• Aucun résultat trouvé

Improved Deschampsia cespitosa growth by nitrogen fertilization jeopardizes Quercus petraea regeneration through intensification of competition

N/A
N/A
Protected

Academic year: 2021

Partager "Improved Deschampsia cespitosa growth by nitrogen fertilization jeopardizes Quercus petraea regeneration through intensification of competition"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01893947

https://hal.archives-ouvertes.fr/hal-01893947

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

fertilization jeopardizes Quercus petraea regeneration

through intensification of competition

Antoine Vernay, Philippe Malagoli, Marine Fernandez, Thomas Perot, Thierry

Ameglio, Philippe Balandier

To cite this version:

Antoine Vernay, Philippe Malagoli, Marine Fernandez, Thomas Perot, Thierry Ameglio, et al..

Im-proved Deschampsia cespitosa growth by nitrogen fertilization jeopardizes Quercus petraea

regenera-tion through intensificaregenera-tion of competiregenera-tion. Basic and Applied Ecology, Elsevier, 2018, 31, pp.21-32.

�10.1016/j.baae.2018.06.002�. �hal-01893947�

(2)

Please note that changes made in the online proofing system will

be added to the article before publication but are not reflected in

this PDF.

(3)

BasicandAppliedEcologyxxx(2017)xxx–xxx

Improved

Deschampsia

cespitosa

growth

by

nitrogen

fertilization

jeopardizes

Quercus

petraea

regeneration

through

intensification

of

competition

Antoine

Vernay

a

,

Philippe

Malagoli

a,

,

Marine

Fernandez

a

,

Thomas

Perot

b

,

Q1

Thierry

Améglio

a

,

Philippe

Balandier

b

aUniversitéClermontAuvergne,INRA,PIAF,63000Clermont-Ferrand,France

bIrstea,ResearchUnitonForestEcosystems(EFNO),DomainedesBarres,45290Nogent-sur-Vernisson,France

Received10October2017;accepted17June2018

Abstract

Plant–plantinteractionsshowdifferentialresponsestodifferentcombinationsofavailableresources thathasbeen under-explored.

Theshort-termfunctionalresponseofQuercuspetraeaseedlingsandDeschampsiacespitosatuftsgrownaloneorinmixture wasmonitoredincontrastingcombinationsofsoilinorganicnitrogen×lightavailabilitiesinagreenhouseexperiment.Growth, biomassallocation,functionaltraitsandresourceacquisitionwerequantified.Intensityandimportanceofinteractionswere calculatedbyorganbiomass-basedindices.

CompetitionexertedbyD.cespitosaonoakwasprimarilydrivenbylightavailabilityandsecondly,for eachlight level, bynitrogensupply,leadingtoastronghierarchyofresourcecombinationsforeachconsideredplantorgan.Underhighlight,

oakpreferentially allocatedbiomass to the roots, underliningthe indirectrole of light on the belowground compartment.

Unexpectedly,Deschampsiacespitosagrewbetterinthepresenceofoakseedlingsunderhighnitrogensupplywhateverthe

lightavailability.

Oakshort-term nitrogen storage instead of investment ingrowth might bea long-term strategyto survive D.cespitosa

competition. Why Deschampsia hada higher biomass inthe presence of oak under nitrogenfertilization is an intriguing

question.Theroleofrootexudatesorchangeinbalancebetweenintra-vsinterspecificinteractionsmayholdtheanswer.There maybeanactivemechanismofcompetitionratherthanonlycompetitiveresourceexploitation.

Forestmanagers sometimes practice addingnitrogen fertilizer toimprove oak seedlinggrowth inplantationsor natural

regeneration.Here,the higherbiomass inmixture tothe benefitofthe competitorclearlyquestions thispractice:oakmay provideextranitrogentocompetitorsduringtheearlyperiodofplant–plantinteractionoritmayinfluencethebalancebetween intra-vsinterspecificinteractions.Theidentificationandquantificationofactivecompetitionmayresultinnewpracticesfora broaddiversityofplant–plantinteractionssuchastreeregeneration,intercropmanagementandweedcontrolinagriculture. ©2018PublishedbyElsevierGmbHonbehalfofGesellschaftf¨ur ¨Okologie.

Keywords: Competition;Functionaltraits;Light;Plantinteractions;Regeneration;Soilinorganicnitrogen;Intra/interspecificinteractions

Correspondingauthor.

E-mailaddress:philippe.malagoli@uca.fr(P.Malagoli).

https://doi.org/10.1016/j.baae.2018.06.002

1439-1791/©2018PublishedbyElsevierGmbHonbehalfofGesellschaftf¨ur ¨Okologie. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

(4)

Introduction

Plantabilitytocompeteforresourceshaslongbeen

stud-ied over a wide range of species, but no unifying theory

has yet emerged to explain all plant responses to biotic

interactionsindifferentabioticcontexts.Grime(1974)first

proposedathree-determinanttriangle—competition,stress,

disturbance—to classifyplant species on a site according

to their behavior to cope with resource availability and

stress/disturbances in a given environment. Based on his

ownobservations, Grimeconcluded thatcompetition grew

strongerwithhighersoilfertility(Grime1974).In another

approach,Tilman(1987)focusedontheprocessesinvolved

incompetitionandsuggestedthatcompetitionwasstrongest forsoilresourcesinanunfertileenvironmentandstrongest for light inafertile environment.However,neither theory satisfactorilyaccountsforeveryobservedplantresponseto thecombinedeffectsofcompetitionandfluctuatingresource availability(Craine2005).Nevertheless, morerecent stud-ieshavemanagedtoreconcilethesetheories,asbothwould predict survival of thespecies withthe lowestR*, i.e.the lowestresource level allowing the plantto survive, tothe detrimentofspecieswithhigherR*.Thedifferencebetween thetwotheoriesresidesintheintensity ofthedisturbances studied,i.e.arelativelylowdisturbanceintensityforTilman andhigherintensityforGrime(Grime2007;Jabot&Pottier 2012).Plantgrowthandfunctionalresponsesremainunclear inseveralcasesofresourcelimitations.PugnaireandLuque (2001),using an environmental gradient,showed stronger

competition in the most fertile environment, as predicted

by Grime, but they also found that belowground organs

underwentstrongercompetition inthemoststressful envi-ronmentthaninthemostfertileone,thusendorsingTilman’s

theory (Pugnaire & Luque 2001). They demonstrated a

dynamicbalancebetweenfacilitationandcompetitionalong the environmental gradient. This is relevant to the facili-tation process (broadlydefined as at least positive impact

of plant A on plant B) which is positively correlated to

stressintensity(Bertness&Callaway1994)untilfacilitation collapsesunderthehigheststressoruntilcompetition inten-sityovertakesfacilitationintensity(Verwijmeren,Rietkerk, Wassen, & Smit 2013). However, conclusions strongly

depend on experimental design and/or environmental

contexts.

