• Aucun résultat trouvé

PLASTICITY AND FRACTURE OF INORGANIC GLASSES AT HIGH SPEED GRINDING

N/A
N/A
Protected

Academic year: 2021

Partager "PLASTICITY AND FRACTURE OF INORGANIC GLASSES AT HIGH SPEED GRINDING"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00222426

https://hal.archives-ouvertes.fr/jpa-00222426

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PLASTICITY AND FRACTURE OF INORGANIC GLASSES AT HIGH SPEED GRINDING

M. Schinker, W. Döll

To cite this version:

M. Schinker, W. Döll. PLASTICITY AND FRACTURE OF INORGANIC GLASSES AT HIGH SPEED GRINDING. Journal de Physique Colloques, 1982, 43 (C9), pp.C9-603-C9-606.

�10.1051/jphyscol:19829120�. �jpa-00222426�

(2)

JOURNAL DE PHYSIQUE

Colloque C9, supplement au n°12,Tome 43, dSoembre 1982 page C9-603

PLASTICITY AND FRACTURE OF INORGANIC GLASSES AT HIGH SPEED GRINDING M.G. S c h i n k e r and W. Doll

Fraunhofer-Institut fur Werkstoffmechanik, Rosastr. 9, GFR 7800 Freiburg, F.R.G.

Résumé•-Pour différents verres optiques il a été procédé à une simulation de meulage à haute vitesse, un test de rayure par un diamant unique à une vitesse allant jusqu'à 100m/s. La plasticité et la fracture et le comportement des verres pour une seule rayure ont été étudiés directement au microscope et analysés consécutive- ment par microscopie électronique à balayage. La création des sur- faces de fracture perpendiculaires a été restreinte à basse vitesse jusqu'à plusieurs mètres par seconde dépendant du type de verre.

A plus haute vitesse il est observé que la plasticité des rainurages a lieu et indique une très haute température. Le comportement plastique des verres montre un changement dépendant du verre et de la vitesse qui est associé à un changement du quasi-isotherme vers 1'adiabatique dans la zone de contact à plus haute température.

A b s t r a c t . - For d i f f e r e n t optical glasses the high-speed g r i n d i n g process has been simulated b y s c r a t c h i n g t h e surfaces w i t h a single point diamond tool in the speed range up to 1oo m/s and the p l a s t i c i t y and f r a c t u r e behavior o f the glasses in the only once scratched grooves have been investigated b y d i r e c t microscopic observation and b y subsequent SEM-analysis. The generation o f median cracks p e r p e n d i c u l a r to t h e surface is found to be r e s t r i c t e d to low speeds i n t h e range of metres per second, dependent on the t y p e of glass. A t h i g h e r speeds plastic g r o o v i n g takes place and indication to v e r y h i g h temperatures are observed in the g r o o v e s . The plastic behavior o f t h e glasses shows a glass and speed d e p e n d - ent change which has been associated to a change from quasi-isothermal y i e l d i n g to adiabatic flow at h i g h e r temperatures in t h e scratched zone.

1. I n t r o d u c t i o n . - G r i n d i n g o f glass w i t h diamond tools is the main technique f o r p r o - d u c i n g lenses, p l a t e s , p r i s m s , ophthalmic glasses e t c . Improvements i n t h i s technique are expected b y a b e t t e r u n d e r s t a n d i n g of t h e complex g r i n d i n g mechanisms w h i c h are influenced b y numerous parameters as g r i n d i n g speed, feed r a t e , d e p t h of c u t , form o f the diamong, t y p e o f glass, i n t e r a c t i o n o f adjacent s c r a t c h e s , environment, temperature e t c . T h e r e f o r e a separation of t h e parameters is the common proceeding in l i t e r a t u r e and most w o r k has been done in indentation tests and in s c r a t c h experiments o f glass s u r f a c e s , especially at v e r y slow speeds ( 1 ) .

In this paper r e s u l t s will be presented w h i c h have been obtained on d i f f e r e n t optical glasses b y s c r a t c h i n g experiments at technical relevant speeds up to loo m / s .

2. Experimental r e s u l t s . - The basis o f o u r w o r k is f i r s t t h e d e f i n i t e p r o d u c t i o n o f single scratches on glass surfaces and secondly t h e d i r e c t microscopic observation o f t h e c r a c k i n i t i a t i o n and propagation under the v e r y fast moving diamond t i p . T h e used experimental p r o c e d u r e and f i r s t results o f t h e h i g h speed microscopy o f the single diamond s c r a t c h i n g experiments have been r e p o r t e d p r e v i o u s l y ( 2 - 5 ) .

