldesignproblem

m∈Mminm0(Ω)min

u∈XEm(u). (9)

2. In the case of atwo dimensional orthotope Ω= (0;a1)×(0;a2), any solution of theasymptotic opti- mization problem(9)decreases in everydirection.

As willbeclearintheproof,thistheorem isaΓ-convergence property.

Intheone-dimensionalcase,onecanrefinethisresultbyshowingthat,forμlargeenough,themaximizer is astepfunction.

Theorem 3.Letusassume thatn= 1 andΩ= (0,1).Letκ>0,m0(0,κ).Thereexistsμ >ˆ 0suchthat, forany μ≥μ,ˆ anysolution m ofProblem (Pμn)isequala.e.toeither m˜ orm(1˜ − ·),where m˜ =κχ(1,1)

and =m0/κ.

1.2.4. Fragmentationmay occurforsmall diffusivities

Let us concludeby underlining thatthe statementof Theorem 3cannot be truefor allμ >0.Indeed, weprovideanexampleinSection3.1whereadouble-crenelgrowthrategivesalargertotalpopulationsize than thesimplecrenelm˜ ofTheorem3.

Theorem 4.The function m˜ =κχ(1,1) (and m(1˜ − ·)=κχ(0,)) does not solve Problem (Pμn) for small valuesof μ.Moreprecisely,if weextendm˜ outside of(0,1) by periodicity,there existsμ>0suchthat

Fμ

m(2˜ ·)

>Fμ( ˜m).

This result is quite unusual.For the optimization of the first eigenvalue λ1(m,μ) defined by (1) with respect tomontheinterval(0;1)

sup

m∈M((0;1))λ1(m, μ)

we know(see[7])thattheonlysolutionsarem˜ andm(1˜ − ·),foranyμ.

It isnotablethatthefollowing resultisabyproductofTheorem 4above.

Corollary 1.Thereexistsμ>0suchthat theproblems sup

m∈M((0;1))λ1(m, μ) and

sup

m∈M((0;1))Fμ(m) do not havethesamemaximizers.

(9)

Forfurthercommentsontherelationshipbetweenthemaineigenvalueandthetotalsizeofthepopulation, wereferto[19],whereanasymptoticanalysisofthemaineigenvalue(relativetoμasμ→+)isperformed, andthereferencestherein.

Weconcludethissectionbymentioningtherecentwork[20],thatwasreportedtouswhenwewrotethis article.Theyshowthat,ifweassumetheoptimaldistributionofregularresources(moreprecisely,Riemann integrable),thenitisnecessarilyofbang-bangtype.Theirproofisbasedonaperturbationargumentvalid forallμ>0.However,provingsuchregularityisgenerallyquitedifficult.Ourproof,althoughitisnotvalid forallμ,isnotbasedonsucharegularityassumption,butthesetwocombinedresultsseemtosuggestthat allmaximizersofthisproblemare ofbang-bangtype.

1.3. Tools andnotations

Inthissection,wegathersomeusefultoolswewilluseto provethemainresults.

Rearrangementsoffunctionsandprincipaleigenvalue Letusfirstrecallseveralmonotonicityandregularity relatedtotheprincipaleigenvalueoftheoperatorL.

Proposition2.[9] Let m∈L+(Ω) andμ>0.

(i) Themapping R+μ→λ1(m,μ)iscontinuous andnon-increasing.

(ii) Ifm≤m1,then λ1(m,μ)≤λ1(m1,μ),andtheequality istrueif,and onlyif m=m1 a.e.in Ω.

In the proof of Theorem 3, we will use rearrangement inequalities at length. Let us briefly recall the notionofdecreasingrearrangement.

Definition1.Foragivenfunctionb∈L2(0,1),onedefinesitsmonotonedecreasing(resp.monotoneincreas- ing)rearrangementbdr (resp.bbr)on(0,1) bybdr(x)= sup{c∈R|x∈Ωc},whereΩc = (1− |Ωc|,1) with Ωc={b> c}(resp.bbr(·)=bdr(1− ·)).

