• Aucun résultat trouvé

NUCLIDES FAR OFF THE STABILITY LINE AND SUPER-HEAVY NUCLEI IN HEAVY-ION NUCLEAR REACTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "NUCLIDES FAR OFF THE STABILITY LINE AND SUPER-HEAVY NUCLEI IN HEAVY-ION NUCLEAR REACTIONS"

Copied!
31
0
0

Texte intégral

(1)

HAL Id: jpa-00215109

https://hal.archives-ouvertes.fr/jpa-00215109

Submitted on 1 Jan 1972

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NUCLIDES FAR OFF THE STABILITY LINE AND SUPER-HEAVY NUCLEI IN HEAVY-ION NUCLEAR

REACTIONS

Marc Lefort

To cite this version:

Marc Lefort. NUCLIDES FAR OFF THE STABILITY LINE AND SUPER-HEAVY NUCLEI IN

HEAVY-ION NUCLEAR REACTIONS. Journal de Physique Colloques, 1972, 33 (C5), pp.C5-73-C5-

102. �10.1051/jphyscol:1972507�. �jpa-00215109�

(2)

JOURNAL RE PHYSIQUE C o L I o q u e C 5 , s u p p l e m e n t au no

8-9,

Tome 33, A o i i t - S e p t e m b r e 1972, p a g e

C5-73

NUCLIDES FAR OFF THE STABILITY LINE AND SUPER-HEAVY NUCLEI I N HEAW-ION NUCLEAR REACTIONS

b y Marc L e f o r t

Chimie N u c l e a i r e - I n s t i t u t de Physique Nucleaire-ORSAY, France

A b s t r a c t

A review i s given on t h e new species which have been produced i n t h e r e c e n t y e a r s by heavy i o n r e a c t i o n s , m a i n l y 12C, 160, ''0, 2 2 ~ e and 2 0 ~ e ions.

The f i r s t s e c t i o n i s devoted t o t h e f o r m a t i o n o f neutron r i c h e x o t i c l i g h t n u c l e i and t o t h e mecha- nism o f m u l t i n u c l e a r t r a n s f e r r e a c t i o n s r e s p o n s i b l e f o r t h i s formation. I n t h e second s e c t i o n d e a l i n g on medium atomic numbers a b r i e f account i s made on t h e d i s c o v e r y o f p r o t o n r a d i o a c t i v i t y and some com- ments a r e made on t h e d i f f i c u l t i e s encountered f o r producing v e r y neutron d e f i c i e n t isotopes 1 i ke ' !:~n.

The study o f t h e r e g i o n o f neutron d e f i c i e n c y f o r r a r e e a r t h i s one o f t h e most f r u i t f u l f i e l d f o r heavy i o n r e a c t i o n s . More than f i f t y new i s o - topes have been found. A d i s c u s s i o n i s made on t h e p o s s i b i l i t y f o r going f u r t h e r i n t o t h e neutron d e f i c i e n c y open by t h e use o f Ar, Kr and h e a v i e r ions. I t i s shown t h a t t h e r e i s no advantage t o bombard t a r g e t s w i t h i o n s h e a v i e r than "'Ca o r '%Ni,

Section 4 i s devoted t o heavy n u c l e i i n t h e r e g i o n o f t h e neutron s h e l l N = 126. F i s s i o n compe- t i t i o n i s discussed as w e l l as t h e l i m i t a t i o n o f t h e compound nucleus cross s e c t i o n due t o h i g h angular momentum e f f e c t s . Results a r e presented on t h e r o t a - t i n g l i q u i d drop and t h e v e r y s t r o n g d i m i n u t i o n o f f i s s i o n b a r r i e r s due t o r o t a t i o n a l energy. A b r i e f r e v i e w i s made o f t h e new decay f a m i l i e s discovered by Hyde e t a ? . t631 f o r l i g h t thorium and p r o t a c t i - nium isotopes, These r e s u l t s a r e one o f t h e g r e a t success o f heavy-ion induced r e a c t i o n s .

Section 5 reminds t h a t a l l isotopes o f e l e - ments beyond Z = 101 have been produced b y heavy- i o n r e a c t i o n s , i n s p i t e of t h e g r e a t f i s s i o n compe- t i t i o n .

The 1 a s t s e c t i o n describes t h e v a r i o u s

attempts a l r e a d y made f o r t h e s y n t h e s i s o f super- heavy elements. A d i s c u s s i o n i s presented on t h e f o l l o w i n g problems : r e a c t i o n thresholds and coulomb b a r r i e r s f o r h e a v i l y charged p r o j e c t i l e s , complete f u s i o n cross s e c t i o n as compared t o t h e t o t a l c r o s s section, main decay channels f o r e x c i - t e d compound n u c l e i i n t h e r e g i o n Z = 118,

N = 184-190, f u s i o n - f i s s i o n r e a c t i o n s and t h e p o s s i b i l i t y o f p r o d u c t i o n o f S.H. elements as f i s s i o n fragments, g r a z i n g r e a c t i o n s and exchange o f b i g

apsregates

.

Resume

Noyaux l o i n de l a S t a b i l i t e e t Noyaux Super-lourds dans 1es Reactions Nucltiaires p a r Ions tourds.

Cet expose c o n s i s t e en une revue s u r 1es nomt.reux nouveaux noyaux p r o d u i t s depuis quelques annees p a r l e s r e a c t i o n s par ions lourds, e t en une d i s c u s s i o n des p o s s i b i l i t e s ouvertes par l e s faisceaux d ' i o n s p l u s l o u r d s 'OAr, "Ca, 84Kr, '36Xe e t c . . . Les t e n t a t i v e s de synthese de noyaux superlourds sont d e c r i t e s brievement.

Dans l e premier paragraphe, on i n s i s t e sur- t o u t s u r l e s noyaux r i c h e s en neutrons depuis l e bore jusqu'a l ' a r g o n , p r o d u i t s g r t c e ii des t r a n s - f e r t s d ' u n grand nombre de neutrons depuis des c i b l e s lourdes vers l e p r o j e c t i l e . I1 e s t p o s s i b l e d'approcher l a l i m i t e d ' e x i s t e n c e des noyaux oil l ' e n e r g i e de l i a i s o n du neutron d e v i e n t n u l l e . Le second paragraphe t r a i t e des noyaux moyens pour l e s - quels l e s seuls e s s a i s ayant donne quelques r e s u l - t a t s o n t pennis de t r o u v e r que l e s t e l l u r e s t r e s l e g e r s (107, 108) e t a i e n t emetteurs alpha e t de d @ c o u v r i r l a r a d i o a c t i v i t e p a r p r o t o n s u r l e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1972507

(3)

c o b a l t 53. Les p o s s i b i l i t G s de f o r m a t i o n de noyaux t r e s d e f i c i e n t s en neutrons t e l s '!:~n ou t:Zr s o n t etudiees.

Des c a l c u l s s o n t presentes q u i montrent que meme s i des noyaux compos@s r e l a t i v e m e n t l e g e r s peuvent & r e p r o d u i t s , l e u r desexci t a t i o n a 1 ie u e s s e n t i e l l e m e n t p a r emission de p a r t i c u l e s chargees e t q u ' i l e s t t r e s improbable d ' a t t e i n d r e l a zone N = Z.

La t r o i s i e m e p a r t i e du memoire S t u d i e l e domaine des t e r r e s r a r e s dans l e q u e l l e s r e a c t i o n s par i o n s l o u r d s o n t f a i t d e c o u v r i r p l u s de 50 nou- veaux isotopes emetteurs a p a r t i e l l e m e n t pour l a

~ l u ~ a r t . La couche N = 82 e s t a i n s i a ~ ~ r o c h e e e t

L ' e x i s t e n c e d'une sous couche 1 164 neutrons l a i s s e quelques e s p o i r s de p r o d u i r e des isotopes r i c h e s en neutrons 1 durges de v i e encore acceptablespour Z = 105 e t Z = 106.

E n f i n , l a d e r n i e r e p a r t i e e s t consacree aux noyaux Superlourds. Apres quelques mots s u r l a s i - t u a t i o n t r e s o p t i m i s t e des p r e v i s i o n s theoriques concernant l a s t a b i l i t e des noyaux 1 l ' e t a t fonda- mental autour de Z = 114 e t N = 184, l e s problemes poses par l e s chances d ' a t t e i n d r e ces noyaux p a r l e s r e a c t i o n s n u c l e a i r e s connues sont d i s c u t e s .

1 " ) La b a r r i e r e de p o t e n t i e l pour l ' a p p r o c h e d ' u n p r o j e c t i l e l o u r d a e t @ mesuree e t se r e v e l e p l z s elevee que pour l e s i o n s p l u s 16gers f r o = 1,32 au

. .

, ,

on peut raisonnablement e s ~ e r e r au moven des i o n s 1 ie u de ro = 1,45-1,50).

