• Aucun résultat trouvé

Multipartite entanglement detection via projective tensor norms

N/A
N/A
Protected

Academic year: 2022

Partager "Multipartite entanglement detection via projective tensor norms"

Copied!
46
0
0

Texte intégral

(1)

Multipartite entanglement detection via projective tensor norms

Based on joint work with Maria Anastasia Jivulescu and Ion Nechita, available at arXiv:2010.06365

Cécilia Lancien

Institut Fourier Grenoble & CNRS

Workshop GOQI, MFO – October 7 2021

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 1

(2)

Motivations

A stateρonCd1⊗ · · · ⊗Cdmis calledseparableif it is a convex combination of product states:

positive semidefinite operator with trace 1 onCd1⊗ · · · ⊗Cdm

ρ=

r

k=1

λkρk1⊗ · · · ⊗ρkm,with (

λk>0,16k6r,∑rk=1λk=1 ρki state onCdi,16k6r,16i6m . Otherwise it is calledentangled.

[Note: Ifρis a pure state, i.e.ρ=|ϕihϕ|for some unit vectorϕ∈Cd1⊗ · · · ⊗Cdm, thenρis separable iffϕ=ϕ1⊗ · · · ⊗ϕmfor some unit vectorsϕiCdi, 16i6m.]

−→If a quantum system is in a separable state, there is no intrinsically quantum correlation between its subsystems. It thus does not provide any advantage over a classical system in information processing tasks.

Known:The problem of deciding whether a given multipartite quantum state is entangled or separable (and even just approximate versions of it) is computationally hard(Gharibian).

−→Solution in practice: Look for necessary conditions to separability, which are easier to check than separability itself, akaentanglement criteria.

Our goal:Design and study a class of entanglement criteria, based on the idea of applyinglocal contractionsto an input multipartite state and computing a suitabletensor normof the output.

(3)

Motivations

A stateρonCd1⊗ · · · ⊗Cdmis calledseparableif it is a convex combination of product states:

positive semidefinite operator with trace 1 onCd1⊗ · · · ⊗Cdm

ρ=

r

k=1

λkρk1⊗ · · · ⊗ρkm,with (

λk>0,16k6r,∑rk=1λk=1 ρki state onCdi,16k6r,16i6m . Otherwise it is calledentangled.

[Note: Ifρis a pure state, i.e.ρ=|ϕihϕ|for some unit vectorϕ∈Cd1⊗ · · · ⊗Cdm, thenρis separable iffϕ=ϕ1⊗ · · · ⊗ϕmfor some unit vectorsϕiCdi, 16i6m.]

−→If a quantum system is in a separable state, there is no intrinsically quantum correlation between its subsystems. It thus does not provide any advantage over a classical system in information processing tasks.

Known:The problem of deciding whether a given multipartite quantum state is entangled or separable (and even just approximate versions of it) is computationally hard(Gharibian).

−→Solution in practice: Look for necessary conditions to separability, which are easier to check than separability itself, akaentanglement criteria.

Our goal:Design and study a class of entanglement criteria, based on the idea of applyinglocal contractionsto an input multipartite state and computing a suitabletensor normof the output.

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 2

(4)

Motivations

A stateρonCd1⊗ · · · ⊗Cdmis calledseparableif it is a convex combination of product states:

positive semidefinite operator with trace 1 onCd1⊗ · · · ⊗Cdm

ρ=

r

k=1

λkρk1⊗ · · · ⊗ρkm,with (

λk>0,16k6r,∑rk=1λk=1 ρki state onCdi,16k6r,16i6m . Otherwise it is calledentangled.

[Note: Ifρis a pure state, i.e.ρ=|ϕihϕ|for some unit vectorϕ∈Cd1⊗ · · · ⊗Cdm, thenρis separable iffϕ=ϕ1⊗ · · · ⊗ϕmfor some unit vectorsϕiCdi, 16i6m.]

−→If a quantum system is in a separable state, there is no intrinsically quantum correlation between its subsystems. It thus does not provide any advantage over a classical system in information processing tasks.

