• Aucun résultat trouvé

Sulfur compounds can modulate the bioavailability of flavonols

N/A
N/A
Protected

Academic year: 2021

Partager "Sulfur compounds can modulate the bioavailability of flavonols"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02825454

https://hal.inrae.fr/hal-02825454 Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sulfur compounds can modulate the bioavailability of flavonols

Caroline Teyssier, Pascale Goupy, Marie Hélène Siess, Marie Josephe Amiot

To cite this version:

Caroline Teyssier, Pascale Goupy, Marie Hélène Siess, Marie Josephe Amiot. Sulfur compounds can modulate the bioavailability of flavonols. 1. International Conference on Polyphenols and Health, Nov 2003, Vichy, France. 1 p. �hal-02825454�

(2)

Sulfur compounds can modulate the bioavailability of flavonols

Sulfur compounds can modulate the bioavailability of flavonols

Teyssier C 

Teyssier C 

11

, Goupy P 

, Goupy P 

22

, Siess MH 

, Siess MH 

11

and 

and 

Amiot MJ

Amiot MJ

,

,

33

 

 

 

Unité INRA, Toxicologie Nutritionnelle, Dijon, France

 

INRA,Sécurité et Qualité des Produits végétaux, France

3

Unité INSERM 476 Nutrition Humaine et Lipides, Marseille, France 

Contact :  (33) 4 91 29 41 02  Marie­Jo.Amiot­Carlin@medecine.univ­mrs.fr 

Sulfur compounds can modulate the bioavailability of flavonols

Sulfur compounds can modulate the bioavailability of flavonols

Teyssier C 

Teyssier C 

11

, Goupy P 

, Goupy P 

22

, Siess MH 

, Siess MH 

11

and 

and 

Amiot MJ

Amiot MJ

,

,

33

 

 

 

Unité INRA, Toxicologie Nutritionnelle, Dijon, France

 

INRA,Sécurité et Qualité des Produits végétaux, France

3

Unité INSERM 476 Nutrition Humaine et Lipides, Marseille, France 

Contact :  (33) 4 91 29 41 02  Marie­Jo.Amiot­Carlin@medecine.univ­mrs.fr 

Introduction

Introduction

Biological activities of flavonoids, including the antioxidant effects, greatly depend on their bioavailability (1,2). It has been shown that different dietary quercetin glycosides (from onions and apples) displayed great differences in  their absorption kinetics (3). The nature of sugar linked to flavonol appeared to affect the absorption of quercetin. However, the position of substitution seemed to have no influence. In addition, data on the influence of the chemical  environment on the bioavailability of polyphenols remained scarce.

The aim of this study was to specify the effect of other bioactive microconstituents, especially sulfur compounds present in large quantities in onions, on the absorption of flavonol glycosides.

Methods

Methods

Male 6­weeks old Wistar rats were purchased from Janvier (Le Genest Saint Isle, France). Rats were housed in individual stainless­wire cages, maintained at 22°C with a 12h light/12h dark cycle. They were fed ad libitum with a  semi­synthetic diet and water for one week before the beginning of the experiment. Animals were fasted for 18 hours before and 5 hours after microconstituents administration. Microconstituents were administrated to rats (3 per  treatment/time) at a unique dose by intra­gastric way: 1.  DPDS (dipropyle disulfide), dissolved in corn oil, was orally administrated at a dose of 200 mg per kg body weight (treatment S).S 2.  Flavonols (quercetin glycosides isolated from onion) as aqueous solution were administrated at a dose of 20 mg/kg  body weight (treatment F).F

3. The mixture of DPDS and flavonols were administrated altogether at the same dose given in the treatments S and  F (treatment F SF)SF

Negative control was included for 3 animals. Blood plasmas were analyzed at different times after administration: 0, 1, 2, 4, 8, 24, 36 et 48 hours. Blood samples were immediately centrifuged and plasmas were stored at ­20°C until  analysis.

Analysis of plasma flavonols: Blood plasma (500 µl) was extracted by adding 4 volumes of acetone HCl 50 mM containing esculin 2.5 µg.ml­1 as internal standard. The mixture was vortexed for 30 s, sonicated for 30 s, 

again vortexed for 30 s, and centrifuged for 10 min at 4°C and 10 000 trs.min­1. Supernatant was evaporated under vacuum and 100 µl of methanol was added to the dry residue. Plasma extracts were analyzed by HPLC/Diode 

Array Detection (Hewlett Packard 1100) using a column Alltima C18, 5µm (150 ×  4.6 mm i.d.) with a guard column Alltima C18, 5 µm (Alltech). The solvent system used was a gradient of A (HCOOH 0.05%) and B (CH3CN). The 

best separation was obtained with the following gradient : at 0 min , 10% B ; at 40 min, 40% B ; at 50 min, 50% B. The solvent flow rate was 1 ml.min­1. Flavonols and their conjugates were identified by HPLC/MS (Plateform 

LCZ, Micromass equipped with a Hewlett Packard 1050 liquid chromatograph) with negative electrospray ionization technique.