"Ca ou ' O A r p r o d u i r e des i s o t o p e s encore p l u s 2") La f u s i o n complete conduisant 1 un noyau compo- l e g e r s dans l a r e g i o n de noyaux t r e s d&formGs se p l u s l o u r d que l ' u r a n i u m semble t r e s d i f f i c i f e Z = 58-70,N = 70-82. L ' u t i l i s a t i o n d ' i o n s p l u s sinon impossible pour des p r o j e c t i l e s de Z s u p e r i e u r l o u r d s que ::~i ne p a r a f t p r e s e n t e r aucun evantage. 1 20. Ceci apparaTt a t r a v e r s c e r t a i n s r e s u l t a t s

o r e l i m i n a i r e s obtenus avec l e s i o n s Kr e t se t r o u v e Les noyaux l o u r d s de N p l u s ou moins e l o i g n e justifie par llanalyse de ltinfluence de

de N = 126 sont e n s u i t e e t u d i e s . Dans c e t t e r e g i o n , de rotation lEnerqie N Y r a s t ~ ) et des barrieres de l a c o m p e t i t i o n de l a f i s s i o n d e v i e n t importante e t

l i m i t e l e s s e c t i o n s e f f i c a c e s . De plus, l ' e n e r g i e de r o t a t i o n elevee i n t r o d u i t e par l e s grands mo- ments a n g u l a i r e s p r o j e c t i l e s l o u r d s c o n d u i t a

abaisser l a b a r r i e r e de f i s s i o n e t 1 rendre impos- s i b l e l a f o r m a t i o n de noyau compose pour l e s ondes p a r t i e l l e s de l ' h eleve. Oes v a l e u r s de aCF/aR ,

r a p p o r t de l a s e c t i o n e f f i c a c e de f u s i o n complete 1 l a s e c t i o n t o t a l e de r e a c t i o n s o n t c a l c u l e e s e t comparees 1 des r e s u l t a t s experimentaux obtenus avec l e s i o n s Ar e t Kr. E n f i n , dans c e t t e r e g i o n des elements Rn a Pa, l e p l u s grand succes des r e a c t i o n s par i o n s l o u r d s C , N, 0, Ne a e t @ l a decouverte de nombreux isotopes l e g e r s . De nouvel- l e s f a m i l l e s a d ~ c r o i s s a n c e s en chaine o n t e t e mises en evidence p a r Hyde e t ses c o l l a b o r a t e u r s

1631, 1 p a r t i r d ' i s o t o p e s l e g e r s de thorium e t de p r o t a c t i n i u m .

Dans l a 5e p a r t i e , on r a p p e l l e que tous l e s isotopes des transmendeleviens Z > 101 o n t ete mis en evidence grace aux r e a c t i o n s i n d u i t e s s u r des c i b l e s de 238U, 2 3 9 P ~ 9 2 4 Z P ~ , 248Cms * " C f par des i o n s de bore, carbone, oxygPne on neon, e t c e c i malgre de f a i b l e s s e c t i o n s e f f i c a c e s i n f e r i e u r e s 1 1 microbarn en r a i s o n de l ' i m p o r t a n c e de l a f i s s i o n .

-

f i s s i o n pour une g o u t t e l i q u i d e en r o t a t i o n . 3O) La d e s e x c i t a t i o n d'eventuels noyaux compos@s d e v r a i t a v o i r l i e u p a r emission alpha e t permettre d ' a t t e i n d r e l e s noyaux superlourds 1 v i e longue.

Les remarquables donnees de ~ i x ~ l ~ l ) s u r c e t t e q u e s t i o n s o n t cornentees e t quelques r e a c t i o n s favorables indiquees. On mentionne l e s r e s u l t a t s obtenus j u s q u ' i c i pour l e s t e n t a t i v e s e f f e c t u e e s 1 Orsay ( * ' ~ r + ~ ~ ~ T h ) e t (84Kr+208Pb), r e s u l t a t s nega t i f s malgre l a mise en oeuvre de moyens de detec- t i o n elabores pour l e s masses autour de A = 300.

Le choix de p r o j e c t i l e s 82Se, 76Ge ou ?'Ga s e r a f t peut-&re m e i l l e u r .

Enfin, d ' a u t r e s p o s s i b i l i t e s que l e passage p a r noyau compose s o n t indiquees. Les experiences avec l e f a i s c e a u de xenon f a i t e s 5 Dubna s o n t men- tionnees c o m e approche de l a methode d i t e " f u s i o n - f i s s i o n " q u i c o n s i s t e 1 p r o d u i r e un enorme noyau de f u s i o n A = 400 e t esperer que parmi l e s f r a g - ments de f i s s i o n de ce noyau, des elements super-

l o u r d s s o i e n t crees. Les t r a n s f e r t s de gros agrP-

g a t s s o n t une a u t r e p o s s i b i l i t @ pour l a q u e l l e l e

manque d ' i n f o r m a t i o n p r e c i s e empPche de f a i r e des

p r e v i s i o n s .

(4)

SUPER-HEAVY

NUCLEI . . .

C5-75

INTRODUCTION

The f i r s t n u c l e a r r e a c t i o n s induced by heavy i o n s were observed more than twenty years ago. I n 1949, carbon i o n s were a c c e l e r a t e d i n t h e 152cm Berkeley c y c l o t r o n and a low i n t e n s i t y beam was used b y Hamil ton e t a1 [I). These authors showed t h a t 3 4 ~ 1 was produced from aluminium t a r - gets and 2 0 5 ~ t from gold. Some years l a t e r , heavy i o n i n v e s t i g a t i o n s have extended a t a g r e a t r a t e and new isotopes were discovered although t h e reac- t i o n mechanisms were n o t e n t i r e l y explained. For example, Hollander (2,3) was able t o produce a new bromine isotope, 7 4 ~ r , by bombarding copper w i t h

12c

ions, and a new p a i r of i s o b a r s 1 2 6 ~ a and

'"CS

by bombarding indium w i t h "N. A t Saclay f 42 t h e bombardment o f copper by oxygen succeeded i n p r o - ducing 7 9 ~ b , and a t Birmingham "'TI and l g 3 ~ 1 were discovered c 5 ) i n the i r r a d i a t i o n products o f t h e r e a c t i o n "N on tungsten.

A g r e a t deal of work has been done b e t - ween 1950 and 1960, p a r t i c u l a r l y i n t h e s y n t h e s i s o f new t r a n s u r a n i c elements. As e a r l y as 1951,

1 2 c

induced r e a c t i o n s on

2 3 8 ~

were c a r r i e d o u t (6) t o produce 2 4 6 ~ f . Because f i s s i o n i s b y f a r t h e most prominent mode of decay o f compound n u c l e i , cross s e c t i o n s f o r t h e products o f (HI,xn) r e a c t i o n s on uranium o r on heavy n u c l e i are very low, o f the o r d e r o f tens o f microbarns. Therefore t h e y cannot compete w i t h neutron captures (nu) and w i t h cumula- t i v e neutron captures ( s o c a l l e d f a s t process) f o r t h e synthesis of elements up t o Z

=

98 o r 99.

However t h e possi b i 1 i t y o f jumping many u n i t s o f atomic number i n t h e r e a c t i o n was under- stood as an a t t r a c t i v e f e a t u r e f o r t h e p r e p a r a t i o n o f isotopes a t t h e upper f i m i t o f t h e transuranium elements, p a r t i c u l a r l y above 2 = 100. Moreover, heavy i o n bombardment i s the unique way a t the present t i m e f o r t h e s y n t h e s i s o f transmendelevium elements, s i n c e t h e h i g h e s t Z number obtained i n underground thennonucl e a r explosions i s Z, = 100.

appears t o be a l i m i t t o the process o f s y n t h e s i s by neutron f l u x e s o f very h i g h d e n s i t y .

Then, t h e o n l y p o s s i b i l i t y i s t o take t h e h e a v i e s t a v a i l a b l e t a r g e t s , c u r i urn, berkelium, c a l i f o r n i u m and e i n s t e i n i um, and bombard them w i t h heavy ions. Pionners i n t h i s challenge were t h e Nobel I n s t i t u t e i n Stockholm where A t t e r l i n g e t a1 ( 9 1 made t h e synthesis o f 250Fm w i t h 160, t h e Kurchatov I n s t i t u t e i n Moscow and l a t e r t h e labo- r a t o r y f o r n u c l e a r r e a c t i o n s headed by G.N. F l e r o v i n Dubna (101, and t h e Lawrence R a d i a t i o n Labora- t o r y i n Berkeley, where Mendelevium, element 1 0 1 was f i r s t produced (11) by bombarding l o 9 atoms o f 253Es w i t h p a r t i c l e s , and elements 102 (Nobelium) and 103 (Lawrencium) were made s y n t h e t i c a l l y (123 by bombarding 3 ug o f c a l i f o r n i urn w i t h ' 'B and

'OB.

Between 1958 and 1971, many experiments were car- r i e d o u t i n Dubna and Berkeley, and new elements 102 t o 105 were discovered w i t h various combina- t i o n s o f p r o j e c t i l e s and t a r g e t s [13,14,15).