Known:The problem of deciding whether a given multipartite quantum state is entangled or separable (and even just approximate versions of it) is computationally hard(Gharibian).

−→Solution in practice: Look for necessary conditions to separability, which are easier to check than separability itself, akaentanglement criteria.

Our goal:Design and study a class of entanglement criteria, based on the idea of applyinglocal contractionsto an input multipartite state and computing a suitabletensor normof the output.

(5)

Motivations

A stateρonCd1⊗ · · · ⊗Cdmis calledseparableif it is a convex combination of product states:

positive semidefinite operator with trace 1 onCd1⊗ · · · ⊗Cdm

ρ=

r

k=1

λkρk1⊗ · · · ⊗ρkm,with (

λk>0,16k6r,∑rk=1λk=1 ρki state onCdi,16k6r,16i6m . Otherwise it is calledentangled.

[Note: Ifρis a pure state, i.e.ρ=|ϕihϕ|for some unit vectorϕ∈Cd1⊗ · · · ⊗Cdm, thenρis separable iffϕ=ϕ1⊗ · · · ⊗ϕmfor some unit vectorsϕiCdi, 16i6m.]

−→If a quantum system is in a separable state, there is no intrinsically quantum correlation between its subsystems. It thus does not provide any advantage over a classical system in information processing tasks.

Known:The problem of deciding whether a given multipartite quantum state is entangled or separable (and even just approximate versions of it) is computationally hard(Gharibian).

−→Solution in practice: Look for necessary conditions to separability, which are easier to check than separability itself, akaentanglement criteria.

Our goal:Design and study a class of entanglement criteria, based on the idea of applyinglocal contractionsto an input multipartite state and computing a suitabletensor normof the output.

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 2

(6)

Plan

1 Tensor norms and entanglement

2 Detecting entanglement with testers: definitions and first examples

3 Entanglement testers in the bipartite setting

4 Entanglement testers in the multipartite setting

(7)

Tensor norms in Banach spaces

LetA1, . . . ,Ambe Banach spaces. Givenx∈A1⊗ · · · ⊗Am, itsprojective tensor normis kxkA1π···⊗πAm:= inf

( r

k=1

k|:aki ∈Ai,kakikAi 61,x=

r

k=1

αkak1⊗ · · · ⊗akm,r∈N )

,

and itsinjective tensor normis kxkA1ε···⊗εAm:= sup

|hb1⊗ · · · ⊗bm|xi|:bi∈Ai,kbikAi 61 .

These norms are dual to one another: for allx∈A1⊗ · · · ⊗Am, kxkA1π···⊗πAm= sup

|hy|xi|:kykA

1ε···⊗εAm61 , kxkA1ε···⊗εAm= sup

|hy|xi|:kykA1π···⊗πAm61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,am∈Am, ka1⊗ · · · ⊗amkA1π···⊗πAm=ka1⊗ · · · ⊗amkA1ε···⊗εAm=ka1kA1· · · kamkAm. And they are extremal among such norms: for any other tensor normk · konA1⊗ · · · ⊗Am,

k · kA1ε···⊗εAm6k · k6k · kA1π···⊗πAm.

Note: The unit ball fork · kA1π···⊗πAmisconv{a1⊗ · · · ⊗am:ai∈Ai,kaikAi 61}.

projective tensor productof the unit balls fork · kAi

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 4

(8)

Tensor norms in Banach spaces

LetA1, . . . ,Ambe Banach spaces. Givenx∈A1⊗ · · · ⊗Am, itsprojective tensor normis kxkA1π···⊗πAm:= inf

( r

k=1

k|:aki ∈Ai,kakikAi 61,x=

r

k=1

αkak1⊗ · · · ⊗akm,r∈N )

,

and itsinjective tensor normis kxkA1ε···⊗εAm:= sup

|hb1⊗ · · · ⊗bm|xi|:bi∈Ai,kbikAi 61 . These norms are dual to one another: for allx∈A1⊗ · · · ⊗Am,

kxkA1π···⊗πAm= sup

|hy|xi|:kykA

1ε···⊗εAm61 , kxkA1ε···⊗εAm= sup

|hy|xi|:kykA1π···⊗πAm61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,am∈Am, ka1⊗ · · · ⊗amkA1π···⊗πAm=ka1⊗ · · · ⊗amkA1ε···⊗εAm=ka1kA1· · · kamkAm. And they are extremal among such norms: for any other tensor normk · konA1⊗ · · · ⊗Am,

k · kA1ε···⊗εAm6k · k6k · kA1π···⊗πAm.