Some main r e s u l t s o f the d i r e c t microscopic observation o f the h i g h speed s c r a t c h i n g at 1o m/s to loo m/s speed w h i c h , i s common f o r most glasses, are t h e f o l l o w i n g : Within t h e f i r s t microseconds after t h e contact o f t h e diamond t i p w i t h the glass surface s h o r t lat- eral c r a c k s are initiated and propagate s y n c h r o n o u s l y w i t h the moving diamond; some o f these c r a c k s are pushed b y t h e stress field in f r o n t of t h e moving i n d e n t e r . By d i r e c t and subsequent microscopic observations a c r i t i c a l d e p t h of c u t C has been found at which a s i g n i f i c a n t change in t h e removal o f t h e glass from plastic to b r i t t l e c h i p p i n g Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19829120

(3)

C9-604 JOURNAL DE PHYSIQUE

occurs. T h i s change i s s t r o n g l y dependent on t h e t y p e o f glass a n d o n t h e s c r a t c h i n g speed. Evidence o f median c r a c k s was f o u n d n e i t h e r d u r i n g h i g h speed observations n o r a f t e r w a r d s b y SEM i n t h e grooves o r in t h e cross-sections o f etched grooves. O n t h e

o t h e r h a n d median c r a c k s a t t h e bottom o f s c r a t c h e d g r o o v e s a r e w e l l k n o w n (6,7) f r o m experiments p e r f o r m e d a t slow speeds.

In o r d e r t o g e t f u r t h e r informations o n t h e process a t s c r a t c h i n g detailed inspections b y SEM w e r e p e r f o r m e d on o n l y once s c r a t c h e d surfaces o f a l a r g e numer o f o p t i c a l glasses. T h e p l a s t i c b e h a v i o r o f t h e glass in t h e abrasion zone has been f o u n d t o d r a s - t i c a l l y change f r o m quasi-isothermal y i e l d i n g u n d e r t h e high p r e s s u r e o f t h e i n d e n t e r t o adiabatic flow a t h i g h temperature, d u e t o t h e v e r y low thermal c o n d u c t i v i t y o f t h e glass. T h i s change i n t h e p l a s t i c b e h a v i o r c a n c l e a r l y b e seen i n t h e SEM-graphs o f p l a s t i c grooves in Fig. 1 t o l o ( w h e r e v i s t h e s c r a t c h i n g speed, C t h e local d e p t h o f c u t , a n d S t h e t h i c k n e s s o f t h e c h i p p i n g s ) . In t h e low m e l t i n g lead o x i d e glasses RS 520 a n d SF 5 b r i t t l e c h i p p i n g o c c u r s along smooth g r o o v e s up t o 1 m l s ( F i g . I ) , t h e n p a r t l y d u c t i l e (Fig. 8) a n d medium viscous c h i p p i n g a t 8 m / s (Fig. 3) c a n b e observed;

e x t r e m e l y low viscous f i b r e s a n d d r o p s ( F i g . 9) have been t h r o w n o u t o f t h e a b r a s i o n zone a t l o o m/s. T h e h i g h m e l t i n g lanthanum o x i d e glass 9 0 0 4 0 3 shows a d i s t i n c t change from b r i t t l e t o d u c t i l e i n a n a r r o w speed r a n g e a t a few meters p e r second ( F i g . 2 a n d 5 ) . T h e g e n e r a t i o n o f median c r a c k s a n d large-scale l a t e r a l c r a c k s along t h e s c r a t c h e d grooves i s r e s t r i c t e d t o h i g h viscous y i e l d i n g u n d e r t h e m o v i n g i n d e n t e r as shown f o r t h e glass B K 7 a t 1 m / s i n Fig. 4 a n d schematically r e p r e s e n t e d in Fig. 11 a n d 12. T h e r m a l l y i n d u c e d c r a c k s h a v e been o b s e r v e d a t h i g h e r speeds a t w h i c h t h e temperature o f t h e glass i n t h e abrasion zone o r wear zone increases r a p i d l y d u e t o adiabatic e f f e c t s (Fig. 1 0 a n d schematically Fig. 14 a n d 15).

A special t y p e o f y i e l d i n g a n d f r a c t u r e , t h e so-called saw t o o t h t y p e , has b e e n f o u n d in t h e wear zone diamondlglass s u r f a c e in a r e l a t i v e wide speed range a t scratching o f a special g r o u p o f glasses, as soda lime glass, B K 7, p h o t o t r o p i c glass, a n d f u s e d silica. Examples a r e shown in F i g . 6 and 7. T h e formation mechanism o f t h e saw t o o t h p a t t e r n i s assumed t o b e d u e t o d u c t i l e f r a c t u r e o f t h e p r e v i o u s l y g l u e d glass a t t h e i n t e r f a c e diamondlglass s u r f a c e as can be d e r i v e d from t h e schematic d r a w i n g in F i g . 13.