Analysis of sulfur compounds: Blood plasma  (500 µl) was homogenized with a high­speed blendor in distilled water, with 100 µl of an ethanol solution containing p­cymene (0.17 mg/ml), used as internal standard. After 

adding 0.1 volume trichloroacetic acid 30%, the homogenate was centrifuged and the supernatant was  extracted three times with dichloromethane; organic extracts were then concentrated under a nitrogen stream to a final volume  of 500 µl. GC/MS was carried out using a Agilent Technologies 6890 gas chromatograph, connected to Agilent Technologies 5973 Mass Selective Detector and equipped with a capillary DB™1701 column (30 m x 0.32 mm I.D., 1   µm film thickness), a splitless injection and an electronic ionisation at 70 eV. Oven was programmed from 35°C (2 min) to 220°C at a rate of 5°C.min­1. The other conditions were as follows: helium (constant velocity fixed at   35  cm/sec) as carrier gas, 200°C at the injection port. Peak identifications were based on comparison with retention times and spectra of standards.  Statiscal analysis was performed with Statview Sofware (SAS Insitute, Cary, NC)

References

References

1. Lairon D. &Amiot M.J. Flavonoids in food and natural antioxidants in wine. Curr Opin Lipidol, 1999, 10: 23­28 2. Heim K.E., Tagliaferro A.R. & Bobilya D. Flavonoid antioxidants: chemistry, metabolism and structure­activity relationships. J. Nutr Biochem, 2002, 13:  572­584. 3. Hollman P. & Katan M.B. Absorption, metabolism and helath effects of dietary flavonoids in man. Biomed & Phamacother, 1997, 57: 305­310. 4. Ameer B. & Weintraub R.A. Drug interactions with grapefruit juice. Clin Pharmacokinet, 1997, 33: 103­121.

Conclusions

Conclusions

Our results suggested that other phytochemicals present in aur diet can influence the bioavailability of polyphenols. The differences related to the bioavailability of flavonols observed after apples or onions ingestion could be due to the chemical environnement of food matrix. It could be suggested that sulfur compounds present in onions could prevent the degradation of flavonols through similar mechanisms previously reported for phytochemicals from Citrus that could prevent the oxidation of some drugs (4).

Such mechanisms are currently studied at intestinal level with Caco-2 cells.

Acknowledgments

Acknowledgments

This work has been supported by the French Ministry of Research (Contracts n° 98 P 0470 et 98 P  0471) and by the french industry Coopd’Or.

Results and discussion

Results and discussion

Flavonol glycosides isolated from onions

Flavonol glycosides isolated from onions

The major compounds were identified as

quercetin-3,4’-diglucoside (1) and

quercetin-4’-glucoside (2). Quercetin (3) was also detected.

Flavonol metabolites in rat plasmas

Flavonol metabolites in rat plasmas

No glycosides were detected in the plasmas of

animals supplemented with flavonols and/or DPDS The major metabolites identified in rat plasmas by HPLC/MS were glucuronides of quercetin and

isorahmnetin. 5 10 15 20 25 30 35 mA U 0 10 20 30 40 , Sig=365 nm 10.19 8 11.45 7 12.49 4 15.92 0 19.58 5 21.37 8 27.68 1 1 2 3

The presence of DPDS changed the absorption kinetics

The presence of DPDS changed the absorption kinetics

of flavonols

of flavonols

0 5 10 15 20 25 30 0 4 8 12 16 20 24 28 32 36 40 44 48 Hours after administration

Plasma F Plasma SF

Flavonols when administrated with DPDS (SF) appeared

more rapidly absorbed than administrated alone (F).

The maximum was observed at 4 hours for the mixture SF versus 8 hours for flavonols (F).

The levels of plasmatic flavonols were two-fold higher

when rats were supplemented with flavonols and DPDS (SF). After 24 hours, concentrations of flavonols remained higher for the coadministration treatment.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 10 20 30 40

hours after administration of DPDS and flavonols DPDS µM

MPSO mM MPSO2 mM

DPDS appeared in plasmas as different

oxidized metabolites, such as MPSO and MPSO2. The plasmatic concentration of MPSO2 was

greatly reduced in the presence of flavonols (10 times) and its elimination was slower. This result showed a strong interaction between DPDS and flavonols.

Références

Documents relatifs

The in situ processed V Ga conductors are recommended for the application to the high field laboratory solenoids up to 3 18 T, because of their extremely high critical

Increasing the sulfur content to 1500 ppmS in model feed and using LGO and SRGO allowed to discriminate the catalysts performance and 5W/SBA appeared less efficient than 11W and

However, if assuming that this layer is composed of pure Li 2 S, and calculating the amount of Li 2 S that is formed in this case (knowing the surface area of NwC carbon, density

only few data can be found on the physiological size and shape of the mandibular condyle in children [ 13 , 14 ]; however, these studies investigated the roof of the mandibular fossa

Thus, the aim of this study is to assess the relevance of PARAFAC to decompose FT-ICR MS data into three modes that are DBE (aromaticity degree), number of carbon

This model is based on modified Briggs-Haldane kinetics which is a model based on the formation of a complex (ES) by the enzyme (E) and the substrate (S) (see (1.2)). On the

Example of UNL graphs using hyper-nodes, aka scopes, are numerous and the UNL syntax also allows the encoding of relations linking nodes across different scopes.. For example,