Nowadays a l a r g e number o f new isotopes f a r from t h e b e t a s t a b i l i t y l i n e are b e i n g synthe- t i z e d o v e r a l l t h e c h a r t o f isotopes, mainly by two methods o f p r o d u c t i o n : s p a l l a t i o n r e a c t i o n s indu- ced by e n e r g e t i c protons o r alpha p a r t i c l e s , and heavy i o n induced r e a c t i o n s . I n several cases, b o t h t e c h n i c s have been used t o produce neutron d e f i c i e n t n u c l e i , i n t h e r a r e e a r t h r e g i o n f o r instance.

However t h e r e a r e s p e c i f i c cases where (HI ,xn) r e a c t i o n s o r mu1 t i n u c l e o n t r a n s f e r r e a c t i o n s a r e a t t h e present t i m e t h e o n l y p o s s i b i l i t i e s f o r t h e synthesis o f very l i g h t o r very heavy isotopes. On t h e c h a r t o f isotopes, around two hundred new spe- c i e s produced i n t h e l a s t decade by heavy i o n reac- t i o n s are shown on f i g u r e s 1, 6, 7, 11, 12 and 19.

For each p a r t i c u l a r area we s h a l l comnent more spe- c i f i c a l l y which problems a r i s e i n t h e s y n t h e s i s and which are t h e p o s s i b i l i t i e s f o r l o o k i n g f o r unknown, bound n u c l e i and f o r t h e hope o f f i n d i n g e x o t i c n u c l e i .

The amount o f 2 5 7 ~ m r e c o v e w d i n 1969 from "Hutch"

l o o I. NEUTRON RICH EXOTlC LIGHT NUCLEI

experiment (71 was l a r g e enough t o serve as a t a r -

g e t m a t e r i a1 f o r i r r a d i a t i o n . However a1 though t h e Some years ago, i t was b e l i e v e d t h a t

y i e l d o f v e r y heavy n u c l e i was very much improved o n l y neutron d e f i c i e n t n u c l e i c o u l d be formed a f t e r

compared t o t h e "Cyclamen" e x p e r i m n t (83 of 1967, heavy i o n r e a c t i o n s . I t has been one o f t h e g r e a t

no i s o t o p e h e a v i e r than 2 5 7 ~ ~ Was discovered. There i n t e w s t o f t h e work made by V01

~ O V

and h i s c01-

(5)

C5-76

M. LEFORT

l a b o r a t o r s 1 1 8 1 t o show t h a t t h i s was n o t t r u e . Mg, A l , S i , P, S and C1. The p r o d u c t i o n o f neutron M u l t i n u c l e o n t r a n s f e r r e a c t i o n s may produce neutron

r i c h l i g h t n u c l e i by t h r e e processes, i) p i c k up o f a number o f neutron from t h e t a r g e t , ii) s t r i p p i n g o f protons t o t h e t a r g e t , i i i ) complex exchange o f nucleons l e a d i n g t o a ' l i g h t p r o d u c t r i c h e r i n neu- t r o n s than t h e p r o j e c t i l e ( p r o j e c t i l e - x protons

+ y neutrons).

It was shown t h a t t h e y i e l d o f a g i v e n t y p e of t r a n s f e r i s governed e s s e n t i a l l y by t h e Q value o f t h e r e a c t i o n . Several authors (16,171 have observed t h i s e f f e c t and d e r i v e d an e m p i r i c a l r e l a t i o n s h i p between t h e cross s e c t i o n and t h e energy balance EC

t

AM)^^, where aEc i s t h e change i n coulomb energy and 4Y t h e mass balance between t h e i n i t i a l s t a t e and t h e f i n a l s t a t e . When c o n s i d e r i n g t h e p i c k up process o f a l a r g e number o f neutrons, f a v o r a b l e c o n d i t i o n s occur when t h e h e a v i e s t elements are used as t a r g e t s , s i n c e t h e b i n d i n g energy o f neutrons becomes l a r g e r i n neutron r i c h l i g h t elements than i n t h e heavy t a r g e t nucleus.

Using 2 3 2 ~ h as a t a r g e t , Volkov (18') and h i s c o l l a b o r a t o r s have bombarded w i t h ''0, 2 2 ~ e ,

1 5 ~

and ''6 i o n s . They were able t o i d e n t i f y and t o measure t h e p r o d u c t i o n y i e l d f o r a number o f a l r e a d y known e x o t i c n u c l e i : ' ~ e ,

ll~i,

12Be, 156,

17c, 19N, 2100

2 2 ~

and 2 4 ~ e . They measured much l a r g e r y i e l d s than by t h e fragmentation process through which these n u c l e i had been formed pre- v i o u s l y by bombardment o f heavy n u c l e i w i t h GeV protons. Cross s e c t i o n s were estimated between 0 , l and 100 mb. I n a d d i t i o n , new species were found, much c l o s e r from t h e boundary f o r t h e p a r t i c l e s t a - b i l i t y w i t h l a r g e neutron excess. ''c,

19c, 2 0 ~ ,

2 1 ~ ,

220, 230, 240,

2 3 ~ , 2 4 ~ , 2 5 ~ ,

2 5 ~ e , 2 6 ~ e were i d e n t i f i e d . It was a l s o very c l e a r l y demonstrated t h a t 1 ° ~ e , 13Be and 146e a r e p a r t i c l e unstable.

Very r e c e n t experiments made 1191 w i t h 290 MeV argon i o n s g i 2 ~ h a r e even more promising.

Because o f t h e l a r g e r b i n d i n g energies o f neutrons i n t h e v i c i n i t y o f 4 0 ~ r , cross s e c t i o n s f o r neu- t r o n p i c k up a r e r a t h e r l a r g e . I n one s e t o f expe- riments, 17 new e x o t i c n u c l i d e s have been i d e n t i - f i e d by Volkov e t a1 [19], i n t h e Z r e g i o n between 12 and 17. The r e p r o d u c t i o n o f t h e c h a r t o f i s o - topes i n t h i s area ( f i g . 1) shows t h e new species o f

r i c h n u c l i d e s f a r away from t h e s t a b i l i t y opens t h e p o s s i b i 1 i t y f o r a v e r i f i c a t i o n o f t h e t h e o r e t i c a i boundary f o r t h e p a r t i c l e s t a b i 1 i t y and more gene- r a l l y o f the n u c l e a r models and mass formula. For a

F i g u r e

1

: C h a r t o f i s o t o p e s f o r l i g h t n u c l e i . - B o u n d a r i e s f o r s t a b i l i t y a r e drawn a f t e r

Garvey ( 2 0 ) .

- S t a b l e i s o t o p e s a r e shown i n shaded a r e a . - N e u t r o n r i c h i s o t o p e s p r o d u c e d w i t h heavy i o n r e a c t i o n s a r e i n d i c a t e d by u n d e r l i n e d s q u a r e s .

nucleus w i t h l a r g e neutron excess, more s i n g l e psr- t i c l e l e v e l s o f h i g h energy must be occupied than f o r t h e same A nucleus w i t h N - Z

=

0. Whether these h i g h l y i n g l e v e i s a r e bound o r unbound i s an open question.

The boundary r e g i o n c a l c u l a t e d by Garvey 1201 has been reached i n t h e r e g i o n Z

=

2 t o Z

=

5 and perhaps a t Z

=

11. ( F i g . 1 ) . F o r l a r g e r Z, t h e r e i s s t i l l a gap o f several neutrons between t h e p r e - s e n t l y known n u c l i d e s and t h e boundary. F o r example 3 6 ~ i i s a t 10 neutrons from t h e l i m i t . Cross sec- t i o n s f o r 240 o r

2 1 ~

a r e a l r e a d y r a t h e r low (some m i c r ~ b a r n s ) and i t i s d i f f i c u l t t o p r e d i c t t h a t h e a v i e r i s o t o p e s up t o 280 m i g h t be formed w i t h a s u f f i c i e n t y i e l d f o r t h e a c t u a l d e t e c t i o n e f f i c i e n c y . However i t i s known t h a t m u l t i n u c l e o n t r a n s f e r reac- t i o n s e x h i b i t cross s e c t i o n s which increase w i t h t h e energy, s i n c e a compound nucleus can o n l y be formed w i t h a l i m i t e d angular momentum (21,22] . A 1 arge

number o f p a r t i a l waves c o n t r i b u t e t o d i r e c t pro-

(6)

SUPER-HEAVY NUCLEI . . .

C5-77

cesses, which are no longer only surface reactions.

Therefore, one might expect t h a t higher bombarding energies f o r 2 2 ~ e and

' O A ~

induce a great deal o f many complex t r a n s f e r reactions.

It seems a l s o possible t o produce neu- t r o n r i c h n u c l e i f o r elements heavier than Z = 18, now p r o j e c t i l e s l i k e * ' + ~ r are available. For exam-

3 6

p l e r e s u l t s have been obtained (233 a t energies between 450 and 500 MeV i n which 232Th t a r g e t nu- c l e i have l o s t 7 o r 8 neutrons. Cross sections are above lmb and i t i s reasonable t o believe t h a t se- veral c f these neutrons have been captured by t h e p r o j e c t i l e .

