• Aucun résultat trouvé

Cramér-Rao bound and statistical resolution limit investigation for near-field source localization

N/A
N/A
Protected

Academic year: 2021

Partager "Cramér-Rao bound and statistical resolution limit investigation for near-field source localization"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-01421517

https://hal.parisnanterre.fr//hal-01421517

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cramér-Rao bound and statistical resolution limit investigation for near-field source localization

Tao Bao, Mohammed Nabil El Korso, Habiba Hafdallah Ouslimani

To cite this version:

Tao Bao, Mohammed Nabil El Korso, Habiba Hafdallah Ouslimani. Cramér-Rao bound and statistical

resolution limit investigation for near-field source localization. Digital Signal Processing, Elsevier,

2016, 48, pp.137-147. �10.1016/j.dsp.2015.09.019�. �hal-01421517�

(2)

Cramér–Rao bound and statistical resolution limit investigation for near-field source localization

Tao Bao

a

, Mohammed Nabil El Korso

b

,∗ , Habiba Hafdallah Ouslimani

b

a DepartmentofElectronicsEngineering,NorthwesternPolytechnicalUniversity,Xi’an710129,China bParisOuestUniversity,LEMEEA4416,50ruedeSèvres,92410Villed’Avray,France

1. Introduction

Therehasbeentremendous interestintheinvestigation ofar- ray signal processing during the last three decades due to its importance in radar, sonar, seismology and communication sys- tems[2–9].One canclassify sourcelocalization, inthecontextof array processing, intothe so-called far-field andnear-field cases.

Thecontext offar-fieldsourcesassumesplanar wavefrontsofthe propagating waves as they reach the array. Nevertheless, when thesources arelocated intheso-callednear-fieldregion, thisas- sumptionisnolongervalid.Moreprecisely,thesourcewavefronts mustbeassumedspherical,whichrequiresboththerangeandthe direction-of-arrival (DOA) parameter estimation to carry out the localizationprocedure[10–12].Onecanfindseveralestimational- gorithmsadaptedforthenear-fieldsourcelocalization[13–17]and somerelatedperformanceanalysisinordertoquantifytheestima- torperformanceintermsofthemeansquareerror(MSE)[18–22].

However, to fully characterize estimator performance, one has, additionally, to perform the resolvability analysis of two closely spacedsources.Recently,someworksconsideredbothfarfieldand near field scenario. In [23–25] the authors studied, respectively, theasymptoticresolvabilityoffar-field,deterministic,discreteand stochasticsourcesignals, whereas,in[26] theauthorsfocused on

ThisworkwaspartiallypresentedduringtheInternationalConferenceSAM-12 [1].

*

Correspondingauthor.

E-mailaddress:m.elkorso@u-paris10.fr(M.N. El Korso).

polarized far-field sources and in [27], the authors studied the angular resolution limit for far-field sources in the presence of modeling errors. Moreover, in [28], the authors provide a novel methodologytoderiveanapproximationoftheresolutionlimit.

Nevertheless,tothebestofourknowledge,noworkshave been done toquantifytheresolvabilityoftwo closelyspacednear-field sources in the non-uniform linear array (NULA) context for the general case1 (general case, means that the time varying source signals, the noisevariance, the rangeandthebearing areall un- knownparameters).Consequently, thegoalofthispaperis tofill thislackbyaddressingthefollowingquestion:“Whatis,inanear- field source scenario, the minimum source separation required, underwhichtwonear-fieldsourcescanstillbecorrectlyresolved?”

Tothis end, one commontool is thedistance resolutionlimit (DRL)oftwocloselyspacedsources,definedastheminimumdis- tance withrespect to the sources for which allows a correct re- solvability.TheDRLcanbederived basedononeofthefollowing three fundamental approaches: i) the analysis of the mean null spectrum[30],ii)thedetectiontheory[19,23](usingabinaryhy- pothesis test anda proper generalizedlikelihood ratio test [27]), oriii)theestimationaccuracy(namely, basedontheCramér–Rao

1 In[29],theauthorsstudiedtheresolvabilityinthenearfieldcontextforthe specialoptimisticcaseinwhichthesourcesignalsandthenoisevarianceareas- sumedknown,andtheonlyunknownparametersaretherangeandthebearing.

Whereas,in[28],theauthorsderivedtheresolutionlimitwithrespecttothebear- ingparameteronly,withoutconsideringtherangeasaparameterofinterestaffect- ingtheresolution.

(3)

bound(CRB)tool).Moreprecisely,in[31],Smithproposedthefol- lowingDRLcriterion:“Twosourcesareresolvableiftheseparation betweenthem,denotedbydNF,islessthanthestandarddeviation oftheseparationestimation”.Sincethestandarddeviationcanbe approximatedusingtheCRBby

CRB

(

dNF

)

[31],thus,Smith’scri- terion statesthat the DRL is givenasthe particular value ofthe distancedNF betweentwo sources which isequal to

CRB

(

dNF

)

. ThismeansthattheDRListhesolutionofthefollowingequation DRL

= √

CRB

(

DRL

)

.

ItisworthnotingthatthisDRL,whichisbasedontheCRB,is widely andcommonly usedfor thefollowing reasons: i) it takes thecouplingbetweentheparametersintoaccount,ii)itavoidsthe well-knowndrawbackofthemeannullspectrumapproachwhich is valid fora specific given high-resolution algorithm and hence lacks generality[24],andfinally,iii) itis relatedtothe detection theorybasedapproachthankstoatranslatorfactorwhichisgiven in[11].