Q2

Interactionscanbecharacterizedbytwovariables:

impor-tance and intensity (Welden & Slauson 1986; Corcket,

Liancourt,Callaway,&Michalet2003).Intensityisdefined

as the absolute effect of plant A on plant B, commonly

measuredbycomparingaperformanceindexsuchas plant

biomasswithorwithoutaneighbor.Importance isdefined

as therelative negativeimpactof competition onplant fit-nesstraitscomparedwithenvironmentalconstraints(Welden & Slauson 1986; Brooker et al. 2005). This concept of importancewasintroducedtoassessthecontributionofthe interactioneffectrelativetotheenvironmenteffectin

reduc-ing the performance of a given plant. How intensity and

importancevaryamongdifferentmulti-resourceavailabilities isstilllargelyunknown(Pugnaire&Luque2001;Liancourt, Corcket,&Michalet2005;Pugnaire,Zhang,Li,&Luo2015).

When several species are competing for the same

resources,plantscanalsoacclimateinresponsetonew

envi-ronmental conditions with fewer resources (Violle et al.

2007). According to a plant’s phenotypic plasticity, plant

traits can be adjusted to optimize the growth of organs

involvedinresourcecapturesoastobettercopewith com-petitive neighbors, and with greater efficiency (Casper & Jackson1997).Thispatternisconsistentwithforaging the-ory,whichstatesthatwhenaresourceisrare,captureorgans

can acclimate to become more efficient and favor higher

growth.Incontrast,intheconservativestrategy,nutrientsand carbohydrates arepreferentiallystoredinperennial organs for laterre-useinamorefavorableenvironmentalcontext, reducingriskofsurvivalfailure(Valladares,Martinez-Ferri, Balaguer,Perez-Corona,&Manrique2000;Yan,Wang,& Huang2006).

Mostearlierstudiesonplant–plantinteractionshaveonly consideredoneresource.Veryfewstudieshaveaccountedfor crossedavailabilitiesinaerialandsoilresources,including soilinorganic nitrogen(Nsoil)(Davisetal.1999; Siemann &Rogers 2003),andmost ofthem weredesigned

incom-pletely for all of the factors combinations or with only

partial control of factors studied. Here, we studied how

light andnitrogen availabilityand their interactions could

influence plant responses to biotic interactions in terms

of growth and functional traits. These two factors would

enable to separate aboveground competition from

below-groundcompetitionintermsofimportanceandintensityof

interaction.

Our experimentaimedtomeasureearly plantresponses

of sessileoak(Quercus petraea)seedlingsand

Deschamp-siacespitosainamixture,intermsofgrowthandresource acquisitioninfournitrogen×lightcombinations.Thesetwo

species arewidespreadandcommonlyoccur ininteraction

throughout temperateEuropean forests (Davy 1980).

Cur-rent silviculturalpractices thataim toreducestandingtree density (Puettmann et al. 2015) will increase light in the understory,thusfavoringcolonizationbytheherbaceousD. cespitosa. Weexpectedtofind amitigatedcompetition by grassesinashadedenvironmentassociatedwithlowergrass performanceintermsofgrowthandfunctioning.Weexpected

oak seedlingstoshow higher investmentto the root

com-partmentinunfertilizedplaces(higherrootbiomass,specific rootlength(SRL),allocationofresourcestotherootsystem)

andhigherinvestmentforaboveground organsinashaded

environment (highergrowth rate,preferentialallocation of

resources to leaves). We expected to find that the

under-ground foragingbehavior ofoakwouldcounteractthe fast

D.cespitosagrowth.Theexperimentalsetupwasdesigned (i)todeterminehowgrowthofoak/D.cespitosawasaffected

bythecombinationofabioticenvironmentsonashort-term

scale andhow functional traitsallow bothplants to

accli-mate or respond toresource combinationsof resources in

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

(5)

A.Vernayetal./BasicandAppliedEcologyxxx(2017)xxx–xxx 3

Fig.1. Experimentaldesignofallcrossedtreatmentcombinations.Dc=D.cespitosa,Qp=Quercuspetraea,N=nitrogen,n=numberof replicates(seetextfordetails).

termsofresourceacquisitionstrategy,and(ii)todetermine theimportanceandintensityofinteractions(positiveor neg-ative), and (iii) to elucidate the plant response strategies employedtodealwiththeseinteractionsinallthetreatment combinations.

Materials

and

methods

Experimental

setup

The experiment was conducted in a greenhouse at

the INRA UMR PIAF research unit in Clermont-Ferrand

(Auvergne, France, 45◦45N 3◦07E, altitude 394m a.s.l)

frommid-December2014toJune2015.Atotalof120

one-year-oldbare-rootoakseedlings[Q.petraea(Matt.)Leibl.; 149±20gfreshweightonaveragepertree]sourcedfroma localtreenurserywereplantedonDecember15,2014in 20-Lpotsfilledwithalocalsandy-claysoil(clay20.3%,loam

22.8%, sand56.9%; pH6.15, totalNcontent 1.45gkg−1,

totalCcontent14.6gkg−1)beforebudbreak.D.cespitosa

(L.)tufts(abovegroundparts+roots)werecarefullycollected undernaturalforestconditionsatParay-le-Frésil(Auvergne, France;46◦39N3◦36E)andthentransplantedintothepots

onDecember16,2014.Oakseedlingsweregrown(i)

with-outD.cespitosa[solespecies;40pots(oneseedlingperpot)] or(ii)withthreesurroundingtufts[mixedspecies;80pots,

0.97±0.02gperfreshtuftmatterofD.cespitosa],andthe lasttreatmentwas(iii)D.cespitosa(3tuftsperpot)without oakseedlings(40pots).Mixturedensitywassettobeasclose aspossibletospeciesabundanceinrealfieldconditions,in termsofrelativeabundance.Halfofthepotswereexposedto

59%ofthephotonfluxdensity(PFD)inthephotosynthetic

activeradiationrange(PAR)reachingthetopofthe green-house(i.e.resultingfromgreenhousestructureinterception), andmimickinganappreciableforestgapunderinsitu condi-tions,treatmentL59.Theotherhalfwassetundernetshelters

(Hormasem®,50%extinction),exposingpotsto27%ofthe

PFDmeasuredabovethegreenhousei.e.closeto%PFD

val-uesfrequentlyrecordedunderanopennatural oakcanopy,

treatmentL27 (Fig.1).Ournetsheltersgavesunprotection

withnoinfluenceonthered-to-far-redratioofthePFD,so light quality wasthe same outside andunder netshelters. Finally,forthetwoirradiances,halfthepotsweresupplied witheitheraddedNH4NO3solutioncorrespondingtoa

fer-tilizationrate of89kgha−1year−1(924mgofinorganicN Q3

perpotor0.42gkg−1,treatmentN89)ornoNH4NO3

addi-tion,treatment N0.ForN89,fertilizationwasappliedthree

timesatanaveragerateof26kgNha−1year−1(0.14gkg−1) inMarch,AprilandMay,evenlyspreadwithabottleonthe potsurface.N0correspondedtonativeNsoil (Fig.1).Light

treatment was constantover thegrowth period(December

2014–June2015)whereasfertilizationwasappliedinthree

pulses. Because no statistical effect of single fertilization

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

(6)

pulseswasrecordedonthegrowthcurves(datanotshown), thedatacollected attheendof theexperimentwere inter-pretedfromanintegratedresponseoveralltheperiod.Mean

temperatureovertheexperimentwas21±4◦C(±SD;min.