For e x o t i c n u c l e i heavier than mass 40, a d i f f i c u l t technical problem i s c e r t a i n l y the mass assignment, P a r t i c l e i d e n t i f i e r s cannot work e f f i - c i e n t l y w i t h a good r e s o l u t i o n f o r l a r g e masses, i f they are based on A E - E measurements. However progress made on the r e s o l u t i o n f o r time measure- ments pemSt t o b e l i e v e t h a t the time o f f l i g h t d i s c r i m i n a t i o n w i l l be a good i d e n t i f i c a t i o n technic.

On the other hand, accurate measurements o f the k i n e t i c energies and angular d i s t r i b u t i o n s o f t h e product open the p o s s i b i l i t i e s f o r determi- n i n g Q values and then masses f o r t h e new isotopes.

This has been done (243 only i n very few cases, l i k e f o r 210 and 220, and t h e w i s a l a r g e open f i e l d .

11. INTERMEDIATE MASSES. PROTON AN0 ALPHA EMITTERS.

LIMITATIONS ON

...

THE PRODUCTION OF VERY NEUTRON DEFICIENT NUCLEI.

I n the region o f medium atomic numbers, neutron r i c h nuclides can be produced as f i s s i o n fragments w i t h a much b e t t e r y i e l d than by any heavy i o n reaction. Therefore the only attempts t o use heavy i o n reactions f o r producing new species i n t h i s region were made i n order t o obtain neutron d e f i c i e n t nuclides and p a r t i c u l a r l y t o look f o r proton r a d i o a c t i v i t y , and beta delayed proton emi ssiot-i.

Although beta delayed proton emitters can a l s o formed as s p a l l a t i o n products, many o f them have been obtained e i t h e r i n heavy i o n trans- f e r reactions 1251 l i k e 17Ne, o r i n (HI ,xn) reac-

t i o n s 126') l i k e 9 6 R ~ ( 160,4n) lo8Te. Proton radio- a c t i v i t y has been discovered (27) f i r s t i n 1970 on an isomer o f 53Co, which was the r e s u l t o f the reac- t i o n '+OCa (160,2np) 5 3 ~ o m . I t was checked t h a t no cor n c i dence appeared w i t h any p o s i t r o n decay and therefore 5 3 ~ d n was assumed t o be a proton e m i t t e r .

A new region o f alpha r a d i o a c t i v i t y around masses 100 has been found c281 by MacFarlane, w i t h 9 6 R ~ (160,~n) 12-'~e reactions. f sotopes 107 and 108 o f t e l l u r i u m are alpha e m i t t e r s (energr'es o f 3.28 and 3.08 MeV).

An important problem t o be studied i n nuclear spectroscopy i s the i s o s p i n invariance o f nuclear forces. Medium nuclei w i t h N = Z which are f a r from t h e s t a b i l i t y l i n e are o f p a r t i c u l a r i n t e - rest, because i t i s desirable t o determine what are t h e important c o r r e l a t i o n s among the nucleons f o r N = Z and t h e p a i r i n g e f f e c t s . P a i r i n g correla- t i o n s could be observed d i r e c t l y by p a i r i n g vibra- t i o n a l o r r o t a t i o n a l spectra. I t would be i n t e r e s - t i n g t o have some experimental knowledge o f t h e isospin s t r u c t u r e o f N = Z odd-odd nuclei. Does T = 1 p e r s i s t as t h e ground s t a t e as i t i s f o r l i g h t n u c l e i ?

According t o the Garvey's mass formula, some o f the n u c l e i i n t h e region o f ':;~n should be s t a b l e against s i n g l e proton emission, but unstable against double proton emission. P a i r i n g e f f e c t t r a n - s i t i o n s may be observed i n double proton emission.

Also i n the region N = Z

=

40, there i s the open question t o know i f 40 remains a magic number f o r protons.

For the above motivations, several pro-

posals have been made t o use heavy ions f o r produ-

cing e x o t i c nuclei l i k e ::~r o r ';:~n. The fusion

o f a t a r g e t and p r o j e c t i l e nucleus tends always t o

produce a neutron d e f i c i e n t compound nucleus, due

t o the increasing neutron excess o f heavier nuclei'

along the v a l l e y o f beta s t a b i l i t y . These compound

systems sharing a l a r g e amount o f e x c i t a t i o n energy,

a number o f p a r t i c l e s should be evaporated. A t a

f i r s t glance, i t was thought t h a t the coulomb bar-

r i e r should i n h i b i t the emission o f charged p a r t i -

c l e s and t h a t i t would r e s u l t i n a strong prefe-

rence f o r evaporating neutrons. This tends t o pro-

duce s t i l l more neutron-deficient products. However,

(7)

C 5 - 7 8

M.

LEFORT

p a r t i c u l a r l y i n t h e r e g i o n Z

=

30, Z = 50, t h i s i s n o t t r u e .

I n h a y , we have shown (29) t h a t i n the ' 2 3 ~ e compound nucleus e x c i t e d a t 60 MeV and r e s u l - t:ig from t h e r e a c t i o n '!Pg

t

'IfN, most o f t h e eva- porated p a r t i c l e s were protons and alpha p a r t i c l e s , i n good agreement w i t h t h e o r e t i c a l p r e d i c t i o n s . The same conclusions have been obtained very r e c e n t l y

[30] on t h e evaporated p a r t i c l e y i e l d s i n t h e reac- t i o n (77Se + ::Ar) f o r which t h e compound nucleus i s ' k z ~ e . F o r

3 4

a c e n t e r o f mass energy o f 140 MeV, t h e cross s e c t i o n f o r alpha p a r t i c l e s was found a t 840 mb and f o r protons 854 mb, t o be compared t o a t o t a l r e a c t i o n cross s e c t i o n c a l c u l a t e d w i t h t h e o p t i c a l model a t 1.7 barn.

More r e c e n t l y , Stephens e t a1 ( 3 9 , and Blann e t a1 (32.331 have discussed t h i s q u e s t i o n o f p r e d i c t e d l i m i t s f o r p r o d u c t i o n o f new p r o t o n r i c h n u c l e i . As t h e compound n u c l e i become more and more p r o t o n r i c h , t h e usual predominant decay by neutron evaporation gives way t o p r o t o n and alpha p a r t i c l e evaporation. This can be shown using t h e Weisskopf- Ewing evaporation formalism, where the p r o b a b i l i t y f o r e m i t t i n g a p a r t i c l e j w i t h t h e k i n e t i c energy c , from a compound nucleus w i t h e x c i t a t i o n energy ECN *

may be w r i t t e n n e g l e c t i n g t h e c o n s i d e r a t i o n o f angu- l a r momentum

I

where a j i s t h e l e v e l d e n s i t y parameter, S j t h e s e p a r a t i o n energy o f t h e p a r t i c l e ,

6 j

t h e p a i r i n g energy c o r r e c t i o n .

I n t e g r a t i n g W ( ~ ) d e between t h e k i n e t i c energy t h r e s h o l d f o r t h e p a r t i c l e j,

C j

and t h e maxi- mum energy given by R j = E C N - S j - 6 j - c j , y i e l d s t h e

X

w i d t h r j f o r e m i t t i n g a p a r t i c l e j. And t h e compari- son w i t h neutron emission i s given by :

r . ( 2 s j + l ) m j

f I

A = . R j

*

q an exp 1 2(*-%)1

( I )

rn (2Sn+l)mn

/

where s u b s c r i p t n corresponds t o t h e neutron, and Rn = ECN-Sn-6,,

X

s i n c e c n = 0.

When t h e compound nucleus i s a l r e a d y n e u t r o n - d e f i c i e n t , Rp o r R, becomes l a r g e r than Rn,

d e s p i t e t h e e f f e c t o f cp o r c, because Sp o r S, are much s m a l l e r than Sn. Then, t h e exponential becomes p o s i t i v e and rp/rn o r r,/rn l a r g e r than 1. Such an e f f e c t was u n d e r l i n e d by Bodansky [34) and i l l u s t r a - t e d on f i g u r e 2.

But i n a d d i t i o n o f

wv, t h i s s e p a r a t i o n energy

dependence, t h e use o f heavy i o n s b r i n g s an angular momentum e f -

2

0'

-'{. .

o w

0 E R ~

f e c t which has been

0 0 0

discussed w i t h g r e a t

d e t a i l s by Thomas e t

O J

I - M 5 A lor <-d MINI

a1. (351 . Because neu-

t r o n s and protons a r e unable t o t a k e away

F i g u r e 2 : from t h e compound sys-

r n / r a s

a

f u n c t i o n tem l a r g e f r a c t i o n s o f o f N ~ Z ( a f t e r Bodansky

( 3 4 ) ) . .