In order to derive the DRL, we first investigate and develop explicitclosed-form expressions ofthe deterministic CRBfortwo closely spaced near-field spaced sources (which, to the best of our knowledge, has not been derived2). Then, we resort Smith’s criterion to derive the DRL. Thus, we deduce and analyze the relationship between the minimum distance of resolvability and the minimumsignal-to-noise ratio (SNR) requiredto resolve two closelyspacednear-fieldsources.Finally,weproposeafast,nearly optimal,arraydesignproceduretoenhancethecapacityofresolv- ability fora given constraint(number of sensors, array aperture, etc.).Numericalsimulationsaregiventoassessthevalidity ofthe proposedexpressions(forboththedeterministicCRBandtheDRL) andtheenhancementduetotheproposedarraygeometrydesign.

Forthe restpart ofthis paper,the following notation will be used.A lowercasebold letterdenotes avector, andan uppercase onea matrix.Vectors areby defaultincolumnorientationunless specified.Upper scripts

·

T and

·

H denote,respectively, the trans- pose and the trans-conjugate of a matrix. The operators diag

( · )

, adiag

(·)

,

·

and

{·}

denote,respectively,thediagonaloperator, theanti-diagonal operator, theEuclidean normandthe realpart.

tr

{·}

anddet

{·}

denotethetraceandthedeterminantofamatrix;

whereas,

and

denotetheHadamardandtheKroneckerprod- ucts,respectively. IL denotestheidentitymatrixofsize L

×

L.

[·]

i and

[·]

i,j represent, respectively, the i-thvector element and the

(

i

,

j

)

-thmatrixelement.Finally,

ε ˆ

denotesanyasymptoticallyun- biasedestimatorof

ε

.

This paper is structured as follows. Section 2 introduces the datamodelandtheunderlyingassumptions.InSection 3,wede- rivetheCRBofaNULAfororthogonalandnon-orthogonalsources.

We deduced the DRL in Section 4. Discussionof the results and conclusionarepresentedinSections5and6,respectively.

2. Systemmodels

Assume a linear (possibly non-uniform) array composed of N sensorswithlocationsd0

·

d,d1

·

d,

· · ·

,dN−1

·

dthatreceivesasignal emittedbytwonear-field,narrow-bandsourcess1

(

t

)

ands2

(

t

)

,as showninFig. 1.Letdn

·

ddenotethelocationofthe

(

n

+

1

)

-thsen- sor,inwhichdistheunitandthereferencesensoristhefirstone (i.e.,d0

=

0).Furthermore,forsake ofsimplicity,the sensorloca- tionsareexpressedasmultiplicationofacommonunitbase-lined.

Thismeansthatd0,d1,

· · ·

,dN1areintegers.Theobservedsignal, xn

(

t

)

,atthet-thsnapshotofthe

(

n

+

1

)

-thsensorisgivenby

xn

(

t

) =

s1

(

t

)

ejτn1

+

s2

(

t

)

ejτn2

+

vn

(

t

),

n

= 0 , 1 ,· · · ,

N

1 ,

t

= 1 , 2 ,· · · ,

T

(1)

2 Moreprecisely,in[18–22],onlytheonesinglesourcecasewasunderconsider- ation.

Fig. 1.Localizationoftwosourcesinthenear-fieldregionusinganon-uniformlin- eararray.Symbols•andrepresentthepositionofasensorandthepositionofa missingsensor,respectively.

wherevn

(

t

)

denotesacomplexcircularwhiteGaussiannoisewith zero-mean and unknown variance

σ

2, which is assumed to be uncorrelated both temporally and spatially. The i-th source sig- nal, with a carrier frequency equal to f0 is given by si

(

t

) = α

i

(

t

)

ej(2πf0t+ψi(t)),i

=

1

,

2,where

α

i

(

t

)

and

ψ

i

(

t

)

aretherealam- plitude andtheshiftphaseofthe i-thsource,respectively,and T is thenumber ofsnapshots.Moreover, the time delay

τ

ni associ- atedwiththesignalpropagationtime fromthei-thsourcetothe

(

n

+

1

)

-thsensorisrepresentedas[23]

τ

ni

= 2 π

ri

λ

1 +

d2nd2

r2i

2d

nd

sin θ

i

ri

− 1

,

n

= 0 , 1 ,· · · ,

N

− 1 (2)

where

λ

isthesignalwavelength,riand

θ

i

∈ [

0

, π /

2

]

aretherange andthe bearingof thei-th source,respectively. Itis well known thatiftherangeisinsidetheso-calledFresnelregion[17],i.e.,if

0 . 62

d3N1d3

λ

1/2

<

ri

< 2d

2 N1d2

λ (3)

then,thetimedelay

τ

ni canbeapproximatedby

τ

ni

ω

idn

+ φ

id2n

+

O

d2

r2i

(4)

in which

ω

i and

φ

i are the so-calledelectricangles for the i-th sourcewhichareconnectedtothephysicalparametersbythefol- lowingrelationships

ω

i

= − 2 π

d

λ sin

i

) (5)

and

φ

i

= π

d

2

λ

ri

cos

2

i

) (6)

Then,basedonapproximationoftimedelayin(4),theobservation atthet-thsnapshotofthe

(

n

+

1

)

