• Aucun résultat trouvé

Fire behaviour of FRP wrapped square reinforced concrete columns

N/A
N/A
Protected

Academic year: 2021

Partager "Fire behaviour of FRP wrapped square reinforced concrete columns"

Copied!
3
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

9th IAFSS [Proceedings], p. 1, 2008-09-21

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=bb3a9181-56d9-419d-843a-063fd739ddfc

https://publications-cnrc.canada.ca/fra/voir/objet/?id=bb3a9181-56d9-419d-843a-063fd739ddfc

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Fire behaviour of FRP wrapped square reinforced concrete columns

Chowdhury, E. U.; Bisby, L. A.; Green, M. F.; Bénichou, N.; Kodur, V. K. R.

(2)

http://irc.nrc-cnrc.gc.ca

F i r e b e h a v i o u r o f F R P w r a p p e d s q u a r e r e i n f o r c e d

c o n c r e t e c o l u m n s

N R C C - 5 0 2 5 1

C h o w d h u r y , E . U . ; B i s b y , L . A . ; G r e e n , M . F . ;

B é n i c h o u , N . ; K o d u r , V . R .

2 0 0 8 - 0 9 - 2 1

A version of this document is published in / Une version de ce document se trouve dans:

9th IAFSS, Karlsruhe, Germany, Sept. 2008, .pp 1-8

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

(3)

E.U. Chowdhury

1

, L.A. Bisby

2

, M.F. Green

1

, N. Benichou

3

and V.K.R. Kodur

4 Department of Civil Engineering, Queen’s University, Kingston, Canada BRE Centre for Fire Safety Engineering, University of Edinburgh, Scotland, UK National Research Council of Canada, Ottawa, Canada Department of Civil and Environmental Engineering, Michigan State University, Michigan, USA

Abstract

Numerous applications of fibre reinforced polymers (FRPs) have demonstrated good performance in retrofitting and repairing deteriorated reinforced concrete structures, both through research studies and through practical field applications. However, a there is a paucity of information on FRP strengthening systems at elevated temperatures, and the perceived susceptibility of these systems in fire, still discourages their use in many applications. As part of a larger ongoing research program, an experimental and analytical study is underway focusing on the fire behaviour of FRP strengthened square reinforced concrete (RC) columns.

Experimental Program

The experimental program consists of full‐scale fire tests on three FRP strengthened RC square columns (one of which has been tested to date). The tested column was strengthened with glass FRP (GFRP) hoop wraps and protected with an insulation system consisting of a spray‐applied cementitious mortar and epoxy coating. The tied reinforced column was 3810 mm long and cast from carbonate aggregate concrete. The percentage of longitudinal steel in the column was 1.21% with a concrete cover of 50 mm. During the fire test, the column was under a sustained concentric load of 3093 kN, which was 69% of the predicted room temperature ultimate strength, and was exposed to ASTM E‐119 fire. The column was considered to have failed when the hydraulic jack could no longer maintain the load.

The FRP strengthened square RC column protected with the fire protection system was capable of achieving a fire endurance rating of more than 4 hours. Figure 1 shows the FRP strengthened col‐

fire endurance of the member under applicable loads must be considered, rather than only the specific performance of the FRP material. Visual observations made during the fire tests indicated that the insulation remained intact for more than 4 hours of exposure to the standard fire with only minimal cracking.

Analytical Modelling

A numerical model is being developed to predict both the heat transfer and structural response of FRP strengthened square reinforced concrete columns in fire. An explicit finite difference method is used to predict the temperatures within the column and the Column Deflection Curve method presented in Chen and Atsuta [1] is used to determine its structural behaviour. The structural model accounts for the non‐linear mechanical response of all constituents, the confining effect of the FRP wraps, and the second‐order moments in the columns.

Preliminary results from the heat transfer model on a plain 305 mm square reinforced concrete column are presented in Figure 3 where they are validated against experimental results from tests by Lie and Woollerton [2]. It was found that the predictions from the current heat transfer model agree well with the experimental results.

The structural analysis model has been validated for the room temperature case against experimental results presented in Fitzwilliam [3] on 152 mm diameter circ‐

(a)      (b) Figure 1 – FRP strengthened square RC  column (a) before and (b) after fire test (a)      (b) Figure 3 – Variation in temperature within RC column (a) along the line AB and (b) AC Figure 4 – Predicted and observed [3]  axial load‐lateral deflection behaviour of RC circular columns of various  lengths with increasing applied load

References

[1]  Chen, W.F., Atsuta, T., Theory of Beam‐Columns: V. 1’, McGraw Hill, 1976, 513 pp. [2]  Lie, T.T., Woollerton, J.L., Fire resistance of reinforced concrete columns, Internal Report No. 569,   Institute for Research in  Construction, National Research Council of Canada, 1988, 302 pp. [3]  Fitzwilliam, J. M. Fibre‐reinforced polymer wraps for slender eccentrically‐loaded reinforced  concrete columns, M.Sc. Thesis, Queen’s University, Kingston, Canada, 2002.

Further Work

Additional full‐scale fire tests are planned for 2008‐2009 to validate the heat transfer analysis for FRP wrapped and insulated square RC columns. Small‐scale materials tests are also in progress on various externally‐bonded FRP strengthening systems to investigate the mechanical and bond properties and FRP confinement effectiveness at elevated temperatures.

406 mm 3 layers of  GFRP wrap 38 mm insulation system Intumescent paint 2 6 8 4 1 16 7 3 Thermocouples Figure 2 – Temperatures recorded at various locations in the FRP  strengthened RC column during fire test

umn square RC column before and immediately after failure. Figure 2 shows that the temperature of the FRP wrap rem‐ ained below 100 C for about only 30 min minutes, although the column continued to carry its service load. This shows that the fire endurance of FRP strengthened members need to be considered in holistic way, in that the

ular columns. The comparison in Fig‐ ure 4 shows that the model can predict the maximum axial load carrying cap‐ acity and can also capture the struct ural behaviour of circular concrete col‐ umns satisfactorily at room tempera‐ ture. Extension of the model to account for the effects of elevated temperature is currently underway.

Références

Documents relatifs

ai Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America a j Also at Department of Physics and Astronomy, University of Sheffield, Sheffield,

Also at Department of Physics, California State University, Sacramento CA; United States of America. Also at Department of Physics, King’s College London, London;

A 14-days nutritional experiment (see Supplementary Materials for details) was then performed in Fischer 344 male rats to test the effect of different marinated or non-marinated

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

USAW Distributors Distributor 1 B2B Industrial engineer High End Customer s Artisans Colombian Business Bureau Leadership Low End Customers Gym Affiliate Distributors B2B

Our submissions rely on a Support Vector Ma- chine classifier, various feature spaces using a variety of lexical, spelling, and syntactic features, and on a simple model

Conditions of 36 GPa and 2800 K appear to reside in a “sweet- spot” for complexity in shock synthesis, where we observe a variety of C−C and C−N bonded backbones with

- Méthodes de recherches spécifiques en médecine générale. Par exemple : développement de standards pour les méthodes de recherche des généralistes, approche