T h e glass dependent change from low speed quasi-isothermal y i e l d i n g a t low tempera- t u r e s t o h i g h speed adiabatic flow a t h i g h temperatures in t h e wear zone diamondlglass seems t o b e c o n t r o l l e d b y t h e t e m p e r a t u r e dependence o f t h e glass v i s c o s i t y . T h u s ex- periments a t l o o m / s speed h a v e shown t h a t f o r t h e e x t r e m e l y h i g h m e l t i n g glass f u s e d silica ( F i g . 16) t h e r e i s o n l y a v e r y t h i n l a y e r o f softened glass, t h e r e a r e also median c r a c k s along t h e g r o o v e d u e t o a zone o f d e n s i f i e d glass. O n t h e o t h e r h a n d t h e r e a r e g r e a t d i f f e r e n c e s in t h e t h i c k n e s s o f t h e c h i p p i n g s ( F i g . 2 a n d 3) a n d t h e r e f o r e i n t h e t h i c k n e s s o f t h e softened zone u n d e r t h e i n d e n t e r , t h u s i n d i c a t i n g t h a t t h e thermal c o n d u c t i v i t y o f t h e glass i s a n o t h e r main parameter c o n t r o l l i n g t h e p l a s t i c i t y in t h e g r i n d i n g process a t h i g h e r speeds.

3. Acknowledgement.

-

T h e financial s u p p o r t o f t h i s w o r k b y F+O/AIF/BMWi i s appreciated.

4. References. -

( 1 ) BUSCH, D.M., Thesis ( 1 9681, Techn. U n i v e r s i t a t , Hannover/Germany

( 2 ) SCHINKER, M, DOLL, W., Soc. Photo-Opt. I n s t r . E n g r s . SPlE 189 (1978) 784 (3) SCHINKER, M. e t al., B e r i c h t W178, FhG-IWM, Rosastr. 9, 7800-iburg

( 4 ) STAHN, D., SCHINKER, M., DOLL, W., SOMMER, E., Glastechn. Ber.

53

(1980) 259

( 5 ) SCHINKER, M., DOLL, W., B e r . W3/82, FhG-IWM, Rosastr. 9, 7 8 0 0 F r e i b u r g ( 6 ) ERNSBERGER, F.M., J. Amer. Ceram. Soc.

51

(1968) 545

(7) DICK, E., Glastechn. B e r .

5

(1970) 16

(4)

Glass RS 520

Fig.l:Smooth p l a s t i c groove w i t h b r i t t l e Fig.6:Saw t o o t h p a t t e r n along a p l a s t i c c h i o ~ i n a s groove w i t h d e n s i f i c a t i o n zone

l a s s 900403

= 1 m/s

= 3,6 pm

L = 2,.

.

.4 prn

Fig.2: B r i t t l e c h i p p i n g s beside a groove Fig.7: D e t a i l s o f saw t o o t h p a t t e r n i n a ~ l a s t i c aroove

beside a groove

Fig.4: Median crack along t h e d e n s i f i c a - Fig.9: Glass f i b e r s and drops thrown o u t t i o n zone below a scratched groove o f a p l a s t i c groove

l a s s 900403

= 2 rn/s

= 9,5 pm

Fig.5:Softened g l a s s i n a v e r y deep Fig.lO:Drops,bubbles and t h e r m a l l y in.duced

p l a s t i c groove cracks i n a groove

(5)

JOURNAL DE PIiYSIQUL

ISOTHERMAL FLOW

E SCALE DENSlFlCATlON '-\ SMALL - SCALE DENSIFICATION

F i g . 11

Abrasion zone d u r i n g low speed s c r a t c h i n g o f glass

F i g . 14

Abrasion zone d u r i n g h i g h speed s c r a t c h i n g o f glass

DROP FlBER

THERMALLY INDUCED CRACKS

MEDIAN CRACK

F i g . 12

Abrasion zone a f t e r low speed s c r a t c h i n g o f glass

F i g . 15

Abrasion zone a f t e r h i g h speed s c r a t c h i n g o f glass

F i g . 13

Saw t o o t h mechanism d u r i n g s c r a t c h i n g o f glass

F i g . 16

Temperature versus v i s c o s i t y of d i f f e r e n t glasses

Références

Documents relatifs

Le sujet de cette thèse vise à simuler le comportement mécanique du verre silico-sodo-calcique lors d’un contact de type indentation / rayure en prenant en compte le

(voir document histoire de la mesure de la vitesse de la lumière).. 2 Dans la vie courante, la lumière semble se propager de façon instantanée d’une lampe par

Ceci correspond au fait que la variation du module de rigidité équivalent en fonction de la vitesse de sollicitation est d’autant plus importante que la température est élevée,

Ces propriétés sont proches de certains polymères.. Rayure d’un solide viscoélastique linéaire, A gauche - Effort de contact et coefficient de frottement en fonction de la vitesse

Représente sur du papier millimétré (1 cm pour 10 s en abscisse et 1 cm pour 1 m/s en ordonnée) le graphique de l’évolution de la vitesse en fonction du temps.. Comment évolue

OBJECTIFS - Identifier la trajectoire et le mouvement d’un mobile à partir d’un enregistrement.. - Calculer une vitesse et tracer son

Au cours de cette étape, des paramètres de nature thermodynamique, mécanique et cinétique conjuguent leurs effets pour donner naissance à une population

As a matter of fact, although metallic glasses are disadvantaged by a smaller bond strength (in average), they exhibit much larger toughness due toughening