-thsensorbecomes

xn

(

t

) =

s1

(

t

)

ej

ω1dn1d2n

+

s2

(

t

)

ej

ω2dn2d2n

+

vn

(

t

) (7)

Consequently,thet-thobservationvectorcanbeexpressedas x

(

t

) = [

x0

(

t

) · · ·

xN1

(

t

)]

T

=

A

(

p1

,

p2

)

s

(

t

) +

v

(

t

) (8)

where s

(

t

) = [

s1

(

t

),

s2

(

t

)]

T, v

(

t

) = [

v0

(

t

), · · · ,

vN1

(

t

)]

T, pi

= [ ω

i

, φ

i

]

T for i

=

1

,

2 and A

(

p1

,

p2

) = [

a

( ω

1

, φ

1

),

a

( ω

2

, φ

2

) ]

. The

(

n

+

1

)

-thelementofthesteeringvectora

( ω

i

, φ

i

)

isgivenby

[

a

( ω

i

, φ

i

)]

n+1

= e

j(ωidnidn2)

. (9)

Weassumethattheunknownparametervectoris

ε =

p1T

,

pT2

, ψ

1T

T2

, α

1T

, α

2T

, σ

2

T

(10)

(4)

where

ψ

i

= [ ψ

i

(

1

), · · · , ψ

i

(

T

) ]

T,

α

i

= [ α

i

(

1

), · · · , α

i

(

T

) ]

T. It is worth noting that the unknown vector parameter

ε

is assumed tobe deterministic anditssize dependsonthe numberofsnap- shotsT.

Underthedeterministicmodel,thejointprobabilitydistribution function(pdf)ofthefullobservations

χ = [

xT

(

1

) · · ·

xT

(

T

) ]

T,under i.i.d.assumption,iswrittenasfollows

p

( χ | ε ) = 1 π

NT

det (

R

)

e

−(χμ)HR1(χμ)

(11)

inwhichR

= σ

2INT and

μ = [

sT

( 1 )

AT

(

p1

,

p2

), · · · ,

sT

(

T

)

AT

(

p1

,

p2

) ]

T

. (12)

3. Cramér–Raobounddefinitionandderivation

LetE

ε ε )(ˆ ε ε )

T

bethecovariancematrixofanestimate of

ε

.Letusassumethat

ε ˆ

isanasymptotically unbiasedestimate ofthetrueparametervector

ε

,andletus,inthefollowing,define theCRBforthe consideredmodel[32].The covarianceinequality principlestatesthatunder asymptoticconditions[33],wehave

MSE

ε ]

i

=

E

ε ]

i

− [ ε ]

i

2

≥ [

CRB

( ε )]

i,i

(13)

wheretheCRBisgivenastheinverseoftheso-calledFisherinfor- mationmatrix(FIM)asfollows

CRB

( ε ) =

FIM1

( ε ) (14)

Sinceweare workingwithacomplexcircularGaussian obser- vation model, the i-th row,k-th columnelement ofthe FIM for theunknownrealparameter vector,givenin(10),canbe written as[34]:

[

CRB1

( ε ) ]

i,k

= [

FIM

( ε )]

i,k

=

tr

R1

R

[ ε ]

i

R1

R

[ ε ]

k

+ 2

μ

H

[ ε ]

i

R1

μ

[ ε ]

k

=

NT

σ

4

σ

2

[ ε ]

i

σ

2

[ ε ]

k

+

2

σ

2

μ

H

[ ε ]

i

μ

[ ε ]

k

(15)

3.1.FIMderivation

From(15)we caneasily seethat thenoise variance

σ

2 isde- coupledfromtheothersparameters.Thus,forsimplicityandwith- out loss of generality, we compute the FIM without taking into accountthe noise variance.Consequently, thevariance parameter isomitted fromthe vector parameter

ε

. So that the structureof theFIMisasfollows(forproof,pleaserefertoAppendix A):

FIM

( ε ) = 2 σ

2

⎢ ⎢

⎢ ⎢

⎢ ⎢

Fp1p1 Fp1p2

Fp2p1 Fp2p2

Fp1ψ1 Fp1ψ2

0

Fp1α2

Fp2ψ1 Fp2ψ2 Fp2α1

0

Fψ1p1 Fψ1p2

Fψ2p1 Fψ2p2

0

Fα1p2 Fα2p1

0

FL L

⎥ ⎥

⎥ ⎥

⎥ ⎥

(16)

where3 L

= [ ψ

T1

, ψ

T2

, α

1T

, α

T2

]

T.

3 Forsakeofsimplicityandtoavoidanymisunderstanding,weusedthefollowing notation,Fuv,wherethelowerscriptu v denotestheconsideredpartoftheFIM whichcorrespondstothederivationaccordingtothevectorparametersuandvas shownin(7),respectively.

3.2. Analyticalinversion

First,wenotethatthe4T

×

4T matrixFL L in(16)canbepar- titionedintodiagonalsub-blocksas

FL L

=

⎢ ⎢

Fψ1ψ1 Fψ1ψ2 Fψ2ψ1 Fψ2ψ2

0

Fψ1α2

Fψ2α1

0 0

Fα1ψ2

Fα2ψ1

0

Fα1α1 Fα1α2 Fα2α1 Fα2α2

⎥ ⎥

(17)

inwhich,theexpressionofeachsub-blockisgiveninAppendix A.