Note: The unit ball fork · kA1π···⊗πAmisconv{a1⊗ · · · ⊗am:ai∈Ai,kaikAi 61}.

projective tensor productof the unit balls fork · kAi

(9)

Tensor norms in Banach spaces

LetA1, . . . ,Ambe Banach spaces. Givenx∈A1⊗ · · · ⊗Am, itsprojective tensor normis kxkA1π···⊗πAm:= inf

( r

k=1

k|:aki ∈Ai,kakikAi 61,x=

r

k=1

αkak1⊗ · · · ⊗akm,r∈N )

,

and itsinjective tensor normis kxkA1ε···⊗εAm:= sup

|hb1⊗ · · · ⊗bm|xi|:bi∈Ai,kbikAi 61 . These norms are dual to one another: for allx∈A1⊗ · · · ⊗Am,

kxkA1π···⊗πAm= sup

|hy|xi|:kykA

1ε···⊗εAm61 , kxkA1ε···⊗εAm= sup

|hy|xi|:kykA1π···⊗πAm61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,am∈Am, ka1⊗ · · · ⊗amkA1π···⊗πAm=ka1⊗ · · · ⊗amkA1ε···⊗εAm=ka1kA1· · · kamkAm. And they are extremal among such norms: for any other tensor normk · konA1⊗ · · · ⊗Am,

k · kA1ε···⊗εAm6k · k6k · kA1π···⊗πAm.

Note: The unit ball fork · kA1π···⊗πAmisconv{a1⊗ · · · ⊗am:ai∈Ai,kaikAi 61}.

projective tensor productof the unit balls fork · kAi

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 4

(10)

Tensor norms in Banach spaces

LetA1, . . . ,Ambe Banach spaces. Givenx∈A1⊗ · · · ⊗Am, itsprojective tensor normis kxkA1π···⊗πAm:= inf

( r

k=1

k|:aki ∈Ai,kakikAi 61,x=

r

k=1

αkak1⊗ · · · ⊗akm,r∈N )

,

and itsinjective tensor normis kxkA1ε···⊗εAm:= sup

|hb1⊗ · · · ⊗bm|xi|:bi∈Ai,kbikAi 61 . These norms are dual to one another: for allx∈A1⊗ · · · ⊗Am,

kxkA1π···⊗πAm= sup

|hy|xi|:kykA

1ε···⊗εAm61 , kxkA1ε···⊗εAm= sup

|hy|xi|:kykA1π···⊗πAm61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,am∈Am, ka1⊗ · · · ⊗amkA1π···⊗πAm=ka1⊗ · · · ⊗amkA1ε···⊗εAm=ka1kA1· · · kamkAm. And they are extremal among such norms: for any other tensor normk · konA1⊗ · · · ⊗Am,

k · kA1ε···⊗εAm6k · k6k · kA1π···⊗πAm.

Note: The unit ball fork · kA1π···⊗πAmisconv{a1⊗ · · · ⊗am:ai∈Ai,kaikAi 61}.

projective tensor productof the unit balls fork · kAi

(11)

Characterizing entanglement through tensor norms

Pure state entanglement:

Banach spaces

Cdi,k · k`di 2

, 16i6m.

Notation:∀x∈Cd,kxk`d

2:= ∑dk=1|xk|21/2

vector 2-norm A pure stateϕ∈Cd1⊗ · · · ⊗Cdmis s.t.kϕk`d1···dm

2

=1.

Sincek · k`d1···dm 2

is a tensor norm, this implieskϕk`d1

2ε···⊗ε`dm2 61 andkϕk`d1

2π···⊗π`dm2 >1.