14◦C,max.30◦C).Meanairhumidityovertheexperiment

was 63±8% (±SD; min.42%, max. 82%). Any

undesir-ablespeciesappearing inpots weremanuallyweededout.

Fortypallets(consideredhereassubplots)gatheredsixpots fortechnicalconvenience,with15subplotsshaded.Allother

treatments (N andbiotic interactions) were randomly

dis-tributed among subplots, in equal numbers in each light

treatment.

Growth

measurement

Height of oak seedlings, highest D. cespitosa leaf, and

diameteratthe stembaseof oakseedlingsweremeasured

every10days throughout the experiment.Relative growth

rate(RGR)wascalculatedfordiameterandheightwiththe formula: Q4 RGR=ln  xt2  −lnxt1  t2−t1 (1) wherexisplantheightordiameter,t2isdateofharvest,and

t1isdateofplanting.

15

N

labeling

15NO

315NH4(20mgof15Ndissolvedin500mLofwater)

wasevenlysuppliedatthesurfaceof eachpotonJune05,

2015toassesshowNuptakeduringthevegetativeseasonwas distributedbetweenandwithineachspecies.TotalNcontent and15Nisotopicabundanceweredeterminedbyisotope-ratio

massspectrometryatthePTEFOC081(Nancy)functional

ecologyplatform.Labelingmethodsandassociated calcula-tionsare detailed inVernay, Balandier,Guinard,Améglio, andMalagoli(2016).

Plant

harvesting

Plants were harvested on June 22, 2015. Aboveground

partsandrootswerecollectedinbothspecies.Foroak, above-groundpartswereseparatedintowoodypartsandleavesand driedat60◦Cforatleast48hbeforedryweight determina-tion,androotswereseparatedintofine(diameter<2mm)and coarse(includingtaproot,diameter>2mm).ForD.cespitosa,

nodiameterdistinctionwasmade(diameteralways<2mm).

Soilandstones leftaround the rootwerethenwashedout

withtapwater.Asub-sampleofroots(oneperspecies)for eachharvestedpotwascollected,wrappedinmoistpaper,and storedat−20◦Cformorphologicalanalysis.Theremaining partwas driedat60◦Cforatleast 48hbefore dryweight determination.

Root

trait

measurements

Frozensub-samplesoffinerootswerethawedandscanned

(Epson scanner, professional mode, 16 bits, dpi 600,

pic-tures inTIF format). D.cespitosa roots were pre-colored

with methylene blue to improve contrasts. Pictures were

thenanalyzedwithWinRHIZO® software(V2005a,Regent

Instruments, Canada) to measure root length, surface and

diameter. Specific root length (SRL) was expressed in

cmg−1.

Intensity

and

importance

of

competition:

calculation

of

indices

Intensity and importance of competition were assessed

for bothspeciesusing twoindices,i.e.Iint andIimp,where

I for index refersto the neighborhoodeffect(Díaz-Sierra, Verwijmeren,Rietkerk,deDios,&Baudena2016).Wechose theseindicesastheyarestandardizedandsymmetrical,with finitelimits,andthusallowunbiasedcomparisons. Calcula-tionsweredoneasfollows:

Iint=2× P P−N+|P| (2) Iimp=2× P 2MP−NP−N+|P| (3)

where P−N isplant performancewithout neighbor, P is

the difference between plant performance with and

with-out neighbor, and MP−N is maximum plant performance

among all treatment combinations(MP−N was reached in

L59/N89 for abovegroundorgansandinL59/N0for

below-groundorgans).Indiceswerecalculatedforeachorganwith drybiomassastheperformancevariable.ValuesofIintand

Iimp rangebetween−1 and+2andbetween−1and+2/3,

respectively.Anegativeorpositivevaluemeansacompetitive orafacilitativeinteraction,respectively.

Statistics

Toanalyzetheeffectsoflightintensity,nitrogen

availabil-ity and biotic interactionson plant growth,we performed

analysesof variance withlinear mixedeffects models.All

analyzeddatawerebasedonthevariablesmeasuredat

har-vestattheendofthisexperiment,i.e.inJune2015,andthus quantifiedintegratedplantresponsesfromDecember2014to

June2015.

Allfactorsandfactor–factorinteractionswereincludedin

the model simultaneously. Full modelswere simplifiedby

removinginsignificanthigher-orderinteractions.Toaccount forthespatialstructureofourexperimentaldesign,we

intro-ducedasubplotrandomeffectinthemodels.Finalmodels

werefittedusingtherestrictedmaximumlikelihoodmethod

(REML) to betterestimate variance components(Pinheiro

& Bates2000).The lme functionof the nlme package(R

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

(7)

A.Vernayetal./BasicandAppliedEcologyxxx(2017)xxx–xxx 5

Table1. Modelofnitrogen,lightandbioticinteractionforabovegroundbiomassforoakseedlings(leavesandstem)andD.cepsitosa(shoots). Onlyresultsfromsignificanttermsareshown.Df=degreeoffreedom(Num=numeratorandDen=denominator),N=numberofreplicates, N=nitrogen,L=light,BI=bioticinteraction,DW=dryweight,SRL=specificrootlength.

Oakseedlings D.cespitosa

N NumDf DenDf F-values p-Values N NumDf DenDf F-values p-Value

Light 119 1 36 15.3 <0.001 119 1 38 64.5 <0.001

Nitrogen 119 1 75 9.9 0.002 119 1 74 145.9 <0.001

Bioticinteraction 119 1 75 104.2 <0.001

L×BI 119 1 75 21.9 <0.001

N×BI 119 1 75 11.5 0.001

Fig.2. Abovegrounddryweightinsole-grownandmixed-grownoakandD.cespitosaunderacrossedcombinationoftwolevelsoflight (L59andL27)andNsoilavailability(N89andN0;seeMaterialsandmethodsforfurtherdetails).Valuesarereportedasmeans±SE(n=10for

sole-grown(SSp),n=20formixed-grownplants(MSp),degreeoffreedom=50).Forstatisticalrelevance,datawerelog10-transformed,but

forreadability,untransformedvaluesaregiveninthefigure.Differentlettersresultfrommultiplepairwisecomparisons(Tukey’sHSDtest) betweeneachtreatmentcombinationatp<0.05.

software) was used to fit the linear mixed effect models

(Pinheiro,Bates,DebRoy,&Sarkar2016).Theconditional

F-test given by the anova function of the nlme package

was used to assess the significance of the different terms ofthemodels.Todeterminewhichtreatmentsdifferedfrom

each other, we conducted multiple pairwise comparisons

(Tukey’sHSDtest)usingthelsmeanspackage(Lenth2016).

Becausethree-way interactionswere neversignificant, we

didnotpresentthem inourdata.Comparisonof 15N

allo-cation (%) between sole-grown species and mixed-grown

species was assessed witha Student’s t-testin each plant compartment.