The functions bdr and bbr enjoy nice properties. In particular, the Pólya-Szegö and Hardy-Littlewood inequalitiesallowtocompareintegralquantitiesdependingonb,bdr,bbr andtheirderivative.

Theorem([21,22]). Letubeanon-negative andmeasurable function.

(i) Ifψ isany measurablefunctionfrom R+ toR,then ˆ1

0

ψ(u) = ˆ1

0

ψ(udr) = ˆ1

0

ψ(ubr) (equimeasurability);

(ii) Ifubelongs toW1,p(0,1)with 1≤p,then ˆ1

0

(u)p ˆ1

0

(ubr)p= ˆ1

0

(udr)p (Pólya inequality);

(iii) If u,v belong toL2(0,1),then ˆ1

0

uv≤ ˆ1

0

ubrvbr= ˆ1

0

udrvdr (Hardy-Littlewood inequality);

(10)

The equality case inthe Pólya-Szegö inequality is the object of the Brothers-Ziemertheorem (see e.g.

[23]).

Symmetric decreasingfunctions Inhigherdimensions,inorder tohighlightconcentrationphenomena,we will useanother notion of symmetry, namely monotone symmetric rearrangements thatare extensions of monotone rearrangementsinonedimension. Here,Ω denotesthen-dimensionalorthotopen

i=1(ai,bi).

Definition 2.Foragiven functionb∈L1(Ω),onedefines itssymmetricdecreasingrearrangementbsd onΩ as follows: first fix then−1 variablesx2,. . . ,xn. Define b1,sd as the monotone decreasingrearrangement of x→b(x,x2,. . . ,xn).Then fixx1,x3,. . . ,xn anddefine b2,sd as themonotonedecreasingrearrangement of x→ b1,sd(x1,x,. . . ,xn). Performsuch monotone decreasingrearrangements successively. Theresulting functionisthesymmetricdecreasingrearrangementofb.

We define thesymmetric increasing rearrangementin adirection i asimilar fashion and write it bi,id. Note that,inhigherdimensions,thedefinitionofdecreasingrearrangementstrongly dependsontheorder inwhichthevariablesaretaken.

Similarly to the one-dimensional case, the Pólya-Szegö and Hardy-Littlewood inequalities allow us to compare integralquantities.

Theorem ([7,24]). Letubeanon-negative andmeasurablefunction definedon aboxΩ=n

i=1(0;ai).

(i) If ψ isanymeasurable functionfromR+ toR,then ˆ

Ω

ψ(u) = ˆ

Ω

ψ(usd) = ˆ

Ω

ψ(usd) (equimeasurability);

(ii) If u belongs to W1,p(Ω) with 1 p, then, for every i NN, [ai;bi] = ω1,i∪ω2,i∪ω3,i, where the map (x1,. . . ,xi1,xi+1,. . . ,xN)→u(x1,. . . ,xn)is decreasing if xi ∈ω1,i,increasing if xi ∈ω2,i and constant ifxi∈ω3,i.

ˆ

Ω

|∇u|p ˆ

Ω

|∇usd|p (Pólya inequality);

Furthermore, if, for any i Nn, ´

Ω|∇u|p = ´

Ω|∇ui,sd|p then there exist three measurable subsets ωi,1i,2 andωi,3 of(0;ai)such that

1. (0;ai)=ωi,1∪ωi,2ωi,3, 2. u=ui,bd oni1

k=1(0;ak)×ωi,1×n

k=i+1(0;ak), 3. u=ui,id oni−1

k=1(0;ak)×ωi,2×n

k=i+1(0;ak), 4. u=ui,bd=ui,id on i−1

k=1(0;ak)×ωi,3×n

k=i+1(0;ak).

(iii) If u,v belongtoL2(Ω),then ˆ

Ω

uv≤ˆ

Ω

usdvsd (Hardy-Littlewood inequality);

Poincaréconstantsandellipticregularityresults Wewilldenotebyc(p) theoptimalpositiveconstantsuch thatforeveryp∈[1,+),f ∈Lp(Ω) andu∈W1,p(Ω) satisfying

Δu=f inD(Ω),

(11)

thereholds

uW2,p(Ω)≤c(p)

fLp(Ω)+uLp(Ω)

.