Andϕis separable iffkϕk`d1

2ε···⊗ε`dm2 =kϕk`d1

2π···⊗π`dm2 =1, where kϕk`d1

2ε···⊗ε`dm2 := supn

|hχ1⊗ · · · ⊗χm|ϕi|:χiCdi,kχik`di 2

=1 o

, kϕk`d1

2π···⊗π`dm2 := inf r

k=1

k|:φkiCdi,kφkik`di 2

=1,ϕ=

r

k=1

αkφk1⊗ · · · ⊗φkm

.

Mixed state entanglement: Banach spaces

M

di(C),k · k

Sdi1

, 16i6m.

Notation:∀X∈

M

d(C),kXkSd

1:= Tr|X|

matrix 1-norm A mixed stateρ∈

M

d1(C)⊗ · · · ⊗

M

dm(C)is s.t.ρ>0 andkρk

Sd11···dm

=1. Sincek · kSd1···dm

1

is a tensor norm, this implieskρkSd1

1π···⊗πS1dm >1. Andρis separable iffkρkSd1

1π···⊗πS1dm=1(Rudolph, Pérez-García), where kρkSd1

1 π···⊗πSdm1 := inf r

k=1

k|:τki

M

di(C),kτkikSdi 1

=1,ρ= ∑r

k=1

αkτk1⊗ · · · ⊗τkm

.

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 5

(12)

Characterizing entanglement through tensor norms

Pure state entanglement:

Banach spaces

Cdi,k · k`di 2

, 16i6m.

Notation:∀x∈Cd,kxk`d

2:= ∑dk=1|xk|21/2

vector 2-norm A pure stateϕ∈Cd1⊗ · · · ⊗Cdmis s.t.kϕk`d1···dm

2

=1.

Sincek · k`d1···dm 2

is a tensor norm, this implieskϕk`d1

2ε···⊗ε`dm2 61 andkϕk`d1

2π···⊗π`dm2 >1.

Andϕis separable iffkϕk`d1

2ε···⊗ε`dm2 =kϕk`d1

2π···⊗π`dm2 =1, where kϕk`d1

2ε···⊗ε`dm2 := supn

|hχ1⊗ · · · ⊗χm|ϕi|:χiCdi,kχik`di 2

=1 o

, kϕk`d1

2π···⊗π`dm2 := inf r

k=1

k|:φkiCdi,kφkik`di 2

=1,ϕ=

r

k=1

αkφk1⊗ · · · ⊗φkm

.

Mixed state entanglement:

Banach spaces

M

di(C),k · k

Sdi1

, 16i6m.

Notation:∀X∈

M

d(C),kXkSd

1:= Tr|X|

matrix 1-norm A mixed stateρ∈

M

d1(C)⊗ · · · ⊗

M

dm(C)is s.t.ρ>0 andkρk

Sd11···dm

=1.

Sincek · kSd1···dm 1

is a tensor norm, this implieskρkSd1

1π···⊗πS1dm >1.

Andρis separable iffkρkSd1

1π···⊗πS1dm=1(Rudolph, Pérez-García), where kρkSd1

1 π···⊗πSdm1 := inf r

k=1

k|:τki

M

di(C),kτkikSdi 1

=1,ρ= ∑r

k=1

αkτk1⊗ · · · ⊗τkm

.

(13)

Quantifying entanglement through tensor norms (1)

Ifkϕk`d1

2ε···⊗ε`dm2 1 orkϕk`d1

2π···⊗π`dm2 1, thenϕis ‘very’ entangled.

IfkρkSd1

1 π···⊗πSdm1 1, thenρis ‘very’ entangled.

Question:Can this be made quantitative?

Definition [Geometric measure of entanglement(Shimony, Wei/Goldbart, Zhu/Chen/Hayashi)] G(ϕ) :=−log sup

n

| hχ1⊗ · · · ⊗χm|ϕi |2iCdi,kχik`di 2

=1 o

=−2logkϕk`d1

2ε···⊗ε`dm2 . G(ϕ) =0 iffϕis separable. How large canG(ϕ)be forϕentangled?