. .

a n g u l z r momentum, t h e i r emission y i e l d s a r e lowered a t t h e b e n e f i t o f h e a v i e r p a r t i c l e s , and p a r t i c u l a r l y alpha p a r t i c l e s . I t has been shown (363 t h a t the r a t i o (r,/r ) can be r e l a t e d t o

( r a / r n ) J, O c a l c u l a t e d by expression (1)

J~~

where

T

i s t h e n u c l e a r temperature,

J

t h e moment o f i n e r t i a and R t h e r a d i u s o f t h e compound nucleus.

r,/rn r a t i o s have been c a l c u l a t e d as a f u n c t i o n o f JCN and E;~, assuming f o r t h e momentum o f i n e r t i a a r i g i d s p h e r i c a l value. As an example, r,/rn f o r t h e compound system ( 6 3 C ~ + 1 6 0 ) increases from 0.5 a t J

=

o up t o 5 a t J = 40h a t an e x c i t a t i o n energy o f 60 MeV. F i g u r e 3 shows t h a t Tn drops down t o very

1 2 3

low y i e l d s f o r Xe compound n u c l e i when J l i e s between 20 and 30h a t an e x c i t a t i o n energy o f 20Mev.

A r a t h e r crude way t o p l a c e an upper

1 im i t on t h e i n f l u e n c e o f angular momentum

OR

t h e

compound nucleus decay i s t o reduce f o r each p a r t i a l

wave t h e e x c i t a t i o n energy by the c l a s s i c a l r i g i d -

body r o t a t i o n a l energy Erot = J(J+1)/2 . Very i n t e -

r e s t i n g r e s u l t s have been r e c e n t l y o b t a i n e d by

(8)

SUPER-HEA

W

NUCLEI . . . C5-79

d e - e x c i t a t i o n . I t i m p l i e s t h a t " i t w i l l be e x t r e m l y u n l i k e l y t h a t l o O S n c o u l d be made w i t h reasonable

n

cross s e c t i o n by any evaporation mechanism". Very heavy p r o j e c t i l e s l i k e T i o r 40Ca do n o t h e l p t h e

a

p r o d u c t i o n p r o b a b i l i t y n e i t h e r f o r

loo

~n n o r f o r

* O

Zr.

J

-

3 0 h

The s i t u a t i o n i s b e t t e r above mass 130 and t h e cross s e c t i o n s f o r a l a r g e number o f e x o t i c n u c l i d e s are p r e d i c t e d t o be f e a s i b l e f o r spectros- copy i n t h e r e g i o n o f r a r e e a r t h t h a t we are going t o consider now.

10 20 30 40 50

E ( M e V )

111. NEUTRON DEFICIENT NUCLIDES I N THE RARE EARTH Figure 3

:

Percentage of p,n,a and

y

emission in REGION. ALPHA EMITTERS AN0 DEFORMED NUCLEI.

the de-excitation of the compound nucleus

'23xe.

The r a r e e a r t h r e g i o n c o u l d be

- - - .

a) As a function of J%at E*

=

20 MeV.

b) As a function of E at J

=

30h.

Figure 4

:

Contour diagram for maximum yields following decay o f compound nuclei.

The numbers are log for the maximum yields in units o f mb (after M. Blann et a1 (33))

Marshall Blann (33) i n several regions o f t h e c h a r t o f isotopes. A few cases are presented here w i t h h i s gracious permission. They show f o r t h e case o f medium n u c l e i ( f i g . 4) t h a t xp emission i s t h e dominant evaporation made i n t h e e a r l y stages o f

d e f i n e d as t h e p r e d i l e c t i o n area f o r (H1,xn) reac- t i o n s , because t h e compound nucleus deexcites predominantly by neutron evaporation. The f i s s i o n process w i d t h i s s t i l l very low and the Coulomb b a r r i e r i s l a r g e enough t o i n h i b i t s t r o n g l y charged p a r t i c l e evaporation.

Reactions have been induced by

l 2 ~ , " + ~ ,

15N, l G O , 180, 19F, 2 0 ~ e , 2 7 . ~ e on many t a r g e t s b e t - ween Z = 50 and Z = 72. Cross bombardments have been used i n o r d e r t o check t h e i d e n t i f i c a t i o n o f r e s i - dual n u c l e i which were produced by several t a r g e t - p r o j e c t i l e combinations. A r a t h e r good knowledge o f e x c i t a t i o n f u n c t i o n s f o r (HI ,xn) r e a c t i o n s w i t h x between C and 8 o r 10 has been acquired. F o r example Toth and Hahn $373 have bombarded w i t h

1 4 ~

1 4 " ~ d and they assumed t h a t i n (14N,6n) and (14N,7n) isotopes

S2Ho and 151Ho were produced. Furthermore, they observed e x c i t a t i o n f u n c t i o n s o f t h e same alpha rays by bombarding 14*Nd a t lower energies where ( 1 4 ~ , 4 n ) and ( 1 4 ~ , 5 n ) are t h e m s t probable r e a c t i o n s . This knowledge o f t h e p o s i t i o n o f e x c i t a t i o n f u n c t i o n s was a g r e a t h e l p t o d i s c o v e r new h i g h s p i n isomers i n l53H0 and "Ho.

A t t h e maximum o f t h e e x c i t a t i o n f u n c t i o n

cross s e c t i o n s l i e around several hundreds o f mb f o r

x l o w e r than 6. L i g h t e r isotopes a r e produced w i t h

cross s e c t i o n s l o w e r and the decrease depends on how

f a r t h e n u c l i d e s are from the b e t a s t a b i l i t y . As an

example, f i g u r e 5 shows e x c i t a t i o n f u n c t i o n s (38)

drawn from x = 3n up t o x

=

12n f o r t h e r e a c t i o n

1 3 0 ~ e ( 1 2 ~ , x n ) ' 4 2 - x ~ e . I3Oce, which i s a t 10 masses

(9)

C 5 - 8 0 M. LEFORT

u n i t s from t h e s t a b i l i t y , i s produced w i t h a cross s e c t i o n o f t h e o r d e r o f 20 mb.

1 ' " " " " ~

F i g u r e 5

:

E x c i t a t i o n f u n c t i o n s f o r t h e r e a c t i o n s 1 3 c ~ e ( ' 2 ~ , x n ) 4 2 - x ~ e . ( A f t e r Oganecian e t al.)

Since t h e compound system i s always l i g h t e r than t h e b e t a s t a b i l i t y mass o f 2 t o 6 u n i t s , when various t a r g e t s are bombarded w i t h '%,

14N, 160, "F o r 2 0 ~ e , i t has been p o s s i b l e t o reach neutron d e f i c i e n t r a r e e a r t h n u c l e i s l i g h t l y h e a v i e r than t h e 82 neutron closed s h e l l , i n o r d e r t o observe t h e expected increase o f alpha decay ener- gies. This was very n i c e l y done i n 1964 by R.D.

Macfarlane ( 3 9 . 'Z:~rn (N

=

84),

1

" ~ m (N

=

85), '::~b (N = 84) were produced w i t h cross s e c t i o n s o f t h e o r d e r o f 50 mb by bombardments o f 141pr w i t h

2.0

Ne ('ONe,8n), o f 1 4 2 ~ d ("F, 7n), and o f 14'sm

F i g u r e 6 : C h a r t of i s o t o p e s i n t h e r e g i o n of l i g h t r a r e e a r t h . New Neutron d e f i c i e n t i s o t o p e s a r e shown on t h e l e f t s i d e .

w i t h oxygen. Twenty new alpha e m i t t e r s have been discovered ( F i g . 6) f o r Z between 65 and 72, j u s t above t h e 82 neutron she1 1 , by Macfarl ane e t a1 [40 1,

Ho (151,152,153) E r (152,153,154) Tm (153,154), Yb (154,155) Lu (155,156) H f (157,158), and by Hahn, Toth e t a1 137,443 , Ho (150), Tm (155,156), E r (151), Yb (156,157). I n some cases t h e (H1,xn) r e a c t i o n r e s u l t s were checked by ('He,xn) r e a c t i o n s as f o r example 1 6 2 ~ r ( 3 ~ e , 9 n ) 1 5 6 ~ b . The new species disco- vered have h a l f - l i v e s i n t h e range around 1 minute although t h e l e s s s t a b l e decay i n a f r a c t i o n o f secund.

A very convenient method f o r c o l l e c t i n g r e c o i l i n g n u c l e i and measuring

a

rays from t h e i r decay, i s t h e helium j e t technique which has been developed by Macfarlane e t a1 c42], Hyde e t a1 143) and r e c e n ~ l y i n Orsay by Le Beyec e t a1 (44). There are s t i l l a number o f new n u c l e i t o be discovered i n t h e empty r e g i o n between t h e two i s 1 ands o f known alpha e m i t t e r s , around 160Lu (See f i g u r e s 6 and 7 ) .

Attempts f o r t h e s y n t h e s i s o f very neutron d e f i c i e n t r a r e e a r t h ( N lower than 82).