Second,the FL L matrixis fullyinverted byapplyingtheSchur complement[35]formulatwiceasfollows:

1) Using theSchur complementwithrespect tothe lower right block matrixin(17)representedby thedottedlinepartition, oneobtains

Fα1α1 Fα1α2 Fα2α1 Fα2α2

1

=

S1

S1Fα1α2Fα11α1

Fα11α1Fα2α1S1 Fα11α1

+

Fα11α1Fα2α1S1Fα1α2Fα11α1

(18)

inwhich

S

=

Fα2α2

Fα1α2Fα11α1Fα2α1

. (19)

2) Now,weusetheSchurcomplementwithrespecttothelower rightblockmatrixin(17)representedbythesolid lineparti- tionandweobtain

FL L1

=

Fψ1ψ1 Fψ1ψ2 0 Fψ1α2

Fψ2ψ1 Fψ2ψ2 Fψ2α1 0 0 Fα1ψ2 Fα1α1 Fα1α2

Fα2ψ1 0 Fα2α1 Fα2α2

1

=

ABD1C1

ABD1C1 BD1

D−1C

ABD1C1

D−1+D−1C

ABD1C1 BD1

(20)

where

A

=

Fψ1ψ1 Fψ1ψ2 Fψ2ψ1 Fψ2ψ2

,

B

=

0

Fψ1α2

Fψ2α1

0

,

C

=

0

Fα1ψ2 Fα2ψ1

0

and

D

=

Fα1α1 Fα1α2

Fα2α1 Fα2α2

.

3) Finally,having theinverse ofFLL matrixone can apply again thismethodtocomputeanalyticallytheSchurcomplementof thelowerrightblockofthematrixFIM

( ε )

in(16).

Aftertediouscalculation,weareabletoexpressinclosedform the Schur complement of the matrix FLL, which corresponds to CRBP P1:

CRBP P1

= 2 σ

2

⎢ ⎢

( 1 , 1 , 2 ) ( 1 ) ( 1 ) ( 1 ) ( 1 , 2 , 4 ) ( 2 ) ( 1 ) ( 2 , 1 , 2 ) ( 2 )

( 2 ) ( 2 ) ( 2 , 2 , 4 )

⎥ ⎥

(21)

inwhich P

= [

pT1

,

p2T

]

T andfunctions

, ,

and

aregivenin Appendix B.

Consequently,insteadofinvertinga

(

4T

+

4

) × (

4T

+

4

)

matrix toobtainCRBpipk,wecaninvertjusta2

×

2 matrixasfollows

(5)

CRBpipk

=

σ2

2

ϒ

1

(

i

) for

i

=

k

,

i

= 1 , 2

σ22

ϒ

1

( 1 )ℵ ( 2 ) for

i

=

k

,

i

,

k

= 1 , 2 (22)

where

(

i

) = 1

(

i

, 1 , 2 )(

i

, 2 , 4 )

2

(

i

)

(

i

, 2 , 4 )(

i

)

−(

i

) (

i

, 1 , 2 )

, =

( 1 ) ( 2 )

and ϒ(

i

) =

(

i

, 1 , 2 ) (

i

) (

i

) (

i

, 2 , 4 )

( 3 −

i

),

which,finally,leadstothefollowingresult CRBpipi

= σ

2

2

1

h

(

i

, 1 )

h

(

i

, 2 )

m

(

i

)

2

h

(

i

, 2 )

m

( 1 )

m

( 1 )

h

(

i

, 1 )

,

i

= 1 , 2 (23)

where

h

(

i

,

j

) = (

i

,

j

, 2

j

)

+ (

j

)(( 3 −

i

, 3 −

j

, 2 ( 3 −

j

))(

j

)( 3 −

i

))

2

( 3 −

i

)( 3 −

i

, 1 , 2 )( 3 −

i

, 2 , 4 ) + (( 3 −

i

,

j

, 2

j

)( 3 −

i

)(

j

))

2

( 3 −

i

)( 3 −

i

, 1 , 2 )( 3 −

i

, 2 , 4 ) , (24)

and

m

(

i

) = (

i

) + ( 1 )(( 3 −

i

, 2 , 4 ))( 3 −

i

)( 2 ))

2

( 3 −

i

)( 3 −

i

, 1 , 2 )( 3 −

i

, 2 , 4 ) + (( 3 −

i

, 1 , 2 )( 2 )( 3 −

i

))

2

( 3 −

i

)( 3 −

i

, 1 , 2 )( 3 −

i

, 2 , 4 ) . (25)

3.3. CRBforthephysicalparametervector

κ

Evenifthemodel(7)isusuallyusedinarraysignalprocessing, itsCRBrelatedto

ε

doesnotbringusphysicalinformation.Then, it is interesting to analyzethis CRB regardingthe bearing

θ

and ranger.

Thatis,thenewunknownphysicalparametervectorbecomes

κ =

g

( ε ) =

θ

1

,

r1

, θ

2

,

r2

1T

, ψ

T2

, α

T1

, α

T2

T

(26)

FromCRB(

ε

),wededuceCRB(

κ

)byusingthefollowingformula (see[36,p.45])

CRB

( κ ) =

g

( ε )

ε

CRB

( ε )

g

( ε )

ε

T

(27)

wheretheJacobianmatrixisgivenby

g

( ε )

ε = λ π

d

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

−2 cos11)

0 0 0 0

r1sin1) cos21)

r21

dcos21)

0 0 0

0 0

2 cos1

2)

0 0

0 0

r2sin2)

cos22)

r22 dcos22)

0

0 0 0 0

πλdI4T

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

(28)

Using(27)andtheJacobianmatrixabove,weobtain

CRB

i

) = σ

2

2

λ

2h

(

i

, 2 ) 4 π

2d2

cos

2

i

)

h

(

i

, 1 )

h

(

i

, 2 )

m

(

i

)

2

, (29)

and

CRB (

ri

) = σ

2

2 λ2m(i)2

h(i,2)d2sin2i)+2k(i)ridsini)+h(i,1)r2i

π

2d4cos4i)

h(i,1)h(i,2)m(i)2 .