The optimal constant in the Poincaré-Wirtinger inequality will be denoted by CP W(p) (Ω). This inequality reads: foreveryu∈W1,p(Ω),

u−

Ω

u Lp(Ω)

≤CP W(p) (Ω)∇uLp(Ω). (10)

Wewillalsousethefollowingregularity results:

Theorem. ([25, Theorem 9.1]) Let Ω be a C2 domain. There exists a constant CΩ > 0such that, if f L(Ω) andu∈W1,2(Ω) solve

Δu=f in Ω,

∂u

∂ν = 0 on ∂Ω, (11)

then

∇uL1(Ω)≤CΩfL1(Ω). (12) Theorem. ([26, Theorem 1.1]) Let Ω be a C2 domain. There exists a constant CΩ > 0such that, if f L(Ω) andu∈W1,2(Ω) solve

Δu=f in Ω,

∂u

∂ν = 0 on ∂Ω, (13)

then

∇uL(Ω)≤CΩfL(Ω). (14) Remark3.Thisresultisinfactacorollary[26,Theorem1.1].InthisarticleitisprovedthattheLnorm ofthegradientoff isboundedbytheLorentznormLn,1(Ω) off,whichisautomaticallycontrolledbythe L(Ω) normoff.

Note that Stampacchia’s original result deals with Dirichlet boundary conditions. However, the same dualityargumentsprovidetheresultforNeumannboundaryconditions.

Theorem. ([27]) Let r (1;+). There exists Cr > 0 such that, if f ∈Lr(Ω) and if u∈ W1,r(Ω) be a solution of

Δu= div(f) inΩ,

∂u

∂ν = 0 on∂Ω, (15)

thenthere holds

∇uLr(Ω)≤CrfLr(Ω). (16)

(12)

2. Proofsofthe mainresults

2.1. Firstorderoptimalityconditions forProblem (Pμn)

To provethemain results,wefirstneedtostatethefirstorder optimalityconditionsforProblem(Pμn).

Forthatpurpose,letusintroducethetangentconetoMm0(Ω) atanypointofthis set.

Definition 3.([28, chapter 7]) For every m ∈ Mm0(Ω), the tangent cone to the set Mm0(Ω) at m, denoted by Tm,Mm0(Ω) is the set of functions h L(Ω) such that, for any sequence of positive real numbersεn decreasingto 0,there existsasequenceoffunctionshnL(Ω) converging tohasn→+, and m+εnhn∈ Mm0(Ω) foreveryn∈N.

We will show that, for any m ∈ Mm0(Ω) and any admissible perturbation h ∈ Tm,Mm0(Ω), the functionalFμ istwiceGâteaux-differentiableatmindirectionh.Todothat,wewillshowthatthesolution mapping

S:m∈ Mm0(Ω)→θm,μ∈L2(Ω),

where θm,μ denotes thesolutionof(LDE),istwiceGâteaux-differentiable.Inthisview,weprovide several L2(Ω) estimates ofthesolutionθm,μ.

Lemma 1.([18])The mapppingS is twiceGâteaux-differentiable.

For the sakeofsimplicity, we will denote by θ˙m,μ =dS(m)[h] theGâteaux-differentialof θm,μ at min directionhandbyθ¨m,μ=d2S(m)[h,h] itssecondorder derivativeat mindirectionh.

Elementary computationsshowthatθ˙m,μ solvesthePDE

μΔ ˙θm,μ+ (mm,μ) ˙θm,μ =−hθm,μ in Ω,

θ˙m,μ

∂ν = 0 on∂Ω, (17)

whereasθ¨m,μ solvesthePDE

μΔ¨θm,μ+ ¨θm,μ(mm,μ) =2

˙m,μ−θ˙2m,μ

in Ω,

θ¨m,μ

∂ν = 0 on∂Ω. (18)

It followsthat,forallμ>0,theapplicationFμ isGâteaux-differentiablewithrespectto mindirection handitsGâteauxderivativewrites

dFμ(m)[h] = ˆ

Ω

θ˙m,μ.