The v i c i n i t y o f t h e 82 neutron s h e l l i s an i n t e r e s t i n g region. Moreover, a very i n t e r e s t i n g r e g i o n o f deformed n u c l e i i s expected f o r N < 82 and 60

<

Z

<

75. I t would be o f i n t e r e s t f o r example t o see i f n u c l e i i n t h i s r e g i o n d i s p l a y r o t a t i o n a l spec- t r a . I t was suggested t h a t o b l a t e deformations occur f o r l i g h t baryum isotopes (451.

Then t h e question a r i s e s whether i t i s p o s s i b l e o r n o t t o produce n u c l i d e s w i t h a neutron

F i g u r e 7 : C h a r t of i s o t o p e s i n t h e r e g i o n o f

heavy r a r e e a r t h .

(10)

SUPER-HEAVY

NUCLEI . . .

-7

d e f i c i e n c y o f 15 t o 20. Because t h e cross s e c t i o n f o r a d e e x c i t a t i o n channel corresponding t o more than 10 neutrons w i l l always be small, even a t t h e convenient energy, one should t r y t o produce a com- pound nucleus already as n e u t r o n - d e f i c i e n t as pos- s i b l e . A study o f t h e combinations t a r g e t + p r o j e c - t i l e which can be made i n o r d e r t o reach t h e r a r e e a r t h region, leads t o t h e conclusion t h a t t h e b e s t p r o j e c t i l e s a r e : i ~ r ,

' O C ~ ,

5 8 ~ i , i:~n, ::Ga and

2 0 2 8

:;Ge.

Experiments were made (46,47) w i t h 'OAr on l14Cd and l 1 6 c d which have shown t h a t t h e e x c i - t a t i o n f u n c t i o n f o r producing known isotopes 1 4 9 ~ b , lS0Dy and lS1Dy, corresponding t o (HI,6n) and (HI,7n), were very s i m i l a r t o t h e e q u i v a l e n t e x c i t a t i o n func- t i o n observed w i t h l i g h t e r i o n s . Cross s e c t i o n s a t t h e peak o f the e x c i t a t i o n f u n c t i o n are about 2.2 t o 2.7 t i m e s m a l l e r than w i t h C, N, 0 and Ne p r o j e c t i - l e s . We s h a l l discuss t h i s p o i n t l a t e r . However, t h e r e s u l t s o f Natowitz and Alexander (46) demonstrate t h a t more than 100 mb c o u l d be obtained f o r (Ar,6n) r e a c t i o n s , i n a r e g i o n o f neutron d e f i c i e n c y around 10. This m i g h t n o t be t r u e i f one goes down t o a neutron d e f i c i e n c y o f 20, because r, and r p become much l a r g e r than rn. Stephens and Diamond have c a l - c u l a t e d t h e curve where rp/rn = l w i t h a r a t h e r sim- p l e formula rp/rn = exp((Sn/.r) - (Sp+0,8B/.r)) where B i s t h e b a r r i e r energy f o r t h e charged p a r t i c l e . They deduced t h a t rp/rn = 1 a t N = 82 f o r Z

=

65 (Terbium), a t N

=

86 f o r Z = 72 (Lutetium) and N = 70 f o r Z = 60 (Neodymium).

Gauvin e t a1 (48) have r e c e n t l y d e t e r - mined t h e r a t i o a(Arxn)/(oAr,p(x-1)n) f o r Argon

1 2 1 - 1 2 3

induced r e a c t i o n s on l18Sn, Sb and

1 2 7 ~

t a r - gets. They were able t o show, by measuring t h e cross- s e c t i o n s a t t h e peak o f e x c i t a t i o n f u n c t i o n s f o r 58Er isotopes around N = 84, t h a t t h e r a t i o i s equal t o 1 f o r x

=

6 and as low as 0.04 f o r x

=

9.

Furthermore o(Ar,xn)/o(Ar,a(x-4)n) i s 0.04 f o r x = 9. N.T. P o r i l e has given i n t h i s confe- rence more d e t a i l s on these r e s u l t s . They b r i e f l y show t h a t when compound n u c l e i are produced around N

=

84 i n t h e r a r e e a r t h region, l a r g e cross sec- t i o n s cannot be expected f o r t h e (xn) d e - e x c i t a t i o n channels f o r x > 6 ( F i g u r e 8). Going back t o calcu- l a t i o n s , we quote again t h e very i n t e r e s t i n g r e s u l t s

Figure 8 : Comparison of c r o s s s e c t i o n s f o r : (Ar,xn) , (Ar,p(x-1)n) and ( ~ r ,a(x-h)n) r e a c t i o n s i n r a r e e a r t h r e g i o n ( a f t e r Gauvin e t a1 ( 4 8 ) ) .

F i g u r e 9 : Contour diagram f o r maximum y i e l d s f o l l o w i n g decay of 1 3 2 ~ m and

l S 0 y

( s e e f i g u r e 4) .

o f M. Blann e t a1 on very l i g h t compound n u c l e i l i k e 1 3 2 ~ m ( 4 0 ~ a + 9 2 ~ o ) o r l S 0 y b ( 5 8 ~ i + 9 2 ~ ~ ) . ( F i g u r e 9). They c l e a r l y i n d i c a t e t h a t charged p a r t i c l e s are p r e f e r e n t i a l l y e m i t t e d and t h a t r e s i -

dual n u c l e i should have consequently a l a r g e r r a t i o

N/Z than t h e compound system.

(11)

Figure 10 : Main de-excitation channel for various neutron deficient compound nuclei :O residual nuclei

:

@

lightest known isotopes f3' decay : lightest known isotopes a decay : a

Made on t h e same basis, I should l i k e t o present, on f i g u r e 10, t h e r e s u l t o f c a l c u l a t i o n s made i n o r d e r t o e s t i m a t e t h e dominant d e - e x c i t a t i o n process f o r l i g h t isotopes l i k e l;:Tb ('::Ag + :;Ar).

I n these estimations, e x c i t a t i o n energies were choo- sen a t values around 80 MeV corresponding t o bombar- d i n g energies o f t h e o r d e r o f 200 MeV f o r which i s a l r e a d y l a r g e r than 1 barn. Therefore we b e l i e v e t h a t p r o d u c t i o n o f l i g h t i s o t o p e s o f r a r e e a r t h (N < 82) i s s t i l l p o s s i b l e a t a l e v e l o f t h e o r d e r o f s e v e r a l mb.

A l a s t remark on t h i s problem. There i s no advantage t o i n c r e a s e very much t h e bombarding energy. F i r s t o f a l l , i t has a1 ready been shown t h a t l a r g e e x c i t a t i o n energies cannot c o n t r i b u t e t o t h e evaporation o f a l a r g e number o f neutrons. Secondly, i t would increase t h e average angular momentum, and many experimental r e s u l t s as w e l l as t h e o r e t i c a l arguments have shown t h a t complete f u s i o n cross s e c t i o n s are w e l l below t h e t o t a l r e a c t i o n cross s e c t i o n s a t h i g h p r o j e c t i l e energies. Such d a t a have been i n t e r p r e t e d i n terms o f a l i m i t i n g angular momentum above which complete f u s i o n may n o t occur

and they w i l l be discussed a b i t more l a t e r on

@9,50,51').

Bogdanov, Karnaukhov e t a1 [52) have searched f o r p r o t o n r a d i o a c t i v i t y on very neutron d e f i c i e n t r a r e e a r t h by bombardment o f

9 6

w i t h

~ ~ 3 2 ~

and 3 5 ~ 1 i o n s . Complete f u s i o n n u c l e i should be ' * * ~ d (neutron d e f i c i e n c y = 14) and 13'pm (neutron d e f i c i e n c y = 15). A g a s - f i l l e d mass s e p a r a t o r was used t o ensure a r a p i d s e p a r a t i o n o f t h e r e a c t i o n products from t h e beam and they looked a t t h e p r o t o n delayed emission w i t h a AE.E telescope. From t h e r i g i d i t y value, i t was shown t h a t p r o t o n e m i t t e r s do e x i s t i n t h e r e g i o n o f mass 123. A h a l f - l i f e o f about 1 sec was observed f o r protons having energy o f 0.83 $ 0.05 MeV. Results were o b t a i n e d a l s o i n t h e case o f l 1 2 s n +

3 2 ~ .

A1 though t h e cross s e c t i o n s were small, ( l e s s than 1 microbarn) these r e s u l t s a r e o f a b i g i n t e r e s t s i n c e t h e measurement o f rp/rB+ i s a good way f o r checking mass formula and p r o t o n b i n d i n g energies f a r away from t h e s t a b i 1 i t y l i n e . There w i l l c e r t a i n l y be more experiments i n t h i s f i e l d when h i g h i n t e n s i t y beams o f

3 2 ~ ,

4 0 ~ a and S 8 ~ i w i l l be a v a i l a b l e .

I V . HEAVY NUCLEI I N THE REGION TANTALUM TO URANIUM.

FISSION COMPETITION AN0 LIMITS DUE TO HIGH ANGULAR MOMENTA.