(30)

3.4. Thespecialcaseoftwoorthogonalsources

Inthissubsection,weconsidertheparticularcaseoftwonear- field orthogonal sources.Thiskindofsignal iscommonlyusedin radarandradiocommunicationtofacilitatethetaskofseparating signals [37]. From theabove results, we deducethe CRBfortwo near-field orthogonal sources. The assumption of two orthogonal sourcesmeansthat[38]

T t=1

sH1

(

t

)

s2

(

t

) = 0 (31)

Substituting(31)in(18),weobtain

=

02×2

(32)

Consequently, the CRBpipk for near-field orthogonal sources is givenby

CRBpipk

=

σ2

2

(

i

) for

i

=

k

,

i

= 1 , 2

0

for

i

=

k

,

i

,

k

= 1 , 2 (33)

whichleadstothefollowingresults

CRB ( ω

i

) = σ

2

2

(

i

, 2 , 4 )

(

i

, 1 , 2 )(

i

, 2 , 4 )

2

(

i

) , (34) CRB

i

) = σ

2

2

(

i

, 1 , 2 )

(

i

, 1 , 2 )(

i

, 2 , 4 )

2

(

i

) , (35) CRB

i

) = σ

2

2

λ

2

(

i

, 2 , 4 ) 4 π

2d2

cos

2

i

)

(

i

, 1 , 2 )(

i

, 2 , 4 )

2

(

i

) , (36)

and

CRB (

ri

) =

σ2

2 λ2r2i

(i,2,4)d2sin2i)+2(i)ridsini)+(i,1,2)r2i π2d4cos4i)

(i,1,2)(i,2,4)2(i) .

(37)

4. TheminimumSNRrequiredtoresolvetwocloselyspaced near-fieldsources

The aimof this section is to derive a closed-form expression oftheminimumSNR,denotedbySNRmin,requiredtoresolvetwo closely spaced near-field sources. Byusing Smith’scriterion [39], the DRL is theparticular value of the distancedNF between two sources forwhich

CRB

(

dNF

)

isequaltodNF,wherethedistance betweentwonearfieldsourcesisdefinedas

dNF

=

r21

+

r22

2r

1r2

cos

2

θ

1

). (38)

Consequently,thenewunknownphysicalparametervectoris

j

( κ ) =

r21

+

r22

2r1r2cos

2

θ

1

),

r1

, θ

2

,

r2

, ψ

1T

, ψ

T2

, α

1T

, α

T2

T

(39)

Asin(27),weobtainCRB

(

dNF

)

fromthefollowingformula

CRB (

dNF

) =

j

( κ )

κ

CRB

( κ )

j

( κ )

κ

T

1,1

(40)

From (21), (22) and using the relation (27), one notices that CRB

( κ ) =

CRBσ(2κ) does not depend on

σ

2. Denoting CRB

(

dNF

) =

CRB(dNF)

σ2 equation(40)canbewrittenas

CRB (

dNF

) =

j

( κ )

κ

CRB

( κ )

j

( κ )

κ

T

1,1

(41)

(6)

Fig. 2.DRLvs.theratioofSNRsinthecaseofaULAof6sensors,100snapshots andSNR1+SNR2=30 dB.

Consequently,oneobtains

CRB (

dNF

) =

4 i,j=1

j

( κ )

κ

1,i

j

( κ )

κ

1,j

[

CRB

( κ )]

i,j

(42)

where

j

( κ )

κ

1,1

= −

j

( κ )

κ

1,3

= −

r1r2

sin

2

θ

1

)

dNF

, (43)

and

j

( κ )

κ

1,2

= −

j

( κ )

κ

1,4

=

r1

r2

cos

2

θ

1

)

dNF

. (44)

LetusdefinetheSNRas

SNR = α

1

2

+ α

2

2

σ

2

. (45)

Furthermore, from (40) and (42), one has CRB

(

dNF

) =

CRBσ(d2NF). Since,CRB

(

dNF

)

is

σ

2 independentandtheSNRminisgivenbythe SNRforwhichthefollowingequationholds

σ

2

CRB ( DRL ) =

r21

+

r22

2r

1r2

cos

2

θ

1

) (46)

Consequently,from(45)and(46),oneobtains

SNR

min

=

α

1

2

+ α

2

2

CRB ( DRL )

r21

+

r22

2r

1r2

cos

2

θ

1

) (47)

Remark. Weshould precise that usingthe definitionofthe total SNR inthe deterministic case(i.e.,SNR

=

SNR1

+

SNR2, inwhich SNR1

=

||ασ12||2 and SNR2

=

||ασ22||2) to characterize the SNRmin we losethe informationrelated to theratio ofSNRs, i.e., SNRSNR1

2. Con- sequently,one has to take a precaution using the SNRmin, since, foragivenDRLonemayrequireahigherSNRminiftheratio SNRSNR1

2

is far from 1 as represented in Fig. 2. Indeed, Fig. 2 shows the variation ofthe DRL w.r.t. SNRSNR1

2 subjectto a fixed total SNR (i.e., SNR1

+

SNR2

=

constant).Furthermore,wecan notice,bysimula- tion,thatthesmallestSNRminpossibleforagivenDRLisobtained inthecaseof SNRSNR1

2

=

1.