SincetheexpressionofdFμ(m)[h] aboveisnotworkable,weneedtointroducetheadjointstatepm,μtothe equation satisfiedbyθ˙m,μ,i.ethesolutionoftheequation

μΔpm,μ+pm,μ(mm,μ) = 1 in Ω,

∂pm,μ

∂ν = 0 on∂Ω. (19)

Note that pm,μ belongs to W1,2(Ω) and is unique, accordingto theFredholm alternative. Infact, we can prove thefollowing regularity resultson pm,μ: pm,μ L(Ω),pm,μL(Ω) ≤M,where M isuniform in

(13)

m ∈ Mm0(Ω) and, for any p [1;+), pm,μ W2,p(Ω), so that Sobolev embeddings guarantee that pm,μ∈C1,α(Ω).

Now, multiplying the main equation of (19) by θ˙m,μ and integrating two times by parts leads to the expression

dFμ(m)[h] = ˆ

Ω

m,μpm,μ.

Nowconsideramaximizerm.ForeveryperturbationhintheconeTm,Mm0(Ω),thereholdsdFμ(m)[h]0.

Theanalysis ofsuch optimalitycondition isstandardinoptimalcontroltheory(see forexample[29]) and leadstothefollowingresult.

Proposition3.Letusdefine ϕm,μ =θm,μpm,μ,whereθm,μ andpm,μ solverespectivelyequations(LDE)and (19).Thereexistsc∈R suchthat

m,μ < c}={m=κ}, m,μ=c}={0< m < κ}, m,μ > c}={m= 0}. 2.2. Proof ofProposition 1

Aneasybuttediouscomputationshowsthatthefunctionϕm,μ introducedinProposition3isC1,α(Ω) W1,2(Ω) function,asaproductoftwo C1,α functionsandsatisfies(in aW1,2 weaksense)

μΔϕm,μ

∇ϕm,μ,θθm,μ

m,μ

+ϕm,μ

|∇θθm,μ|2

m,μ2 + 2mm,μ

=θm,μ in Ω,

∂ϕm,μ

∂ν = 0 on∂Ω, (20)

where ·,· stands for the usual Euclidean inner product. To provethat |{m = 0}|+|{m = κ}|> 0,we argueby contradiction,byassuming that|{m=κ}|=|{m= 0}|= 0. Therefore,ϕm,μ =c a.e.inΩ and, accordingto(20),thereholds

c

|∇θm,μ|2

θm,μ2 + 2mm,μ

=θm,μ Integratingthisidentityand usingthatθm,μ >0 inΩ andc= 0, weget

2c

⎝μˆ

Ω

|∇θm,μ|2 θm,μ2 +

ˆ

Ω

(m−θm,μ)

⎠= (c+ 1) ˆ

Ω

θm,μ.

Equation(4) yields thattheleft-handsideequals 0,sothatonehasc=1.Comingbacktotheequation satisfiedbyϕm,μ leadsto

m=θm,μ−μ|∇θm,μ|2 θm,μ2 .

Thelogisticdiffusiveequation(LDE) isthentransformedinto μθm,μΔθm,μ−μ|∇θm,μ|2= 0.

Integrating this equation by parts yields ´

Ω|∇θm,μ|2 = 0.Thus, θm,μ is constant,and so is m. In other words,m=m0,which, accordingto(4) (seeRemark1)isimpossible.Theexpectedresultfollows.

(14)

2.3. Proofof Theorem1

TheproofofTheorem1isbasedonacarefulasymptoticanalysiswithrespecttothediffusivityvariable μ.

Letus firstexplaintheoutlinesoftheproof.

Let us fix m ∈ Mm0(Ω) and h L(Ω). In the sequel, the dot or double dot notation f˙ or f¨will respectivelydenote firstandsecondorder Gâteaux-differentialoff atm indirectionh.