RGR was measured via regular growth measurements

enabling pot to also be included as a random factor for

thesevariables.Preliminaryanalysisshowednoeffectof spa-tialpositionofeachpotinthegreenhouse.Somevariables weretransformedbyalog10functiontomeetnormalityand

homoscedasticityrequirements.

AllanalyseswereconductedwiththeRsoftwareversion

3.3.2(RCoreTeam2016).

Results

Plant

responses

to

biotic

interactions

under

different

resource

combinations

Only N×biotic interactions and L×biotic interactions

had significant effects on aboveground oak seedling dry

weight(leafdryweightandstemdryweight,Table1).Our

data showed disordinal interactions (Doove, Van Buuren,

& Dusseldorp 2014), making simple factor interpretation

irrelevant between sole and mixed grown oaks.

Without-neighbor data clearly showed a higher aboveground oak

biomass when light and/or nitrogen werehighly available

(Fig.2).L59/N89producedsignificantlyhigheraboveground

biomass than other treatment combinations. These

posi-tive effects were cancelled in mixed cultures, producing

significant interactions between L×biotic interaction and N×biotic interaction (Fig. 2, Table 1). This pattern was

observedformostoftheoakvariablesstudied(AppendixA

inSupplementarymaterial)exceptforwholeplantbiomass

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

(8)

Fig.3. Relationshipbetweenimportance(Iimp)andintensity(Iint)ofinteractionbetweenD.cespitosaandoak.Indices,basedonoakbiomass,

werecalculatedforallcrossedlight×Nsoilavailabilitycombinationsbasedondryweightinfineroots(black-filled),coarseroots(white-filled),

stem(light-grey-filled)andleaves(dark-grey-filled).Valuesarereportedasmeans(n=10formonoculture,n=20inmixtures).Regression equationsandcoefficientsforeachcompartmentarelistedinthefigure.

whichwasonlydependentonbioticinteractionsandwasnot significantlysensitivetofactorinteractions(AppendixAin Supplementarymaterial).Shoot/root,finerootarea,leafdry weightandtotalabovegrounddryweightwereallaffectedby L×bioticinteractionandN×bioticinteraction(AppendixA inSupplementarymaterial),withlowervaluesinMSp

treat-mentsthaninSSpandnovisibleeffectofLandNinMSp

(datanotshown).However,rootlengthandstemdryweight

were onlysensitive toL×biotic interaction (Appendix A

inSupplementarymaterial)whereasrootdiameterwasonly

neagtivelyaffectedbyN×bioticinteraction(AppendixAin

Supplementarymaterial).

Dryweightsoffineandcoarserootsinoakwerenot statis-ticallydifferentamongalltreatmentcombinationsandwere onlydependentonthe simpleeffectsof lightand/orbiotic

interaction(AppendixBinSupplementarymaterial).

In contrast, aboveground biomass in mixed-grown D.

cespitosa was unchanged compared with sole-grown D. cespitosa, exceptforL59/N89 whereaboveground biomass

wasgreaterinthemixture(Fig.2B).Abovegroundbiomass

(mainlycomposedofleaves)wasonlyaffectedbylightand

nitrogenavailability,increasingaerialbiomass,withnoeffect ofinteractingfactors(Table1).Onlytotalplantdryweight wassensitivetofactorinteractionswiththesignificanteffect

of N×LandN×bioticinteractions(AppendixAin

Sup-plementarymaterial).Apositiveeffectoflightwasobserved

onrootlength,rootdiameter,rootarea,finerootdryweight, andbioticinteractionsinfluencedtheSRLtraitinD.

cespi-tosa (AppendixesAandC inSupplementary material).In

conclusion,D.cespitosaperformancewasmainlydependent

on simpleeffectsof each factor(exceptfortotalplantdry

weight, AppendixAinSupplementarymaterial)withlittle

effect of bioticinteraction whereas oakseedlingsstrongly sufferedfrombioticinteractioncancellingallpositiveeffects ofhigherLandNavailability.

Intensity

(I

int

)

and

importance

(I

imp

)

of

interaction

with

neighbor

species

Considering the effectof D.cespitosaonoakseedlings

(Fig. 3), for every light×Nsoil combination, Iint and Iimp

valueswerenegativeforalloakorgans,indicatingthat the

interaction was always competitive.Iimp was highest (low

competition)forL27×N0andlowest(highcompetition)for

L59×N89 (Fig. 3).Moreover, for agiven N supply,both

indices showed lower negative values inL59 thanin L27.

WithineachLtreatment,indexvaluesweremorenegativein N89 thaninN0(Fig.3).Thispatternwasobservedforeach

organ,pointingtoacommonimpactofD.cespitosaonthe

wholeoakplant.Consideringeachoakorgan,respectively,in

abovegroundandbelowgroundcompartments(MP−Nvalue

wasnotthesameaccordingtoaerialorbelowgroundorgans,

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

(9)

A.Vernayetal./BasicandAppliedEcologyxxx(2017)xxx–xxx 7

Fig.4. Relationshipbetweenimportance(Iimp)andintensity(Iint)ofinteractionbetweenoakandD.cespitosa.Indices,basedonD.

cespi-tosabiomass,werecalculatedforallcrossedlight×Nsoilavailabilitycombinationsbasedondryweightinaboveground(white-filled)and

belowground(black-filled)compartments.Valuesarereportedasmeans(n=10formonoculture,n=19inmixtures).Regressionequations andcoefficientsforeachcompartmentarelistedinthefigure.

hinderingcomparison),leavesandfinerootshadmore nega-tivevaluesforbothindicesthan,inorder,stemandcoarseroot (exceptforL27×N89,whereindiceswerelowerinstemthan

inleaves).Theseresultsshowthatcompetitionwasstronger in capture organs(i.e. leaves and fine roots) than storage organs(i.e.stemandcoarseroots).

Thepositiveeffectof oakonD.cespitosa,inL59×N89

treatment, suggest two types of interaction: antagonistic

facilitationunderN89 (positiveindicesforD.cespitosabut

negativeindices for oak seedlings)andcompetition under

N0(negativeindices,Fig.4).Theamplitudeoftheeffectwas

muchgreaterforbelowgroundorgans(verypositiveinN89

andvery negativeinN0)thanaerialorgans(closetozero,

meaninganeutralinteraction,Fig.4).

Nitrate

and

ammonium

amounts

in

soil

at

harvest

At the beginningof the experiment, amounts of nitrate

and ammonium measured in pots were 0.032gkg−1 and

0.0013gkg−1,respectively.After6monthsofgrowth,there

weremuch largeramounts of soilnitrate leftinpots with

sole-grownoakthaninpotswitheithersole-grownD. cespi-tosatuftsorthemixture(Fig.5).Amountsofsoilammonium showednostatisticaldifferenceaccordingtomixturedesign orlight×Nsoilcombination(Fig.5).