Many new alpha e m i t t e r s have been disco- vered by heavy i o n r e a c t i o n s i n t h i s region. There has been f i r s t a g r e a t deal o f research on t h e alpha systematics. Seaborg and Y i o l a 1532, Seeger 1541, S i i v o l a f55), have p r e d i c t e d energies f o r a1 pha rays o f unknown isotopes and i t has been a good guide f o r t h e i n v e s t i g a t i o n o f new e m i t t e r s . The general trend:

o f alpha emission has been reviewed a t t h e L y s e k i l

Conference "Nuclides f a r o f f t h e S t a b i l i t y L i n e " .

F i g u r e 11 shows t h a t below t h e 126 neutron close

s h e l l , alpha e m i t t e r s were found f o r i r i d i u m , p l a -

tinum, go1 d, mercury, l e a d and bismuth. Branching

r a t i o s f o r

a

t o E.C. decay a r e n o t w e l l known and

t h e r e are s t i l l u n c e r t a i n t i e s on h a l f - l i v e s and

isomers f o r a number o f isotopes. Very n e u t r o n

d e f i c i e n t n u c l i d e s have been i d e n t i f i e d since. F o r

example 17'1r o r

'"AU

are a t 20 neutrons from t h e

s t a b i l i t y number.

(12)

SZTPER-HEAVY NUCLEI

. . .

C5-83

Roughly t e n years ago, a l l t h e n u c l i d e s i n t h e Pb-Th r e g i o n w i t h h a l f l i v e s l o n g e r than one

"<-I minute had been i d e n t i f i e d ( F i g u r e 12). A f a s t e r technique f o r c o l l e c t i n g n u c l e i , t h e helium j e t t r a n s f e r method, and an e x t e n s i v e use o f heavy i o n r e a c t i o n s have open a new f i e l d o f i n v e s t i g a t i o n f o r nucl ides w i t h ha1 f - 1 i ves between a mi 11 isecond and a minute.

F i g u r e

1 1 :

C h a r t o f i s o t o p e s i n t h e r e g i o n Ta-Pb.

New n e u t r o n d e f i c i e n t i s o t o p e s a r e i n under- l i n e d s q u a r e s .

Since an extensive c o m p i l a t i o n was made by Eskola (567 i n 1967, we s h a l l r e s t r i c t o u r s e l f t o t h e more r e c e n t data. New l i g h t isotopes o f I r and

Ta, w i t h h a l f - l i v e s around several minutes were F i g u r e 12 : C h a r t of i s o t o p e s i n t h e r e g i o n found (572 by bombarding r e s p e c t i v e l y holmium and Pb - Pa. ( N e u t r o n d e f i c i e n t p a r t o f t h e

c h a r t ) . gadolinium t a r g e t , w i t h 22Ne and *ONe.

They decay by e l e c t r o n capture i n t o known os,nium and hafnium n u c l e i . Alpha decays o f new osmium i s o - topes (170 t o 174) were detected by Borggreen and Hyde (58) and by Toth and Hahn (59) . Branching

r a t i o s ~ / B + . E c a r e low 0.02% f o r t h e case o f 1740s.

However t h e s l i g h t p r o b a b i l i t y f o r alpha emission i s i m p o r t a n t f o r t e s t i n g t h e r e l i a b i l i t y o f mass p r e d i c - t i o n s . Myers and Swiatecki ' s (60) c a l c u l a t i o n s come c l o s e r from t h e experimental alpha r a y energies than Garveyls (61) e x t r a p o l a t i o n .

There has been some controversy on t h e alpha emission o f l i g h t l e a d and bismuth isotopes around N

=

106-110. I n very r e c e n t experiments (62) we have s t u d i e d t h i s r e g i o n by producing a l r e a d y

very neutron d e f i c i e n t compound n u c l e i 'ZZBi i n t h e r e a c t i o n ( ' i z ~ b + : i ~ r ) and ' i : ~ b i n t h e r e a c t i o n ('2:~d + y : ~ r ) . The e x c i t a t i o n f u n c t i o n s o f (Ar,xn) r e a c t i o n s were compared t o t h e corresponding e x c i -

204-x

t a t i o n f u n c t i o n s o f Po induced on 1 6 4 ~ y by 4 0 ~ r where polonium isotopes are w e l l k n o ~ n . ' ~ ~ ~ o , l g 0 ~ i and '06pb are t h e l i g h t e s t isotopes w i t h h a l f l i v e s

between 5 and 20 seconds and r a t h e r l a r g e alpha branching r a t i o s . Although i t w i l l be r a t h e r d i f - f i c u l t t o go much f u r t h e r i n t h e neutron d e f i c i e n c y , mainly because t h e r a t h e r low f i s s i o n b a r r i e r s , t h e r e i s some i n d i c a t i o n t h a t '06pb and l E 7 p b a r e produced.

Mow than 50 new n u c l i d e s were i d e n t i f i e d by bombar- d i n g t a r g e t elements Pt, Au, Hg, T I , Pb, B i w i t h p r o j e c t i l e s l i k e l l B ,

1 2 C ,

14N, 160, 19F, 20Ne, 22Ne and more r e c e n t l y 40Ar. Nuclides j u s t t o t h e l e f t o f t h e b i g d i s c o n t i n u i t y a t N

=

128 i n decay energies

as d i s p l a y e d on f i g u r e 13 have been discovered, e i t h e r as d i r e c t p r o - ducts o f (H1,xn) w a c - t i o n s o r as daughters o f l i g h t isotopes o f Th and Pa. Most o f t h e work was done a t Berke- l e y by Hyde e t a1 (63) and by Macfarlane e t a1 (641. A t t h e Dubna I n t e r n a t i o n a l Confe-

Neulran numb.,

rence on Heavy I o n Reactions, E. Hyde (65) has made a review paper

F i g u r e 13 : on t h e alpha spectrosco-

S y s t e m a t i c s f o r a l p h a py of isotopes i n t h e d e c a y e n e r g i e s i n t h e

r e g i o n

N =

126. elements francium, tho- r i um, p r o t a c t i n i u m .

The l i g h t e s t iden-

t i f i e d isotopes o f Po

(193), and A t (196)

(13)

have been produced by 185'187Re (20Ne,xn) r e a c t i o n s (661, and isotopes o f emanation w i t h 126 o r fewer neutrons have been prepared 167) from 20,LRn t o 2:zRn.

Many i s o m e r i c s t a t e s have been observed below t h e 126 neutron s h e l l when t h e lowest l y i n g l e v e l s are expected t o be s t a t e s P ~ , ~ , fgI2 and i13/2. Since i s o m e r i c s t a t e s have been given a 13/2+ assignment i n t h e odd mass isotopes o f t h e even elements lead, mercury and p l atinuin, t h e o c c u r r e n c e o f t h e same t y p e o f isomerism was expected i n polonium and radon i s o - topes. Experiments have shown t h a t t h i s i s t r u e f o r A = 195, 197, 199 and 201 i n 8 4 P ~ and f o r A

=

201, 203 i n 86Rn.

Franci um isotopes o f mass number 204- 213 were produced by heavy i o n r e a c t i o n s on t h a l l i u m by G r i f f i o e n e t a1 (68) and a b i t l a t e r t h e same n u c l i d e s p l u s 203Fr were prepared by V a l l i e t a l . Then 22 isotopes a r e known f o r element ,,Fr ; w i t h ha1 f l i v e s ranging between 0.7.10-~s ( 2 1 6 F r ) and 19 min ( n 2 F r ) . The occurrence o f isomerism i n nu- c l i d e s o f odd elements above l e a d c o n t a i n i n g 127 neutrons appears c l e a r l y on t h e s e r i e s 2 k g A ~ , 2L;Fr, 2LgAt and 2k;Bi. I t can be e x p l a i n e d by the h i g h s p i n s o f t h e odd neutron and p r o t o n g9/2 and hg/2 r e s p e c t i v e l y , so t h a t t h e c l o s e - l y i n g l e v e l s o f 0 - and 9- a r e p o s s i b l e .

Improvements i n t h e c o l l e c t i n g method and i n t h e o n - l i n e techniques o f

a

spectroscopy were c a r r i e d o u t by Hyde e t a1 (63,701, l e a d i n g t o t h e discovery o f f i v e new t h o r i u m isotopes w i t h mass numbers ranging from 213 t o 217, f i v e new a c t i n i u m i s o t o p e s (209-213), 7 new r a d i um isotopes (206 t o 214) and 4 new p r o t a c t i n i u m isotopes (222-226). New decay f a m i l i e s d i s p l a y e d on f i g u r e 14 and f i g u r e 15 have been discovered s t a r t i n g w i t h 222Th, 221Th, Z25Pa, 224Pa, 223Pa and 222Pa. Up t o now t h e l i g h - t e s t p r o t a c t i n i u m i s o t o p e (216Pa) has been synthe- s i z e d [ 7 1 ] when bombarding 1890s and 1900s w i t h 31P and 197Au w i t h 24Mg. Although t h e cross s e c t i o n l i e s around 1 microbarn i t i s q u i t e i n t e r e s t i n g t o a t t a i n a neutron number below the 126 neutron s h e l l and s t i l l observe a p r o t a c t i n i u m nucleus w i t h a h a l f l i f e o f 0.2s.

