• Aucun résultat trouvé

Bandwidth of scattered radiation in laser-plasma interactions

N/A
N/A
Protected

Academic year: 2021

Partager "Bandwidth of scattered radiation in laser-plasma interactions"

Copied!
16
0
0

Texte intégral

(1)

PFC/JA-90-24

Bandwidth of Scattered Radiation in

Laser-Plasma Interactions

C. C. Chow, A. K. Ram, and A. Bers

June 1990

Plasma Fusion Center

Massachusetts Institute of Technology Cambridge, MA 02139 USA

(2)

Bandwidth of Scattered Radiation in Laser-Plasma Interactions

C. C. Chow, A. K. Ram, and A. Bers

TABLE OF CONTENTS A bstract ... References ... Figure Captions ... F igures ... ... 1 6 7 8

(3)

AIDTH OF SCATTERED RADIATION IN LASER-PLASMA INTERACTIONS

Carson C. Chow, A. K. Ram, and A. Bers

Plasma Fusion Center and Research Laboratory of Electronics Massachusetts Institute of Technology

Cambridge, Massachusetts, 02139

Abstract

A finite bandwidth associated with the scattered electromagnetic wave, for the stim-alated Raman (SRS) and the stimulated Brillouin scattering (SBS), has been observed in several experiments on laser-plasma interactions. We show that, within the context of a three-dimensional space-time analysis of linear instabilities, both SRS and SBS will have a finite bandwidth regardless of whether the instability is convective or absolute. We cal-culate the bandwidth for typical laser-plasma experiments and show that it has a strong dependence on the scattering angle. Firthermore, the SBS bandwidth increases as the ion sound speed is increased while the SRS bandwidth decreases when the density, of the region where the instability is generated, is increased.

(4)

In laser produced plasmas stimulated Brillouin scattering (SBS) and stimulated Ra-man scattering (SRS) have been extensively observed. - Both, SBS and SRS, are three-wave parametric instabilities produced by the interaction of the incident laser field with a plasma wave.7 In SBS the incident electromagnetic (EM) wave parametrically decays into a scattered EM wave and into an ion acoustic wave. In SRS the incident EM wave decays into a scattered EM wave and an electron plasma wave. One of the characteristics observed in either of the two processes has been the bandwidth associated with the scattered light. 6 Previous theories on the SBS have shown that, if the convectively unstable SBS grows from a noise source that is broad band, the scattered narrow bandwidth that is observed is de-termined either by the ion acoustic wave damping or by plasma inhomogeneities.8 9 In this letter we show that, within linear theory and for a homogeneous plasma, the scattered EM wave will naturally have a finite bandwidth for both the SBS and the SRS. This bandwidth is finite regardless of whether the nature of the instability is absolute or convective,10 and is a natural consequence of the space-time analysis of the SRS and the SBS. Our analysis shows that a broad band noise background does not imply that the scattered radiation will be equally broad band. We find that the bandwidth is limited in wavelength and is a function of the viewing angle; the maximum bandwidth occurs in the forward direction.

The wave vectors and frequencies for the incident, scattered and plasma waves for the SBS or the SRS must satisfy the resonance conditions: kL = k, + k2 and WL = w1 + W2,

where the indices L and 1 refer to the incident and scattered EM radiation, respectively, and 2 refers to either the ion acoustic wave (for SBS) or the electron plasma wave (for SRS). Furthermore, in the plasma, the loss-free dispersion relation for mode 1 is w2 = c2k2

+

w2

while the dispersion relation for mode 2 is either w' = c k (for SBS) or W2 = 3k7vCe +W 2

(for SRS); wp, c, and VTe are the electron plasma frequency, ion sound speed and electron

thermal velocity, respectively.

The space-time evolution of an instability is determined by the Green's function,

G(r, t), which, in turn, is determined by the dispersion relation describing the two coupled

decay waves (modes 1 and 2).10'11 This dispersion relation is given by:

(5)

where vi, v2 are the group velocities of modes 1 and 2, respectively. The effects of Landau damping and collisions on electrons and ions are included in the damping coefficients, -y, and 72. The coupling coefficient is given by:'1

2 v2WPk|2 ki x eL12 L 12ik (2) -16w,kC2 and 2 4 eW2c2Jkl X eL12 2 = V( 1&02 WlV4ek2 3 ) for SRS and SBS, respectively; eL = EL/ELJ is the electric field polarization vector of the incident laser, and VL = eEL /mewL.