Fig. 3.Comparisonbetweennumericalandanalytical CRB1)andCRB1)with 1,r1)=(30,10λ)and2,r2)=(60,20λ).Linesandmarkersrepresentthenu- mericalandanalyticalCRBs,respectively.

5. Numericalinvestigation:CRB,DRLandgeometrydesign NumericalresultsarepresentedinthissectionforaNULAwith sixsensors(withthefollowinglocations:0, 3

·

d,4

·

d,5

·

d,6

·

d, 9

·

d) thatreceives asignal emittedbytwo sourcesintheFresnel region inwhich their amplitudes andphasesare generated from arealizationofan i.i.d.Gaussiandistributionwithzeromeanand unit variance unlessspecified. The number ofsnapshots is given by T

=

100.

5.1. NumericalanalysisoftheCRB

In this section, we analyze the proposed closed-form expres- sions giveninSection 3by comparing theanalytical resultswith thenumerical resultstoillustrate thevalidity ofourderived CRB closedformexpressions.Moreprecisely,

In Fig. 3,we compare the analyticalCRBs givenin (23)with thenumericalexactCRBs givenin(6).Thisfigure showsthat theproposedclosed-formexpressionsareinagoodagreement withthetruenumericalCRBs,whichvalidatesourderivedex- pressions.Furthermore,we have thesame resultsfor CRB

(θ )

andCRB

(

r

)

withrespectto(29)and(30).

From(24),wenoticethat

i

=

1

,

2,h

(

i

,

1

)

is O

(

N3

)

,however h

(

i

,

2

)

is O

(

N8

)

,which meansthat theestimation oftheso- calledsecondelectricalangle

φ

iismoreaccuratethanestimat- ingtheso-calledfirstelectrical angle

ω

i.Thisiscorroborated byFig. 3.

From (22) and using the inversion lemma matrix, we can quantify the effect of the estimation accuracy of one source ontheotheronebythefollowingrelationship

CRBp1p1

= σ

2

2 ( 1 ) + ( 1 )

CRBp2p2

( 1 )

= σ

2

2 ( 1 )(

I2×2

+ 2

σ

2

CRBp2p2

( 1 )) (48)

andinthesamewayweobtain CRBp2p2

= σ

2

2 ( 2 )(

I2×2

+ 2

σ

2

CRBp1p1

( 2 )) (49)

Thus,inthegeneralcase,theestimationerroroftheelectrical anglesofonesourceaffectstheelectricalanglesestimationof

(7)

Fig. 4.VariationoftheCRBw.r.t.r1withfixedr2=2 m andforequalsourcepower.

theother source.Whereas, from(48) and(49),we note that thisisnotthecaseifthesourcesareorthogonal,meaningthat theestimationaccuracyofonesourceneitherdependsonnor affectstheestimation accuracyofthe other source.However, itis obviousthat CRBpipi is affected by theposition ofboth sources, moreprecisely, by the distancebetweenthe electric anglesofbothsources(because

(

i

,

k

,

p

)

dependson

ω

and

φ

evenintheorthogonalcase,andthusCRBpipi dependson thedistancebetweentheelectricalangles).

Unlikethecaseofonesource,theCRBfortwosourcesarenot phase-invariant. However, we notice that for two orthogonal sources the CRBbecomes phase-invariant. Numericalsimula- tionshowstheimprovementduetoorthogonality.

For a sufficient number of sensors, CRBθiθi and CRBriri are O

(

1

/

N3

)

.

CRBriri isbearing-invariantandrange-invariant.

For

λ,

ri

d,thedependenceontherangeis O

(

r2i

)

,meaning that nearer thesource is, the better the estimation(keeping inmindtheFresnelconstraints).ThisiscorroboratedbyFig. 4.

Thedependenceoftherangeonthebearingis O

(

1

/

cos4

i

))

. For

θ

i closeto

π /

2, we observe that CRBriri goes toinfinity butfasterthanCRBθiθi (cf.Fig. 5forCRB(

θ

1)).

Fig. 6 showsthat, fora different value of bearing andfor a fixedSNR,thehigherthefrequencyis,thelowertheCRBriri. 5.2. Correlationfactor

Inthefollowing,weinvestigatetheeffectofthecorrelationfac- torontheDRL.Wedefinethecorrelationfactor

ξ

betweenthetwo sourcesas[40]

ξ =

sH1s2

s1

s2

(50)

inwhichsi

= [

si

(

1

), . . . ,

si

(

T

) ]

T denotesthei-thsignalvector.We usethe same simulation parameters asin Fig. 3,expect the fact thesignalsourcessatisfy(50)foragiven

ξ

.From(34)to(37),we knowthattheorthogonalitybetweentwosourcesimpliestheun- coupling property. Then, since the sources are decoupled,

ξ =

0, the estimation will be improved (at least for any efficient algo- rithm). In Fig. 7, we compare the correlation effect of the real amplitude of

ξ

on the DRL. Note that, fora given SNR, DRL be- comesgreaterasthevalueoftherealamplitudeof

ξ

increases.In otherwords,thesmallerthecorrelationbetweenbothsources, the

Fig. 5.CRB1)vs.SNRforr1=10λ,(θ2,r2)=(60,20λ)andvaluesofθ1asshown inthelegend.LinesandmarkersrepresenttheanalyticalandnumericalCRBs,re- spectively.