Intra-

and

inter-specific

allocation

of

soil

inorganic

15

N

Of20mgof15Nappliedperpot7mg±0.32mg(n=238)

was taken upby themixture of which98% was allocated

toD.cespitosa.Insole-grownoakseedlings,15Nwas pref-erentially allocated to leaves (Fig. 6). In contrast, when mixed-grownwithD.cespitosa, the15Nallocationpattern

changed: 15N allocationto oakleaves was loweredto the

benefit of coarse and fine roots (Fig. 6), with no change

in the stem, which was not simply due to differences in

biomass growth (AppendixB inSupplementary material).

Insole-grownandmixed-grownD.cespitosatufts,15Nwas

mainlyallocatedtoabovegroundparts(Fig.6).This

differ-ence was notdue tobiomassdifference. Allocationto the

abovegroundpartswashigherinthemixture,attheexpense

ofbelowgroundparts.

Discussion

Do

light

×

soil

inorganic

N

modulate

plant

interactions?

Overall, increased availability in at least one of the

two combined resources (L and/or Nsoil) led toa reduced

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

(10)

Fig.5. Soilnitrate(NO3−)andammonium(NH4+)contents(gkg−1)atharvestinsole-grownoak (whitebars)and D.cespitosa(black

bars)orinmixtures(greybars)underallcrossedlight×Nsoilcombinations.Valuesarereportedasmeans±SE(n=3formonoculture,n=6

formixtures, degreesoffreedom=27).Differentletterscorrespondtostatisticallysignificantdifferencesbetweensole-grownplantsand mixed-grownplantsatp<0.05,aftermultiplepairwisecomparisons(Tukey’sHSDtest).

Fig.6. Relativeallocationof15Namongleaves,stems,coarseroots(CR)andfineroots(FR)in oakseedlingsandD.cespitosaamong

aboveground(AG)andbelowground(BG)plantpartsinD.cespitosawhensole-grown(SSp)ormixed-grown(MSp).Valuesarereportedas means±SE.·,*,**,***correspondtop<0.1,0.05,0.01and0.001,respectively,afterStudent’st-testforeachorgan;degreesoffreedom=27.

abovegroundbiomass inmixed-grown oakseedlingswhen

comparedtothelowlevelsoftheresourcesstudied.

Deciphering combined effects of light and soil N on

mixed-grownoakseedlingsisnotstraightforward.Actually, neighbor-effect indices demonstratedaprevalence of light impact.First, thesizedifference (infavorof thetalleroak seedlings)makesdirectcompetitionforlightunlikelyunder ourstudyset-up.Second,foragivenamountoflight,adding theNsoilresourceincreasedboththeintensityandimportance

ofcompetitiononoak.Thiswouldsuggestthatgreaterlight

availabilitymayleadtohighercarbongainbyD.cespitosa

(Vernayetal.2016).Thisextraamountofcarbonwould

indi-rectlypromoterootsystemgrowthandthuspre-emptionof

Nsoil.ThestrongabilityofD.cespitosatocaptureNsoil led

to asubsequent bypass of extraavailable resources to the

detriment of oakgrowth (Freschetet al.2017).This abil-itywouldexplainthedisordinalinteractionobserved(Doove et al. 2014). Actually, only sole-grown oaks significantly respondedtoadditionalresourceamount.Indeed,some stud-ieshavereportedthatbelowgroundresourcesplayakeyrole

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

(11)

A.Vernayetal./BasicandAppliedEcologyxxx(2017)xxx–xxx 9

indrivingthecompetitionrelationship:infertilesoil, compet-itiveexclusionoccurs,enhancedbyhigherbiomassallocation toabovegroundorgans,switchingcompetitionfromnutrients tolight(Newman1973; Hautier,Niklaus,&Hector2009;

DeMalach & Kadmon 2017). However, these conclusions

mainlyresultfromstudiesongrasslandcommunities,which

shareverysimilarecologicalstrategies.Here,perennialsand

ligneousspeciesbehaveddifferentlyandresponded to

dif-ferentneeds,whichcouldexplainwhylight would havea

strongerinfluence.However,thetwo resourcesdid notact independently(Rajaniemi2002),ashighlightedby neighbor-effectindices.Takingintoaccountcrossedcombinationsof Nsoil×Lthusbringsfine-tuningelementsthathaveseldom

beeninvestigatedtogether(butseePugnaire&Luque2001). TheonlysituationwhenD.cespitosahadnoeffectonoak

growthand associated traitswas under low levels of both

resources(i.e.L27andN0).Thisisconsistentwithcommon

findings inthe literature (Baribault& Kobe2011; Vernay etal.2016) reporting weakercompetition under low light andnutrientavailability,ascompetitivespeciesfreeuptheir spaceforstress-tolerantspecies(Grime1974;Pierretetal. 2016).

How

to

explain

the

positive

effect

of

oak

seedling

on

D.

cespitosa

biomass?

Antagonisticfacilitation(i.e.whenspeciesAhasapositive effectonspeciesBbutBanegativeeffectonA)ofD. cespi-tosabyoakseedlings,intheN89treatmentswhateverthelight

level,wasanunexpectedandsurprisingfinding(Stachowicz 2001;Schöb,Prieto,Armas,&Pugnaire2014).

Twoprocessesmaybe proposedtoexplainthispositive

effect on D. cespitosa. First, oak seedlings could have a

higherrhizodepositioninfertilizedpotswithoutanybiomass change (Karst, Gaster, Wiley, & Landhausser2016). This

supplementarynitrogensupplymightofferanextrasoilN

source,rapidlyabsorbedbyD.cespitosa.Asaperspective, identifyingandthenquantifyingsuchfluxeswouldbehugely informativetohelpgainarefinedunderstandingofthe

under-lyingmechanisms.Second,interspecificcompetitioncould

beamplifiedinN89/L59,becomingstrongerthanintraspecific

grasscompetition (Vernayetal.2018).Thisprocesscould

befostered byexudates whichwouldact as signalsinthe

rhizosphere,allowingself-recognitioninaplantcommunity (Delory,Delaplace,Fauconnier,&duJardin2016).Exudates comingfromotherspeciesmaytriggerpositivefeedbackon

root length and root density of D. cespitosa(Semchenko,

Saar,&Lepik2014).

N

soil

depletion

to

the

benefit

of

D.

cespitosa

Morethan90% of 15Nappliedwas massivelyabsorbed

by D. cespitosatufts, in line with previous studies (Coll, Balandier,&Picon-Cochard2004;Vernayetal.2016).

AccordingtoTilman’stheory,thiswouldsuggestthatthe competitiverelationshipwasduetoalowR*ofD.cespitosa, i.e. ahighgrowthpotentialatvery lowlevelsofresources (Tilman1982).Suchbehaviorraisesquestionsoverthe sus-tainability of the grass’slife cycle.On the onehand, it is legitimatetoquestionwhether thestrategyof D.cespitosa

involvesacontinuousdepletionof resources atthe riskof

notbeingabletomaintainthewholeorganismlaterondue

toexcessivegrowth(Hardin1968;Gersani,Brown,O’Brien, Maina,&Abramsky2001).Ontheotherhand,“game the-ory”(trade-offbetweensurvivalatthecommunityleveland growthattheplantlevel)wouldpredictatrade-offbetween

resource depletionfor individual D.cespitosagrowth and

the cost of individual maintenance induced by its growth

(McNickle&Dybzinski2013).