The detailed evaluation of G(r, t) is both complicated and unnecessary. The time-asymptotic properties of G(r, t) are sufficient for the purposes of determining the propaga-tion of the instability. Such a time-asymptotic analysis shows that the instability will have a pulse shape given by the pinch-point growth rate, wp;(V), as a function of the observer velocity V where w(V) oc InIG(r, t -> oo)[.10 The pinch-point analysis shows that, for SBS or SRS, the pulse-shape is along the line v2 - vl (Fig. la) and is given by:1011

2y + 2

- 1,(V1 + 2) +7 2(V - V1

)]

W,( = 1+V) V 2 + )] - ,

(4)

where V1, V2 and V11 are as shown in Fig. la. From (4) we find that wpi(V) = -- I and

wpi(V2) = -- y2. This implies that, since the damping rates 7Y1 and 72 are positive, the time-asymptotic pulse shape vanishes along the direction of the group velocities of modes 1 and 2, i.e. the instability will have a finite growth only along the line joining v, and v2. Then radiation will be observed only if the vector to the observer intersects this line. Thus, the bandwidth of any radiation, observed in a given direction, is generated by the EM component of all possible triplets of nonlinearly coupled waves that make up the space-time unstable pulse in that direction. In the numerical results discussed below we give a detailed evaluation of the bandwidth of the SRS and SBS for the following parameters:2

n/n. = 0.05 where n is the density in the scattering region and nc is the density at the critical surface, AL = 0.53pim is the laser wavelength, P = loll W/cm2 is the power of the laser light, and c, = 2 x 10' m/sec.

(6)

We assume that the incident laser light propagates along the x axis and is polarized along the z axis. The direction of ki is given by (8, 4), where 0 is the polar angle with respect to x and

4

is the azimuthal angle with respect to z. Any change in

4

only changes the coupling coefficient. Thus, without loss of generality, we can continue our analysis in the two-dimensional x-y plane (i.e. q = 7r/2). The wave vector resonance condition defines the directions for the group velocities of the two modes. A given set of wave vectors satisfying the resonance condition will be referred to as a resonant triplet. Consider a viewing angle fl within the x-y plane. If fl lies between the two group mode velocities then the pulse may be observed. For a given fl there will be a family of resonant wave vector triplets that will produce a pulse response that can be observed. Contour plots of wpi(V) in the V.-V, plane are shown in Figs. 2a and 2b for the SRS and the SBS, respectively. Here we have excluded any effects of damping on SRS and SBS. The plots are symmetric about V = 0, and SRS and SBS are both absolutely unstable. The effect of damping is to stabilize SRS and SBS near the origin, thereby converting the nature of the two instabilities from absolute to convective.

For SBS, kL ~ k, so the ion acoustic wave is always in the forward direction. Then for backscattering (0 > ir/2) the resonant triplets have 0 < < 7r. However, in the forward direction the group velocities can contain fl when either f < 8 <ir or 2fl+7r < 8 < 2r (Fig. 1b), thereby forming two different bands. Since the resonance condition is symmetric about the x axis one can show that for f < r/3 the two bands will overlap. For 7r/3 < f

<

-/2 the two bands will be separate.

For SRS, since w, ~ WL - wp IkL

I

Ik so that the plasma wave also will always be in the forward direction. Again, there will be two bands but, unlike SBS, it is not easy to calculate the conditions for the overlap of the two bands.

In Figs. 3a and 3b we plot the growth rate, w,, versus w1/WL, for two different viewing angles, for SRS and SBS, respectively. Since v2

<

v, except for when 8 ~ fl, the pulse velocity of the resonant triplets is near the origin where the growth rate is small. Consequently, the first band peaks when the group velocity of the scattered EM wave is along the viewing angle. The second band does not appear for backward scattering while, for forward scattering, the two bands overlap. In Figs. 4a and 4b we plot the corresponding

(7)

bandwidths for SRS and SBS, respectively, as a function of f. We take the entire band to represent the bandwidth. The bandwidth is much broader for forward scattering. For a different set of parameters, corresponding to a different experiment, it has been observed that the bandwidth of SRS increases in the forward direction.5 Our calculations also show

that the bandwidth of SBS is much narrower than the bandwidth of SRS. This is to be expected from the resonance conditions. Since, for SBS, W2 is much smaller than w, and

WL, in order to satisfy the resonance conditions, w, will have to change very little for the different resonant triplets. However, for SRS, since W2 is comparable to w1, there will be a

larger change in wl. This change in w, will result in a broader bandwidth for the SRS than the SBS. A comparison of observed bandwidths for SRS4- and for SBSw' from a variety of different experiments shows that the observed SRS bandwidth is generally greater than the SBS bandwidth.

From the dispersion relations for mode 2, it is clear that the SRS depends on the value of n/nc while the SBS depends on c,. We find that these parameters affect the corresponding bandwidths. If n/nc is increased the bandwidth for the SRS decreases. We find that, approximately, the decrease in the bandwidth of SRS is proportional to the increase in n/nc. However, changing n/nc does not seem to have any significant effect on the bandwith of the SBS. But, if we increase c,, the bandwidth of SBS increases while the bandwidth of SRS does not change significantly. The increase in the bandwidth of SBS is proportional to the increase in c,.