According to Lemma 1, Fμ is twice Gâteaux-differentiable and its second order Gâteaux-derivative is given by

d2Fμ(m)[h, h] = ˆ

Ω

θ¨m,μ,

where θ¨m,μ isthesecondGâteauxderivativeofS,definedastheuniquesolutionof(18).

Letm1 andm2be twoelementsofMm0(Ω) anddefine φμ: [0; 1]t→ Fμ

tm2+ (1−t)m1

−tFμ(m2)(1−t)Fμ(m1).

Onehas

d2φμ dt2 (t) =

ˆ

Ω

θ¨(1t)m1+tm2, and φμ(0) =φμ(1) = 0,

where θ¨(1−t)m1+tm2 mustbe interpretedas abilinear formfrom L(Ω) toW1,2(Ω),evaluatedtwo times at thesamedirectionm2−m1.Hence,togetthestrictconvexityofFμ,itsufficestoshowthat,whenever μ islargeenough,

ˆ

Ω

θ¨tm2+(1t)m1>0

as soon as m1 =m2 (in L(Ω)) and t (0,1),or equivalently thatd2Fμ(m)[h,h] > 0 as soon as m Mm0(Ω) andh∈L(Ω).Notethatsinceh=m2−m1,itispossibletoassumewithoutlossofgenerality thathL(Ω)2κ.

Theproofisbasedonanasymptoticexpansionofθm,μintoamaintermandareminderone,withrespect to thediffusivityμ.Itiswell-known(seee.g.[16,Lemma2.2])thatonehas

θm,μ W

1,2(Ω)

−−−−−−→

μ→∞ m0. (21)

However,sinceweareworkingwithresourcesdistributionslivinginMm0(Ω),suchaconvergenceproperty doesnotallowustoexploititforderivingoptimalitypropertiesforProblem(Pμn).

Forthisreason,inwhatfollows,wefindafirstorderterminthisasymptoticexpansion.Togetaninsight into theproof’smain idea,letus firstproceedinaformalway, bylookingforafunctionη1,msuchthat

θm,μ ≈m0+η1,m μ

as μ→ ∞.Pluggingthisformal expansionin(LDE) andidentifyingat order 1μ yieldsthatη1,m satisfies

(15)

Δη1,m+m0(m−m0) = 0 in Ω,

∂η1,m

∂ν = 0 on∂Ω.

To make this equation well-posed, it is convenient to introduce the function ˆη1,m defined as the unique solutiontothesystem

⎧⎪

⎪⎩

Δˆη1,m+m0(m−m0) = 0 in Ω,

ηˆ1,m

∂ν = 0 on∂Ω,

Ωηˆ1,m= 0, andto determineaconstantβ1,m suchthat

η1,m= ˆη1,m+β1,m.

Inviewofidentifyingtheconstantβ1,m,weintegrateequation(LDE) toget ˆ

Ω

θm,μ(m−θm,μ) = 0

whichyields,at theorder 1μ,

β1,m= 1 m0

Ω

ˆ

η1,m(m−m0) = 1 m20

Ω

|∇ηˆ1,m|2.

Therefore,onehasformally

Ω

θm,μ ≈m0+1 μ

Ω

|∇ηˆ1,m|2.

As will be proved in Step 1 (paragraph 2.3), the mapping Mm0(Ω) m β1,m is convex so that, at the order μ1, the mapping Mm0(Ω) m

Ωθm,μ is convex. We will prove the validity of all the claimsabove,bytakingintoaccountremaindertermsintheasymptoticexpansionabove,toprovethatthe mappingFμ:m→

Ωθm,μ isitselfconvexwheneverμislargeenough.

Remark4.Onecouldalso noticethatthe quantityβ1,m aroseinthe recentpaper[30],where theauthors determinethelargetimebehaviorofadiffusiveLotka-Volterracompetitivesystembetweentwopopulations with growth rates m1 and m2. If β1,m1 > β1,m2, then when μ is large enough, the solution converges as t + to the steady state solution of ascalar equation associated with the growth rate m1. In other words, thespecieswithgrowth ratem1 chasestheother one.Inthepresentarticle, asabyproduct ofour results,wemaximize thefunctionm→β1,m. Thisremark impliesthatthisintermediateresultmight find otherapplications ofitsown.