In

planta

15

N

allocation:

a

conservative

strategy

for

oak

Oakseedlingsinthemixtureallocatedmuchmore15Nto coarse andfine rootsto thedetriment of leaves than

sole-grownseedlings.Thisphenomenonwasobservedinavery

shorttime(only6months ofinteraction)whichhasrarely

been quantifiedinliterature.Indeed, thisstudy showsthat plant–plantinteractionsandtheirresponsesintermsoflife strategyoccurveryrapidly.WesuggestthathigheroakN

allo-cationtobelowgroundcompartmentsmayfeedanNstorage

pool(Vizosoetal.2008)insteadofusingitforprospection andresourcecapture,associatedwithlowinvestmentin

tis-sue creation (fine root dry weightwas constant despite N

allocationchange).Oakstrategyisthereforeconservative. Nitrogenresourcecanbetakenupandassimilatedquickly (Uscola,Villar-Salvador,Oliet,&Warren2014;Gao,Chen, Yuan,Zhang,&Mi2015).However,fewstudieshaveshown anearlypreferentialNdistributiontotherootsystem,ashas beendoneforcarbon(Kaiseretal.2015).

Foster

oak

regeneration

in

practice

Becausethepresenceofoakhadanunexpectedpositive

effectonD.cespitosagrowthwhenNfertilizerwasadded, fieldfertilizationcannotberecommended(Colletal.2004;

Salifu,Jacobs,&Birge2009).UseofpreliminaryN-loaded

oak seedlingscoming from anursery would allow oakto

benefitfrom itsown internalN-reserve, improving its sur-vival anditsresistance tograss-drivenN-depletion (Salifu &Timmer2001;Villar-Salvador etal.2012;Vernayetal. 2018).Another solutionwould betoconsiderfoliar fertil-ization, allowing to targetoak seedlingsmore specifically without fertilizing understory species (Gagnon &Deblois 2014). All suggested solutions will not be efficient

with-out grassmanagementreducing grassdensity.Thiscanbe

achievedbydecreasinglightavailabilitywhenpossible.

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

(12)

Conclusion

Asexpected,D.cespitosacompeted withoakseedlings

andtothedetrimentofoak.Thiscompetitionarosewhenever

resources became moreavailable (59% PFD for light and

89kgha−1Nsupply).Thisstudyshows originalresponses ofplant–plantinteractionsindifferentresourcecombination (antagonisticfacilitationofD.cespitosabyoakseedlingsand indirectinfluenceoflight).Thisfurtherarguesfor consider-ingcrossedfactorsinsteadofoneresource.Neighbor-effect indicesindicatedthatlightwasaprimaryfactordrivingplant response,butthiseffectwasindirectasdrivenbyimproved Nsoil uptake.Eachspeciesexhibited acontrastingresponse

strategytocompetitionandNsoil×lightcombinations:a

con-servative strategy for oak, and a capture strategy for D.

cespitosa.Finally,D.cespitosagrowthwasenhancedbythe presenceofoakunderhighNsoil.

Investigation of functional mechanisms of antagonistic

facilitation and intra- vs interspecific interaction balance offersinterestingperspectivesforfurtherstudies:Nstorage inoakmightplayapivotalroleincopingwithNsoildepletion

byD.cespitosa.Othersoilresources,suchaswateror phos-phorus,alsowarrantattention.Finally,itwouldbeofgreat interesttotestwhether suchobservationsalsooccur under naturalconditions.

Authors’

contributions

AV,PM,TAandPBconceivedtheideasanddesignedthe

methodology;AVandMFcollectedthedata;AV, TP,PM,

TAandPBanalyzedthedata;AV,PM,TAandPBwrotethe

manuscript.Alltheauthorscontributedcriticallytothedrafts andgavefinalapprovalforpublication.

Acknowledgments

Thisworkreceivedfinancial supportfromtheEuropean

Q5

AgriculturalFundforRuralDevelopment(EAFRD‘Leader’

programme), the French Ministry of Agriculture, the

Auvergne Region Directorate for Agriculture (DRAAF),

and the Allier department (CG 03). The authors thank

André Marquier, Christophe Serre, Aline Faure, Patrice

Chaleil,BrigitteSaint-Joanis,MarcVandame,PascalWalser

and Pierre Conchon for their invaluable help in

prepar-ing the greenhouse setup, managing daily pot watering

andshading, weekly measurements of plantgrowth, plant

andsoilharvesting,datacollectionandsampleprocessing.

Wealso thankDr.Catherine Picon-Cochardfor her

exper-tiseinrunning theWinRHIZO® software,andDr.Pascale

Maillard forexpedientlyshipping theisotope.The authors

thank the certified facility in functional ecology (PTEF

OC081) from UMR 1137EEF andUR1138 BEF atthe

INRANancy-Lorraineresearchcenterforitscontributionto

isotopic analysis. The PTEF facility is supported by the

FrenchNationalResearchAgencythroughtheARBRE

Lab-oratory of Excellenceprogram(ANR-11-LABX-0002-01).

Antoine Vernay was supported by a French Ministry of

Researchgrant.Finally, theauthorsthankthethree

anony-mousreviewersfortheiradviceandcomment.

Appendix

A.

Supplementary

data

Supplementary data associated with this article can be

found, in the online version, at https://doi.org/10.1016/

j.baae.2018.06.002.

References

Baribault, T.W., & Kobe,R. K. (2011).Neighbourinteractions strengthenwithincreasedsoilresourcesinaNorthernhardwood forest.JournalofEcology,99(6),1358–1372.http://dx.doi.org/ 10.1111/j.1365-2745.2011.01862.x

Bertness,M. D.,& Callaway,R.(1994). Positiveinteractionsin communities.Trendsin Ecology&Evolution,9(5),191–193.

http://dx.doi.org/10.1016/0169-5347(94)90088-4

Brooker, R., Kikvidze, Z., Pugnaire, F. I., Callaway, R. M., Choler, P.,Lortie, C. J., & Michalet, R. (2005). The impor-tance of importance. Oikos,109(1), 63–70. http://dx.doi.org/ 10.1111/j.0030-1299.2005.13557.x

Casper, B. B., & Jackson, R. B. (1997). Plant competition underground.AnnualReviewofEcologyandSystematics,28,

545–570.http://dx.doi.org/10.1146/annurev.ecolsys.28.1.545

Coll,L.,Balandier,P.,&Picon-Cochard,C.(2004).Morphological andphysiologicalresponsesofbeech(Fagussylvatica)seedlings to grass-induced belowground competition.Tree Physiology, 24(1),45–54.

Corcket,E.,Liancourt,P.,Callaway,R.M.,&Michalet,R.(2003). Therelativeimportanceofcompetitionfortwodominantgrass speciesasaffectedbyenvironmentalmanipulationsinthefield.

Ecoscience,10(2),186–194.