As i t was p o i n t e d o u t by Hyde i n 1971 (&J, n o t many n u c l i d e s remain t o be discovered by

because f o r l i g h t e r n u c l e i , y i e l d s w i l l be bery low owing t o f i s s i o n c o m p e t i t i o n i n t h e d e - e x c i t a t i o n of t h e e x c i t e d compound nucleus, and a l s o owing t o t h e p r o t o n emission c o m p e t i t i o n a t such g r e a t neu- t r o n d e f i c i e n c y . I n o r d e r t o produce a complete f u s i o n nucleus a l r e a d y very neutron d e f i c i e n t , one i s tempted t o bombard l i g h t e r t a r g e t s w i t h heavier p r o j e c t i l e s . We have a l r e a d y seen t h a t ::P on

2 2 0

';:OS

gives a compound nucleus

9,-.

Argon heavy i o n s are b e i n g used a t Orsay ( 6 2 1 f o r p r e p a r i n g compound n u c l e i ';:Bi (::~r + ';:Tb), ';:Pb ( 4 0 A r

+ 1 5 5 ~ d ) and ";~r ( " O A ~ + 'EZTm). I n p r i n c i p l e , even more neutron d e f i c i e n t compound systems are p o s s i b l e w i t h h e a v i e r p r o j e c t i l e s l i k e 5 8 ~ i , "zn, 7 0 ~ e , 7 6 ~ e o r 8 2 ~ r .

-

s h o r t 1 1 4 p s

.. -

-/--

. .- . .. . .

/

F i g u r e 14

:

New decay c h a i n f o r l i g h t t h o r i u m n u c l e i . ( A f t e r Hyde (70)).

F i g u r e 15 : New d e c a y c h a i n f o r l i g h t p r o t a c t i n i u m n u c l e i

a p p l i c a t i o n o f c u r r e n t techniques i n t h e r e g i o n Pb-U,

(14)

SUPER-HEAVY NUCLEI

. .. C5-85

However, i t w i l l be necessary t o devote some t i m e t o study t h e n a t u r e of t h e r e a c t i o n s indu- ced by such complex n u c l e a r p r o j e c t i l e s b e f o r e t o p r e d i c t w i t h confidence what f r a c t i o n o f t h e t o t a l r e a c t i o n w i l l go by compound nucleus type. For t h e moment one might speculate on t h r e e unresolved p r o - blems which occur when heavy p r o j e c t i l e s b r i n g l a r g e o r b i t a l angular momenta and e x c i t a t i o n energy i n t o heavy t a r g e t n u c l e i which are unstable a g a i n s t de- formation. i) which f r a c t i o n o f t h e t o t a l cross s e c t i o n w i l l go by a compound nucleus process ; ii) which f r a c t i o n o f t h e d e - e x c i t a t i o n channels w i l l go by f i s s i o n ; i i i ) which f r a c t i o n o f t h e non f i s s i o n i n g e x c i t e d nucleus w i l l go by neutron and gamma de-exci t a t i o n .

L i m i t a t i o n o f UCN due t o h i g h angular momentum e f f e c t s .

The f a c t t h a t compound-nucleus formation cannot t a k e p l a c e f o r h i g h p a r t i a l waves seems t o be r a t h e r we1 1 e s t a b l i s h e d b o t h by experimental r e s u l t s and t h e o r e t i c a l treatments. Measurements o f cross s e c t i o n s we1 1 below t h e t o t a l r e a c t i o n cross sec- t i o n s f o r complete f u s i o n o f heavy i o n p r o j e c t i l e s w i t h v a r i o u s t a r g e t n u c l e i ( l i g h t medium and heavy)

have been i n t e r p r e t e d i n terms o f a l i m i t i n g angular momentum above which complete f u s i o n may n o t occur.

B r i e f l y t h i s i s demonstrated by t h e f o l l o w i n g expe- r i m e n t a l observations ; i ) aCF/oR f o r a given t a r g e t and p r o j e c t i l e s goes through a maximum when t h e bom- b a r d i n g energy i s increased, i .e. when t h e o r b i t a l momentum increases; i i ) oCF/oR decreases when t h e p r o j e c t i l e becomes h e a v i e r ; iii) a corresponding i n c r e a s e o f t h e cross s e c t i o n s f o r d i r e c t r e a c t i o n s a t h i g h e r energies has been measured by several authors [21,22] . Also r e a c t i o n s a r e more and more complicated s i n c e a t h i g h e r energies a l a r g e r over- l a p between t a r g e t and p r o j e c t i l e w i l l be p o s s i b l e and i n t e r a c t i o n w i l l become s t r o n g e r .

T r y i n g t o f o r m u l a t e t h i s concept where compound nucleus formation i s i n c r e a s i n g l y hindered because o f t h e l a r g e angular momntum, t h e s i m p l e s t approach i s t h e sharp c u t o f f model proposed by M i l l e r e t a1 [49]and developed by N a t o w i t z [50).

The r e a c t i o n cross s e c t i o n can be given by

aR

is c a l cu'iated w i t h an o p t i c a l model program o r w i t h t h e sharp c u t o f f approximation f o r TR :

where B i s t h e Coulomb b a r r i e r and ? t h e k i n e t i c energy o f t h e p r o j e c t i l e i n t h e c e n t e r o f mass system :

c

oCI( =

T @

( Z a t l ) w i t h z C = minimum (rcr,amax) a =O

and

R,$

= maximum angular momentum f o r f o r m a t i o n o f t h e compound nucleus.

F o r a , , amax oCN = oR.

YR (amaX+l)i

Then =

CM (acr+1)2

The measurement o f c r ~ / o c ~ p e r m i t s a s t r a i g h t f o r w a r d d e t e r m i n a t i o n o f a , , , s i n c e amax = k.R -

k)l

=

G) and R

=

r 0 ( ~ ; j 3

i- <'3)

On t h e t h e o r e t i c a l side, K a l i n k i n C72b

has p r e d i c t e d t h a t t h e r a t i o ocf/oR should decrease

from n e a r l y u n i t y near t h e Coulomb b a r r i e r t o a

f r a c t i o n a t bombarding energies several times t h e

b a r r i e r energy. He has used a model f o r t h e f u s i o n

r e a c t i o n i n v o l v i n g a r b i t r a r y shapes f o r t h e f u s i n g

system, Another approach has been made by Swiatecki

e t a1 (73) , assuming t h a t t h e l i m i t i s determined

when t h e f u s i o n p r o d u c t has n o t any more h i g h s p i n

s t a t e s a v a i l a b l e , o r when t h e f i s s i o n b a r r i e r disap-

pears a t h i g h angular momentum. F. P f a s i l (743, a t

t h i s conference has emphasized t h i s aspect and

s t u d i e d t h e r o t a t i n g l i q u i d drop model. He has c a l -

c u l a t e d t h e minimum o f energy o f a r o t a t i n g drop a t

equi 1 -i b r i um deformation a t angular momentum J , t h e

f i s s i o n b a r r i e r o f t h e drop Bf(J) and t h e correspon-

d i n g saddle p o i n t energy ESP. F o r a given compound

nucleus w i t h angular momentum J, B f ( J ) equals zero

f o r a value o f J, Jcrit,which depends m a i n l y o f t h e

f i s s i l i t y parameter x. Then t h e h i g h e s t Jcrit are

found f o r m d i u m n u c l e i where x l i e s between 0.4

and 0.6. P f a s i l has deduced oCF/oR f o r a number o f

10.5 MeV p e r nucleon i o n s as a f u n c t i o n o f r e s u l -

t i n g compound nucleus mass. For ACN = 300

OCF/UR

i s

p r a c t l c a l l y equal t o z e r o f o r a1 1 p r o j e c t i l e s .

Références

Documents relatifs

a) High energy proton interactions with uranium, lead and gold targets; ratio of ternary events to binary events. b) Fragment mass distribution for coplanar

The outcome for the second decay chain given in table 4 is quite different and shows weak posi- tive correlations between the experimental masses, thus, establishing the limited

One ring is located around the origin of the reference frame (red points in Fig. 4) and corresponds to the α-emission from a Mg fragment; The second ring (blue points) is associated

To enlarge the statistics of long fission events, one should have a very large fission barrier at the beginning of the chain to compensate the damping, and have a fission barrier

4 The magnetic analysis of ions provided by the LISE beam lire at GANIL (taken from ref2 ) ... incident energy does not reach 100 MeV per nucleon' 9 ). Yet already with 45 Mef

Sev- eral theoretical approaches can be employed to investi- gate cluster emission: among them the preformed cluster model (PCM) [3, 5, 6], in which the cluster is assumed to

Similarities concern: the division of charge among particles and frag- ments, the particle multiplicities (both normalized to the source size), the average charge of the

The Giant Pairing Vibration, a two-nucleon collective mode originating from the second shell above the Fermi surface, has long been predicted and expected to be strongly populated