Letusnowformalizerigorouslythereasoningoutlined above,byconsideringanexpansionoftheform θm,μ=m0+η1,m

μ +Rm,μ

μ2 . Hence,onehasforallm∈ Mm0(Ω),

(16)

d2Fμ(m)[h, h] = 1 μ

ˆ

Ω

¨

η1,m+ 1 μ2

ˆ

Ω

R¨m,μ

Wewill showthatthere holds

d2Fμ(m)[h, h]≥C(h) μ

1Λ

μ

(22) forallμ>0,whereC(h) andΛ denotesomepositiveconstants.

The strict convexity ofFμ will then follow.Concerning the bang-bang characterof maximizers, notice thattheadmissiblesetMm0(Ω) isconvex,andthatitsextremepointsareexactlythebang-bangfunctions of Mm0(Ω).Oncethe strictconvexityof Fμ showed,wethen easilyinferthatFμ reaches itsmaxima at extreme points, in other words that any maximizer is bang-bang.Indeed, assuming by contradiction the existence of amaximizerwritingtm1+ (1−t)m2 with t∈(0,1),m1 andm2, two elements of Mm0(Ω) suchthatm1=m2 onapositiveLebesguemeasure set,onehas

Fμ(tm1+ (1−t)m2)< tFμ(m1) + (1−t)Fμ(m2)<max{Fμ(m1),Fμ(m2)}, byconvexityofFμ,whencethecontradiction.

Therestoftheproofisdevotedtotheproofoftheinequality(22).Itisdividedintothefollowingsteps:

Step 1. Uniformestimateof ´

Ωη¨1,m withrespectto μ.

Step 2. DefinitionandexpansionoftheremaindertermRm,μ. Step 3. Uniformestimateof Rm,μ withrespecttoμ.

Step 1:minoration of´

Ωη¨1,m Onecomputessuccessively β˙1,m= 1

m0 Ω

η˙ˆ1,mm+ ˆη1,mh

, β¨1,m= 1 m0

Ω

2 ˙ˆη1,mh+ ¨η1,mh

(23)

where η˙ˆ1,m solvestheequation

Δ ˙ˆη1,m+m0h= 0 in Ω

η˙ˆ1,m

∂ν = 0, on∂Ω with

ˆ

Ω

˙ˆ

η1,m= 0. (24)

Notice moreoverthatη¨1,m = 0, sinceη˙ˆ1,m islinear withrespect to h.Moreover, multiplyingthe equation abovebyη˙ˆ1,m andintegrating bypartsyields

β¨1,m = 2 m20

Ω

|∇η˙ˆ1,m|2>0 (25)

wheneverh= 0, accordingto (23).Finally,weobtain ˆ

Ω

¨

η1,m =|Ω¨1,m+ ˆ

Ω

¨

η1,m=|Ω¨1,m= 2 m20

ˆ

Ω

|∇η˙ˆ1,m|2.

It isthennotablethat´

Ωη¨1,m0.

Références

Documents relatifs

The proof of our main result, Theorem 1, concerning the bang-bang property for time optimal controls governed by semilinear heat equation with local control is given in Section

Eight years after the war, Beloved appears outside Sethe’s house who then adopts her and starts to believe that the young woman is her dead daughter come back to life..

Assuming that the diffusion rate of the species is large enough, we prove that any optimal configuration is the characteristic function of a domain standing for the resources

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

C. When applying a shooting method for solving this kind of optimal control problem, one may encounter numerical problems due to the fact that the shooting function is not

On the other hand, the optimality conditions for this problem show that, in general, the unique control v of minimal L ∞ -norm has a bang-bang structure as he takes only two

For finitely generated group that are linear over a field, a polynomial upper bound for these functions is established in [BM], and in the case of higher rank arithmetic groups,

Relaxed formulation for the Steklov eigenvalues: existence of optimal shapes In this section we extend the notion of the Steklov eigenvalues to arbitrary sets of finite perime- ter,