Craine, J. M. (2005). Reconciling plant strategy theories of Grime and Tilman. Journal of Ecology, 93(6), 1041–1052.

http://dx.doi.org/10.1111/j.1365-2745.2005.01043.x

Davis,M.A.,Wrage,K.J.,Reich,P.B.,Tjoelker,M.G.,Schaeffer, T.,&Muermann,C.(1999).Survival,growth,and photosynthe-sisoftreeseedlingscompetingwithherbaceousvegetationalong awater–light–nitrogengradient.PlantEcology,145,341–350. Davy,A.J.(1980).Deschampsiacaespitosa(L.)Beauv.Journalof

Ecology,68(3),1075–1096.http://dx.doi.org/10.2307/2259475

Delory, B. M., Delaplace, P., Fauconnier, M. L., & du Jardin, P.(2016).Root-emittedvolatileorganiccompounds:Canthey mediatebelowgroundplant–plantinteractions?PlantandSoil, 402(1–2),1–26.http://dx.doi.org/10.1007/s11104-016-2823-3

DeMalach, N., & Kadmon, R. (2017). Light competition explains diversity decline better than niche dimensional-ity. Functional Ecology, 31(9), 1834–1838. http://dx.doi.org/ 10.1111/1365-2435.12841

Díaz-Sierra,R.,Verwijmeren,M.,Rietkerk,M.,deDios,V.R.,& Baudena, M.(2016).Anewfamilyofstandardizedand sym-metric indicesformeasuring the intensityand importanceof 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

(13)

A.Vernayetal./BasicandAppliedEcologyxxx(2017)xxx–xxx 11 plantneighboureffects.MethodsinEcologyandEvolution,12.

http://dx.doi.org/10.1111/2041-210x.12706

Doove,L.L.,VanBuuren,S.,&Dusseldorp,E.(2014).Recursive partitioningformissingdataimputationinthepresenceof inter-actioneffects.ComputationalStatistics&DataAnalysis, 72,

92–104.http://dx.doi.org/10.1016/j.csda.2013.10.025

Freschet,G.T.,Valverde-Barrantes,O.J.,Tucker,C.M.,Craine, J.M.,McCormack,L.M.,Violle,C.,...&Roumet,C.(2017). Climate,soilandplantfunctionaltypesasdriversofglobal

fine-Q6

roottraitvariation.JournalofEcology,n/a–n/a.http://dx.doi.org/ 10.1111/1365-2745.12769

Gagnon,J.,&Deblois,J.(2014)..Effectsoffoliarureafertilization Q7

onnitrogenstatusofcontainerized2+0blackspruceseedlings producedinforestnurseries(Vol.57).

Gao, K., Chen, F., Yuan, L., Zhang, F., & Mi, G. (2015). A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress.Plant,Cell&Environment,38(4),740–750.http://dx.doi. org/10.1111/pce.12439

Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M., & Abramsky, Z. (2001). Tragedy of the commons as a result of root competition. Journal of Ecology, 89(4), 660–669.

http://dx.doi.org/10.1046/j.0022-0477.2001.00609.x

Grime,J.P.(1974).Vegetationclassificationbyreferenceto strate-gies.Nature,UK,250(5461),26–31.

Grime,J.P.(2007).Plantstrategytheories:AcommentonCraine (2005).JournalofEcology,95(2),227–230.http://dx.doi.org/ 10.1111/j.1365-2745.2006.01163.x

Hardin,G.(1968).Tragedyofcommons.Science,162(3859),1243. Hautier,Y.,Niklaus,P.A.,&Hector,A.(2009).Competitionfor lightcausesplantbiodiversitylossaftereutrophication.Science, 324(5927),636–638.

Jabot,F.,&Pottier,J.(2012).Ageneralmodellingframeworkfor resource-ratioand CSR theoriesofplant community dynam-ics.JournalofEcology, 100(6),1296–1302.http://dx.doi.org/ 10.1111/j.1365-2745.2012.02024.x

Kaiser,C.,Kilburn,M.R.,Clode,P.L.,Fuchslueger,L.,Koranda, M.,Cliff, J. B.,... & Murphy,D. V. (2015). Exploring the transferofrecentplantphotosynthatestosoilmicrobes: Mycor-rhizalpathwayvsdirectrootexudation.NewPhytologist,205(4),

1537–1551.http://dx.doi.org/10.1111/nph.13138

Karst,J.,Gaster,J.,Wiley,E.,&Landhausser,S.M.(2016).Stress differentiallycausesrootsoftreeseedlingstoexudecarbon.Tree Physiology,11.

Lenth,R.V.(2016).Least-squaresmeans:TheRpackagelsmeans.

JournalofStatisticalSoftware,69(1),1–33.

Liancourt,P.,Corcket,E.,&Michalet,R.(2005).Stresstolerance abilitiesandcompetitiveresponsesinawateringandfertilization fieldexperiment.JournalofVegetationScience,16(6),713–722.

http://dx.doi.org/10.1111/j.1654-1103.2005.tb02414.x

McNickle,G.G.,&Dybzinski,R.(2013).Gametheoryandplant ecology. Ecology Letters, 16(4), 545–555. http://dx.doi.org/ 10.1111/ele.12071

Newman, E. I. (1973). Competition and diversity in herba-ceous vegetation. Nature, 244(5414), 310. http://dx.doi.org/ 10.1038/244310a0

Pierret, A., Maeght, J. L., Clement, C., Montoroi, J. P., Hart-mann, C., & Gonkhamdee, S. (2016). Understanding deep rootsandtheirfunctionsinecosystems:Anadvocacyformore unconventionalresearch.Annals of Botany,118(4), 621–635.

http://dx.doi.org/10.1093/aob/mcw130

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2016). R CoreTeam(2016)nlme:LinearandNonlinearMixedEffects Models.RPackageVersion3.1–128.Availableathttps.Cran.r- Q8

Project.Org/Web/Packages/Nlme/Index.Html. (Accessed 7 July).

Pinheiro,J.C.,&Bates,D.M.(2000).Theoryandcomputational methodsforlinearmixed-effectsmodels.InMixed-effects mod-elsinSandS-PLUS.pp.57–96.

Puettmann,K.J.,Wilson,S.M.,Baker,S.C.,Donoso,P.J.,Drössler, L., Amente,G., ... & Bauhus,J. (2015). Silvicultural alter-nativesto conventionaleven-agedforest management—What limitsglobaladoption?ForestEcosystems,2,8.http://dx.doi.org/ 10.1186/s40663-015-0031-x

Pugnaire,F.I.,&Luque,M.T.(2001).Changesinplantinteractions alongagradientofenvironmentalstress.Oikos,93(1),42–49.

http://dx.doi.org/10.1034/j.1600-0706.2001.930104.x

Pugnaire, F. I., Zhang,L., Li, R. C., & Luo, T. X.(2015). No evidence offacilitation collapseinthe Tibetanplateau. Jour-nal of Vegetation Science, 26(2), 233–242. http://dx.doi.org/ 10.1111/jvs.12233

RCoreTeam.(2016).R:Alanguageandenvironmentfor statis-ticalcomputing.Vienna,Austria:RFoundationforStatistical Computing.Retrievedfromhttps://www.R-project.org/

Rajaniemi, T. K. (2002). Why does fertilization reduce plant species diversity? Testing three competition-based hypothe-ses. Journal of Ecology, 90(2), 316–324. http://dx.doi.org/ 10.1046/j.1365-2745.2001.00662.x

Salifu, K. F., Jacobs, D.F., & Birge, Z.K. D. (2009). Nursery nitrogen loading improves field performance of bare-root oak seedlings planted on abandoned mine lands.