The experiments in Ref. 2 on SBS measure a bandwidth of approximately 5A at an angle of 1200. Our calculations (Fig. 4b) give a bandwidth of about 1A. However, if we choose the value of c, to be five times the values for Fig. 4b we would get a bandwidth of about 5A.

When the instability is convective only those triplets with 0 ~ f will have positive growth. Consequently, the bandwidth will be narrower than in the case when the instability is absolute. As the power of the laser is increased the instability will approach and become absolute and, consequently, the bandwidth will increase. Since, only the EM component of the unstable pulse can leave the plasma and be observed, the frequency of the observed radiation will be the frequency of the EM mode inside the plasma. We have ignored the

(8)

effects of non-linearities, inhomogeneities and edge refraction effects in our analysis. These effects will likely affect the bandwidth. However the general dependences of the bandwidth on the angle, density and ion sound speed should still hold.

This work was supported in part by Lawrence Livermore National Laboratory sub-contract B108475.

References

1. Mayer et al., Phys. Rev. Lett. 44, 1498 (1980). 2. Drake et al., Report UCRL-100265 (1988).

3. P.E. Young et al., Phys. Fluids B 1, 2217 (1989). 4. Tanaka et al., Phys. Rev. Lett. 48, 1179 (1982). 5. Phillion et al., Phys. Rev. Lett. 49, 1405 (1982). 6. Drake et al., Phys. Fluids 31, 1795 (1988). 7. J. F. Drake et al., Phys. Fluids 17, 778 (1974). 8. G. R. Mitchel et al., Phys. Fluids 26, 2292 (1983). 9. A. Ramani et al., Phys. Fluids 26, 1079 (1983).

10. A. Bers, Linear Waves and Instabilities in Plasma Physics (Les Houches 1972) Gordon and Breach London 1975.

11. F. W. Chambers, Ph.D. Thesis, Department of Physics, Massachusetts Institute of Technology , 1975.

(9)

Figure Captions

1 a) An example of a resonant triplet in velocity space. b) The range of resonant triplets for a given 0 in the forward direction. Shown is the configuration of v. and v2 for the first band (top) and the second band (bottom).

2 Contour plots wpi(V) in the V. - V, plane for (a) SRS, and (b) SBS. We use the following parameters:2 AL = 53pm, c, = 2x105m/s, P = 10'4W/cm2 and n/ne = .05.

The 0%, 40% and 80% contours are labeled.

3 A plot of w, versus W1/WL for the same parameters as in Fig. 2: (a) SRS and (b) SBS. Two viewing angles (0) were chosen. For the forward scattering case there are two bands which are labeled 1 and 2. The two bands overlap for 0 = 400.

4 A plot of the full bandwidth as a function of f. for (a) SRS and (b) SBS. The laser-parameters are the same as in Fig. 2. In SRS the second band does not exist for

(10)

Vi

V2 V -I viI

v

v

J6

000

.0-9

x

12

y

8

_

[1

I / / / / FIGURE 1

(a)

(b)

range

-I 2 -V

-5

x

thow V2 I I

-00"

range

(11)

00 0

00

o

Ox 0 Q 00 Q 00 FIGURE 2

(12)

0* 00 0

E

00

-oO9

x

.x

..

0

Ci 0 0 0 0 0 0

99

o E

0

FIGURE 2b

(13)

0 0

(g01

x) dm

FIGURE 3a 0 0 0 C4J 0 0 N 'S 0 P--0

3l

0 0 (N 0 In

(14)

0 000 0 C; -0 0 0 0

0~0

0 ol 0

o

0o N OD

(

01

oix) dm

FIGURE 3b

(15)

0 0 0 000 0 0 0 0 0 o IT 0 cc C'j

(V)

HALIMQINVB

0 FIGURE 4a

(16)

0 0 0 0

(v)

H.IGIMQNVB

F R (V) IGURE 4bG

Références

Documents relatifs

Après son entrée dans la profession le 2 janvier 1898, suivie de son service militaire, Marc Pédron a été consacré dans son apostolat le 9 juillet 1901, avant de

developed to study both steady-state and transient stimulated Raman and Brillouin scattering processes in centrosymmetric or weakly noncentrosymmetric semiconductors.. Gain

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Using 2D hydrodynamics simulations for density, temperature nd~ velocity evolutions, we have calculated the convective SBS gain (GsBs) using the Rosenbluth &lt;formula [7j..

Compared to the first experiment with pure ethanol, the higher Raman coefficients of toluene allow the excitation of a Raman cascade: the pump excites a first Stokes wave that

The asymptotic for the thickness tending to zero are very different compared with the soft con- trast medium [17, 18], since the effect of the thin layer appears at the zeroth order

Besides fixed precision integers, our package also provides prime fields sup- port that can be easily embedded in high level code, while offering very good performance, in

une ischémie constituée, si les troubles neurologiques sont installés depuis plus de 4-6 heures, si il n’y a pas de reflux en per-opératoire de même que si la lésion