Fig. 6.CRB(r1)vs.SNRfor1,r1)=(30,10λ),(θ2,r2)=(60,20λ)andvaluesof f0asshowninthelegend.Linesandmarkersrepresenttheanalyticalandnumeri- calCRBs,respectively.

better theresolutionlimit performance.Meanwhile, DRLachieves its lowestvalue when

ξ =

0,whichmeansthattwo signalsenjoy aminimum(best)resolutionlimitbetweenthemiftheyhavethe orthogonalrelationship.

5.3. SNRminbehaviorw.r.t.centralangle

Letusdefinethecentralangleas

θ

c

= θ

1

+ θ

2

2 (51)

InFig. 8,we haveplottedthe SNRmin requiredtoresolves two closelyspacedsourcesfordifferentvaluesof

θ

c.Itshouldbenoted that fora givenresolutionlimit,asthecentralangle

θ

c increases, theminimumsignaltonoiseratiorequiredincreasesalso.

5.4. Minimumresolutionlimitboundary

In practical applications, one mayneed the knowledge of the physicalboundary, whichdelimitstheresolvabilityregion (mean-

(8)

Fig. 7.The effect of the amplitude of the correlation factor on the DRL.

Fig. 8.TheSNRminversusthedistancecurvesfromanon-uniformarrayforvarious centralangles.

ing the region for which two near field sources are resolvable).

Althoughthisquestion is worth consideration,to thebest ofour knowledge, no work has been done on it in the literature. In thissubsection, the minimum resolution limit boundary for two sourcesisinvestigatedanddiscussedfordifferentSNRs.

Followingsimilarstepsasthoseemployedin Section4,weob- taintheminimumresolutionlimitboundaryoftwosourcesfordif- ferentSNRvalue.SuchboundaryisrepresentedinFig. 9,inwhich thestarsymbolrepresentsthecoordinatesofthefirstsourcew.r.t.

thereferencesensor

(

xo

,

yo

) = (

0

,

0

)

,inwhich

1

,

r1

) = (

45

,

6

λ)

,

α

1

2

=

1 and

α

2

2

=

1. For different SNR, the second source must be outside this boundary to ensure a correct resolvability givenbySmith’scriterion.Asexpected,onenoticesthatforhigher SNR, one obtains a small boundary. Furthermore, we can notice thatthisboundaryismorebearingsensitivethanrangesensitive.

Assaidbefore,thisboundaryisaphysicallimitation.Nevertheless, thislattercanbecompensatedbyaproperarraygeometrydesign whichistheaimofthenextsection.

5.5.Effectofsensors’position

Theremainingpartofthissectionisdevotedtothenumerical analysisoftheeffectofsensorarraygeometryontheDRL.Assume

1

,

r1

) = (

30

,

6

λ)

,

2

,

r2

) = (

60

,

10

λ)

and

α

1

2

= α

2

2

=

1.

Fig. 9.DRL boundary for 6-sensors.

Table 1

Differentarraygeometricconfigurations.

Array type Geometric configuration

Type 1 • • • • • ◦ ◦ ◦ ◦ •

Type 2 • ◦ • ◦ • ◦ • ◦ • •

Type 3 • ◦ ◦ ◦ ◦ • • • • •

Type 4 • ◦ ◦ • • • • ◦ ◦ •

Type 5 • • • • • • • • • •

KeepthearrayapertureA

=

9 (inunitofd

= λ/

2)fixedandN

=

6, thereare10positionsavailableforsixsensors.

InFig. 10,weplotthe DRLwhichcomparestheimpact ofthe different sensorarray geometry w.r.t. SNRmin.Five types ofarray configurationsareconsidered,asshowninTable 1.Type1totype 4arelistedinTable 1withN

=

6 sensors,Type5isanULAcon- figurationwithN

=

10 sensors.

From comparisonofsimulation results,one canfurther notice that

Forthesame array aperture,sameSNR andsame numberof sensors,theDRLisgreatlyaffectedbythearraygeometriccon- figuration.

By comparing the results given from Type 1 to Type 4, the configurationthat putstwo sensors attheextremity andthe restinthemiddleseemstobethebestgeometryconfiguration (atleast,itisthecaseforA

=

9 and N

=

6 sensors).

(9)

Fig. 10.TherequiredSNRmintoresolvetwounknowncloselysourcesfordifferent arraygeometries.

Fig. 11.TherequiredSNRmintoresolvetwounknowncloselysourcesforthebest&

worstperformanceofdifferentsensors.

Table 2

Thebestandworstarraygeometricconfigurationsfordifferentnumberofsensors.

Array type Geometric configuration SNRmin

Type 6 • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • lowest SNRmin

Type 7 • ◦ ◦ ◦ • • ◦ ◦ ◦ • lowest SNRmin

Type 8 • • ◦ ◦ ◦ ◦ ◦ ◦ • • highest SNRmin

Type 9 • ◦ ◦ ◦ • • • ◦ ◦ • lowest SNRmin

Type 10 • • • ◦ ◦ ◦ ◦ ◦ • • highest SNRmin

Type 11 • ◦ ◦ • • • • ◦ ◦ • lowest SNRmin

Type 12 • • • ◦ ◦ ◦ ◦ • • • highest SNRmin

Type 13 • • • • ◦ ◦ ◦ • • • highest SNRmin

Type4,withsixsensors, isslightlyworsethan theULAcon- figurationwith10sensors.