Gis afaithful entanglement measurefor pure states

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 6

(14)

Quantifying entanglement through tensor norms (1)

Ifkϕk`d1

2ε···⊗ε`dm2 1 orkϕk`d1

2π···⊗π`dm2 1, thenϕis ‘very’ entangled.

IfkρkSd1

1 π···⊗πSdm1 1, thenρis ‘very’ entangled.

Question:Can this be made quantitative?

Definition [Geometric measure of entanglement(Shimony, Wei/Goldbart, Zhu/Chen/Hayashi)] G(ϕ) :=−log supn

| hχ1⊗ · · · ⊗χm|ϕi |2iCdi,kχik`di 2

=1o

=−2logkϕk`d1

2ε···⊗ε`dm2 . G(ϕ) =0 iffϕis separable. How large canG(ϕ)be forϕentangled?

Gis afaithful entanglement measurefor pure states

(15)

Quantifying entanglement through tensor norms (2)

Observation:`d2ε`d2≡Sdand`d2π`d2≡S1d.

Indeed, identifying|xi=∑dk,l=1xkl|kli ∈CdCd withX=∑dk,l=1xkl|kihl| ∈

M

d(C), the Schmidt decompositionofxcorresponds to thesingular value decompositionofX:

|xi=

r

k=1

p

λk|ekfki ←→X=

r

k=1

p

λk|ekihfk|,withr6dand (

λk>0,16k6r

{ek}rk=1,{fk}rk=1o.n.f. inCd . This identification preserves the Euclidean norm:kxk`d2

2

= (∑rk=1λk)1/2=kXkSd

2. Whilekxk`d

2ε`d2= max16k6r

λk=kXkSd

andkxk`d

2π`d2=∑rk=1

λk=kXkSd

1.

−→Ifkxk`d2 2

=1, then1

d 6kxk`d

2ε`d261 and 16kxk`d

2π`d26√

d(tight bounds).

More generally:Assume thatd16· · ·6dmand setD:=d1× · · · ×dm1.

•For any pure stateϕ∈Cd1⊗ · · · ⊗Cdm,kϕk`d1

2ε···⊗ε`dm2 >1Dandkϕk`d1

2π···⊗π`dm2 6√ D. Proof idea:Recursive argument from bipartite case.

•For any mixed stateρ∈

M

d1(C)⊗ · · · ⊗

M

dm(C),kρkSd1

1π···⊗πS1dm6D. Proof idea:Pure states are extremal andk|ϕihϕ|kSd1

1π···⊗πS1dm=kϕk2

`d21π···⊗π`dm2 .

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 7

(16)

Quantifying entanglement through tensor norms (2)

Observation:`d2ε`d2≡Sdand`d2π`d2≡S1d.

Indeed, identifying|xi=∑dk,l=1xkl|kli ∈CdCd withX=∑dk,l=1xkl|kihl| ∈

M

d(C), the Schmidt decompositionofxcorresponds to thesingular value decompositionofX:

|xi=

r

k=1

p

λk|ekfki ←→X=

r

k=1

p

λk|ekihfk|,withr6dand (

λk>0,16k6r

{ek}rk=1,{fk}rk=1o.n.f. inCd . This identification preserves the Euclidean norm:kxk`d2

2

= (∑rk=1λk)1/2=kXkSd

2. Whilekxk`d

2ε`d2= max16k6r

λk=kXkSd

andkxk`d

2π`d2=∑rk=1

λk=kXkSd

1.

−→Ifkxk`d2 2

=1, then1

d 6kxk`d

2ε`d261 and 16kxk`d

2π`d26√

d(tight bounds).

More generally:Assume thatd16· · ·6dmand setD:=d1× · · · ×dm1.

•For any pure stateϕ∈Cd1⊗ · · · ⊗Cdm,kϕk`d1

2ε···⊗ε`dm2 >1Dandkϕk`d1

2π···⊗π`dm2 6√ D.

Proof idea:Recursive argument from bipartite case.