Restoration Ecology, 17(3), 339–349. http://dx.doi.org/ 10.1111/j.1526-100X.2008.00373.x

Salifu, K. F., & Timmer, V. R. (2001). Nutrient retranslocation responseof Piceamarianaseedlings tonitrogensupply. Soil ScienceSocietyofAmericaJournal,65(3),905–913.

Schöb, C.,Prieto,I., Armas, C.,& Pugnaire,F.I.(2014). Con-sequencesoffacilitation:Oneplant’sbenefitisanotherplant’s cost. Functional Ecology, 28(2), 500–508. http://dx.doi.org/ 10.1111/1365-2435.12185

Semchenko,M.,Saar,S.,&Lepik,A.(2014).Plantrootexudates mediateneighbourrecognitionandtriggercomplexbehavioural changes.NewPhytologist,204(3),631–637. http://dx.doi.org/ 10.1111/nph.12930

Siemann,E.,&Rogers,W.E.(2003).Changesinlightand nitro-genavailabilityunderpioneertreesmayindirectlyfacilitatetree invasions ofgrasslands. Journalof Ecology, 91(6),923–931.

http://dx.doi.org/10.1046/j.1365-2745.2003.00822.x

Stachowicz,J.J.(2001).Mutualism,facilitation,andthestructureof ecologicalcommunities.BioScience,51(3),235–246.http://dx. doi.org/10.1641/0006-3568(2001)051[0235:MFATSO2.0.CO;2] Tilman,D.(1982).Resourcecompetitionandcommunitystructure.

PrincetonUniversityPress.

Tilman, D. (1987). Secondary succession and the pat-tern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 57(3), 189–214.

http://dx.doi.org/10.2307/2937080

Uscola,M.,Villar-Salvador,P.,Oliet,J.,&Warren,C.R.(2014). Foliarabsorptionandroottranslocationof nitrogenfrom dif-ferent chemical forms in seedlings of two Mediterranean trees. Environmental and Experimental Botany, 104, 34–43.

http://dx.doi.org/10.1016/j.envexpbot.2014.03.004 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

(14)

Valladares, F., Martinez-Ferri, E., Balaguer, L., Perez-Corona, E., & Manrique,E. (2000). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: A conserva-tive resource-use strategy? New Phytologist, 148(1), 79–91.

http://dx.doi.org/10.1046/j.1469-8137.2000.00737.x

Vernay,A., Balandier,P.,Guinard,L.,Améglio,T.,& Malagoli, P.(2016).PhotosynthesiscapacityofQuercuspetraea(Matt.) saplings is affected by Molinia caerulea (L.) under high irradiance. Forest Ecology and Management, 376, 107–117.

http://dx.doi.org/10.1016/j.foreco.2016.05.045

Vernay, A., Malagoli, P., Fernandez, M., Perot, T., Améglio, T., & Balandier, P. (2018). Carry-over benefit of high internal N pool on growth and function of oak seedlings (Quercus petraea) competing with Deschampsia cespi-tosa. Forest Ecology and Management, 419–420, 130–138.

http://dx.doi.org/10.1016/j.foreco.2018.03.039

Verwijmeren, M., Rietkerk, M., Wassen, M. J., & Smit, C. (2013). Interspecific facilitation and critical transitions in arid ecosystems. Oikos, 122(3), 341–347. http://dx.doi.org/ 10.1111/j.1600-0706.2012.00111.x

Villar-Salvador,P.,Puertolas,J.,Cuesta,B.,Penuelas,J.L.,Uscola, M.,Heredia-Guerrero,N.,&Benayas,J.M.R.(2012).Increase

in sizeandnitrogenconcentrationenhances seedlingsurvival inMediterranean plantations.Insightsfroman ecophysiologi-calconceptualmodelofplantsurvival.NewForests,43(5–6),

755–770.http://dx.doi.org/10.1007/s11056-012-9328-6

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of traitbefunctional!.Oikos,116(5),882–892.http://dx.doi.org/ 10.1111/j.2007.0030-1299.15559.x

Vizoso,S.,Gerant,D.,Guehl,J.M.,Joffre,R.,Chalot,M.,Gross, P.,& Maillard,P. (2008).Do elevationofCO2 concentration

andnitrogenfertilizationalterstorageandremobilizationof car-bonandnitrogeninpedunculateoaksaplings?TreePhysiology, 28(11),1729–1739.

Welden, C.W.,& Slauson,W.L.(1986). Theintensityof com-petitionversusitsimportance—Anoverlookeddistinctionand someimplications.QuarterlyReviewofBiology,61(1),23–44.

http://dx.doi.org/10.1086/414724

Yan, E. R., Wang, X. H., & Huang, J. J. (2006). Shifts in plant nutrient use strategies under secondary forest succes-sion. Plant and Soil, 289(1–2), 187–197. http://dx.doi.org/ 10.1007/s11104-006-9128-x

Availableonlineatwww.sciencedirect.com

ScienceDirect

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

Figure

Fig. 1. Experimental design of all crossed treatment combinations. Dc = D. cespitosa, Qp = Quercus petraea, N = nitrogen, n = number of replicates (see text for details).
Fig. 2. Aboveground dry weight in sole-grown and mixed-grown oak and D. cespitosa under a crossed combination of two levels of light (L 59 and L 27 ) and N soil availability (N 89 and N 0 ; see Materials and methods for further details)
Fig. 3. Relationship between importance (I imp ) and intensity (I int ) of interaction between D
Fig. 4. Relationship between importance (I imp ) and intensity (I int ) of interaction between oak and D
+2

Références

Documents relatifs

species richness and herb cover, decreasing litter and tree cover, and decreasing Humus Index3. according to land-use

When mimicry diversity is maintained under heterogeneous predation, homomorphic species (with the same morph) tend to use more similar micro-habitats than random pairs of

Les demandeurs d'emploi de catégorie 1 sont les personnes inscrites à l'ANPE déclarant être à la recherche d'un emploi à temps plein et à durée indéterminée,

1 Interventions in patients with major or moderate potential drug –drug interactions (pDDIs) and feedback concerning acceptance and implementation of the recommendations by the

Ces objectifs ainsi que l’évaluation ont été pensés de manière à évaluer les élèves non pas uniquement sur des savoirs mais aussi sur des

For the first and second hypothesis, we analysed the influence of competition (aggregate and intra- and interspecific competition exerted by different tree groups) on DBH, height,

Results from a principal component analysis of the studied variables: radial increments – Spring growth (SG) and annual growth (AG); climate – cumulative precipitation of

Water Use Efficiency of Sorghum [Sorghum bicolor (L.) Moench] Grown under Different Nitrogen Applications in Sudan Savanna Zone, Nigeria. Response of maize