Furthermore, to better comprehend the resolvability perfor- mance as a function of array geometric configuration, consider Fig. 11,wherewecomparetheminimumsignaltonoiseratiowith respecttothebestandworstperformance ofdifferentnumberof sensors. Theconsidered type ofsensor geometryconfigurationis listinTable 2.

From thisfigure, we can see that the Type 11represents the best achievable performance, and Type 8 has the worst perfor- mance. Furthermore, on one hand, we can notice that with the same array aperture, Type6 (with3 sensors)andType13 (with 7 sensors)have,approximately,the sameperformance (Type 6is only 0.2 dB worse than the Type 13); and, on the other hand, one can notice that Type6 (with3 sensors)has a better perfor- manceinregard toType12(whichhas6sensors)by1.5 dB.This meansthatdependingonthearraygeometry,onecanhavebetter performance using a lessnumber of sensors. The relatively poor performance ofthetype8,10,12and13isduetothesensorge- ometry configuration.Consequently, withthe same aperture,one canoptimallydesignthearrayusingtheproposedmethodbelow, inordertoobtainbetterperformanceevenwithlesssensors.

5.6. Sensorsarraygeometrydesign

Asdiscussedabove,theresolvabilityisnotonlyconstrainedby thenumberofsensors,butalsobythearray geometry,whichaf- fectstheoptimalresolutioncapability.

In the following, we give a solution to design an optimalar- rayinordertoenhancetheresolvabilityand/ortocompensatethe performancelossduetothereductionorfailureofcertainsensors.

The optimalmethod isgiven by minimizing SNRmin over sen- sors’ positionamongallpossibilities usingthederived expression (47).However, thisschemeisnot feasiblefora modelwithlarge apertureandsmallnumberofsensors.Moreprecisely,foraperture ofsize A and N sensors,onehas CNA+1 possibilities.Toovercome thisdrawbackweproposeasub-optimalfastprocedureasfollows.

Step 1:We placetwo sensors ateach extremitytoobtain the largestaperturethatleadstothebestresolution.

Step 2:We placeonly onesensor by minimizing SNRmin with respecttothe A

2 remainingpositions.

Step 3: We iterate the second step by placing the

(

n

+

1

)

-th sensoratoncebyminimizingsequentiallytheSNRminwithrespect tothe A

n

+

1 remainingpositions.

In thefollowingpart,weshow that theproposed sub-optimal method produces a nearly optimal result with low complexity.

More precisely, the complexity cost ratioof the optimal method overtheproposedsub-optimalmethodisgivenby

f

(

N

,

A

) =

Nopt Nprop

=

2

(

A

+

1

) !

N

!(

A

N

+

1

)!(

A

(

A

1

)(

A

N

+

1

)(

A

N

+

2

)) (52)

where Nopt meansthenumberofrequirediterationsbyusingthe optimalmethodandNprop meansthatbyusingtheproposed sub- optimalmethod.

In the examples studied in this section, we consider several cases: Case 1) N

=

4, A

=

7; Case 2) N

=

5, A

=

8, so that we maycomparetheresultsofthetwomethods,asshowninFig. 12.

One notes that our proposed method is nearly identical to the optimal method.Inaddition, from(52),we have f

(

4

,

7

) =

6 and f

(

5

,

8

) =

7,whichmeansthattheproposedmethodissixtoseven times fasterthan the optimalone. Ifwe consider a moreimpor- tantaperture,e.g.,forN

=

6, A

=

25,wenoticethattheproposed method decreasessignificantly the complexity cost by f

(

6

,

25

) =

2558 times compared with the optimal one with the same per- formance.Consequently,wenoticethattheproposedmethodisof lowcomplexity,especiallyforthedesignofsparsearrays.

Oneshouldnotethatfortheabovediscussion,weassumethat derived closed formexpression of SNRmin is given. If no expres- sion ofthe SNRmin is given, one has,first,to numericallyinverse

Références

Documents relatifs

La seconde correspond aux mesures destinées à évaluer l’impact de l’ozone proprement dit sur le fonctionnement des plantes et comprend des mesures de

In this paper, we introduce RNApyro, an efficient linear-time and space inside-outside algorithm that computes exact mutational probabilities under secondary structure and

Ensuite, nous étudions l’influence de la géométrie sur le terme croisé de la BCR entre la DDA et la dispersion angulaire en fonction des positions des capteurs, nous montrons

It is shown that not only the variance of the position estimator increases with the complexity of the source, but also that a mismatch between the radiation model and the actual

This paper deals with the asymptotic estimation performance on the model parameters (angular-frequency, initial phase and real amplitude) for a M- order multidimensional harmonic

We show that, as the signal-to-noise ratio increase, the Cramér-Rao bound and the mean square error of the maximum likelihood estimator of the angle-of-arrival do not fall into

In this paper, the conditional and the unconditional Cram´er-Rao bounds are derived in a closed-form expressions for a single near-field time-varying narrowband source in terms of

In this paper, we derived the deterministic Cram´er-Rao bound in a closed-form expression for a single near-field time-varying narrow- band source for the model parameters