•For any mixed stateρ∈

M

d1(C)⊗ · · · ⊗

M

dm(C),kρkSd1

1π···⊗πS1dm6D.

Proof idea:Pure states are extremal andk|ϕihϕ|kSd1

1π···⊗πS1dm=kϕk2

`d21π···⊗π`dm2 .

(17)

Plan

1 Tensor norms and entanglement

2 Detecting entanglement with testers: definitions and first examples

3 Entanglement testers in the bipartite setting

4 Entanglement testers in the multipartite setting

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 8

(18)

Entanglement testers

LetE1, . . . ,En

M

d(C)and let{|1i, . . . ,|ni}be an o.n.b. ofCn. Define:

E

:X∈

M

d(C)7→

n

k=1

Tr(EkX)|ki ∈Cn. If

E

is s.tk

E

kSd

1→`n2:= max n

k

E

(X)k`n2 :kXkSd

1=1 o

=1, we call it an(entanglement) tester.

Observation:LetTE:= ∑n

k=1

Ek⊗Ekbe thetest operatorassociated to

E

.

Then,k

E

kSd

1→`n2= maxn

(Tr(TEX⊗X))1/2:kXkSd 1=1

o .

A tester

E

:

M

d(C)→Cn: E

E X

Its associated test operatorTE:CdCdCdCd:

E E

TE =

4 3

2 1

(19)

Detecting entanglement with testers

Theorem [Multipartite entanglement criterion based on testers]

Let

E

i:

M

di(C)→Cni, 16i6m, be testers. For anyX∈

M

d1(C)⊗ · · · ⊗

M

dm(C), we have k

E

1⊗ · · · ⊗

E

m(X)k`n1

2π···⊗π`nm2 6kXkSd1

1π···⊗πS1dm. Hence, for any stateρonCd1⊗ · · · ⊗Cdm,

k

E

1⊗ · · · ⊗

E

m(ρ)k`n1

2π···⊗π`nm2 >1 =⇒ kρkSd1

1 π···⊗πSdm1 >1 ⇐⇒ ρentangled. Proof idea:k

E

1⊗ · · · ⊗

E

mkSd1

1π···⊗πS1dm→`n21π···⊗π`nm2 =k

E

1kSd1

1→`n21· · · k

E

mkSdm

1 →`nm2 =1.

factorization property The action of testers

E

i:

M

di(C)→Cni, 16i6m,

on a stateρ∈

M

d1(C)⊗ · · · ⊗

M

dm(C):

ρ d1 d1 d2 d2

dm dm E1

E2

Em n1

n2

nm

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 10

(20)

Practical interest of tester-based entanglement criteria

Entanglement criterion based on reducing the study of mixed state entanglement (checking if an (Sd1)πmnorm is>1) to that of pure state entanglement (checking if an(`n2)πmnorm is>1).

Bipartite case:Checking if testers

E

,

F

:

M

d(C)→Cndetect the entanglement of a stateρ onCdCdconsists in computing the`n2π`n2norm of

E

F

(ρ)CnCn, i.e. itsSn1norm if seen as an element of

M

n(C).

−→This is much easier than computing theS1dπS1dnorm ofρ.

Multipartite case:The computation of an(S1d)πmnorm, i.e. of an(`d2π`d2)πm≡(`d2)π2m norm, is reduced to the computation of an(`n2)πmnorm. associativity ofπ

−→Reduction by a factor 2 of the number of factors (at the cost of potentially increasing the dimension of each of them fromdton>d...)

(21)

Practical interest of tester-based entanglement criteria

Entanglement criterion based on reducing the study of mixed state entanglement (checking if an (Sd1)πmnorm is>1) to that of pure state entanglement (checking if an(`n2)πmnorm is>1).

Bipartite case:Checking if testers

E

,

F

:

M

d(C)→Cndetect the entanglement of a stateρ onCdCd consists in computing the`n2π`n2norm of

E

F

(ρ)CnCn, i.e. itsSn1norm if seen as an element of

M

n(C).

−→This is much easier than computing theS1dπS1dnorm ofρ.

Multipartite case:The computation of an(S1d)πmnorm, i.e. of an(`d2π`d2)πm≡(`d2)π2m norm, is reduced to the computation of an(`n2)πmnorm. associativity ofπ

−→Reduction by a factor 2 of the number of factors (at the cost of potentially increasing the dimension of each of them fromdton>d...)

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 11

(22)

Practical interest of tester-based entanglement criteria

Entanglement criterion based on reducing the study of mixed state entanglement (checking if an (Sd1)πmnorm is>1) to that of pure state entanglement (checking if an(`n2)πmnorm is>1).

Bipartite case:Checking if testers

E

,

F

:

M

d(C)→Cndetect the entanglement of a stateρ onCdCd consists in computing the`n2π`n2norm of

E

F

(ρ)CnCn, i.e. itsSn1norm if seen as an element of

M

n(C).

−→This is much easier than computing theS1dπS1dnorm ofρ.

Multipartite case:The computation of an(S1d)πmnorm, i.e. of an(`d2π`d2)πm≡(`d2)π2m norm, is reduced to the computation of an(`n2)πmnorm. associativity ofπ

−→Reduction by a factor 2 of the number of factors (at the cost of potentially increasing the dimension of each of them fromdton>d...)

(23)

Important examples of testers

Maps defined from matrix bases:

Let{G1, . . . ,Gd2}be an o.n.b. of

M

d(C)and define:

G

:X∈

M

d(C)7→

d2

k=1

Tr(GkX)|ki ∈Cd2. Clearlyk

G

(X)k`d2

2

=kXkSd

26kXkSd

1. So

G

is indeed a tester.

Example:

R

:X

M

d(C)7→

d

k,k0=1

Tr(Rkk0X)|kk0i ∈Cd2, whereRkk0:=|kihk0|, 16k,k06d.

Associated test operator:TR=

d

k,k0=1

Rkk0⊗Rkk0=

d

k,k0=1

|kihk0| ⊗ |k0ihk|=F.

Maps defined from vector 2-designs:

Let{|x1i, . . . ,|xd2i}be a symmetric spherical 2-design ofCd, i.e.d12

d2

k=1

|xkihxk|2=d(Id++F1).

SetSk:= qd+1

2d |xkihxk|, 16k6d2, and define:

S

:X

M

d(C)7→

d2

k=1

Tr(SkX)|ki ∈Cd2. We havek

S

(X)k`d2

2

= 12(|TrX|2

| {z }

6kXk2

Sd1

+ Tr|X|2

| {z }

=kXk2

Sd2

6kXk2

Sd1

)1/2

6kXkSd

1. So

S

is indeed a tester.

Associated test operator:TS=

d2

k=1

Sk⊗Sk=d+1 2d

d2

k=1

|xkihxk|2=I+F 2 .

Cécilia Lancien Multipartite entanglement detection via projective tensor norms Workshop GOQI, MFO – October 7 2021 12

Références

Documents relatifs

Larger values of w and smaller values of h generally indicate more multipartite entanglement, and experimentally observable bounds on both can be obtained with di ff erent methods

Furthermore, and as opposed to a strain tensor, the average conformation tensor is independent of the transformation linking the current configuration to the reference (or initial)

After introducing the basic facts about quantum complementarity and maximal quantum en- tanglement in such systems, we demonstrate that the 15 × 15 multiplication table of

However, obtaining accurate real-time information about the environmental quantum state in open quantum systems is a major theoretical challenge, as it requires (1) the inclusion of

Finally, we must note that if we allow ourselves to consider states in their filter normal form, the correlation matrix criterion is equivalent to the enhanced CCNR criterion,

The question: "Can Machines Think?" not only involves the basic contradiction be- tween "spirit" and "substance" in philosophy, but also a chain

While multipartite viruses can potentially control GCN at all steps of their life cycle (replication within cell, transmission to next cell and to next host), segmented viruses

We would like to obtain closed-form expressions for the expected number of stored qubits at the switch as well as the capacity of the switch, expressed in the maximum possible number