• Aucun résultat trouvé

Clément Sire

N/A
N/A
Protected

Academic year: 2022

Partager "Clément Sire"

Copied!
26
0
0

Texte intégral

(1)

Reaction/Aggregation Processes

Clément Sire

Laboratoire de Physique Théorique

CNRS & Université Paul Sabatier Toulouse, France

www.lpt.ups-tlse.fr

(2)

A Few Classical Examples

 Ubiquitous in physics and chemistry

Atoms diffusing on a surface and Diffusion Limited Aggregation

Atomic clusters

Chemical reactions (A+B → C)

Smoke in air/latex particles at the surface of water

Breath figures

(3)

But Also…

Two-dimensional decaying turbulence

Epidemics spreading (S+H → S+S, S → H, or S → Ø…)

Formation of river and vascular networks

(4)

And Even…

Galaxy… or bacteria clusters

Poker tournaments (players “aggregate”, chips are conserved…)

… and the reverse and similar problem of fracture (A → A+A)

(5)

Important Features

 Importance of conservation laws: mass, energy, momentum, or more exotic quantities (flow of a river, chips in a poker tournament…)

 Important quantities: distribution of cluster masses (or joint distribution of conserved quantities), number of

remaining clusters…

 This distribution of “mass” can be mono or polydisperse and is often scale invariant: P m t( , )  t f m t( / z)

(6)

Important Features

 Importance of the diffusive or ballistic motion of clusters

 Possibility of obtaining compact or fractal clusters

 The mean-field approach (neglecting spatial correlations) is often incorrect in low effective dimensions

(typically d· 2 or even d· 4 for diffusion processes)

 Out of equilibrium reaction/aggregation processes can lead to dynamical phase transitions (directed

percolation…)

(7)

A Few Selected Topics

Simple reaction-diffusion processes:

A+A → Ø; A+B → Ø; A+A → A

(application to a river network, in the latter case)

Monodispersity (bell-shaped mass distribution)

& polydispersity (power-law mass distribution)

in the framework of Smoluchowsky’s approach

(application to breath figures and… poker tournaments)

Dynamical phase transitions:

A+A → Ø, A → (n+1)A

(n odd: directed percolation; n even: parity conserving)

(8)

Reaction-Diffusion Processes

The reaction

Mean-field approach:

In fact, there is a strong depletion effect near surviving particles:

And the mean-field approximation is exact in

The mean-field decay is the fastest and can be realized by stirring the solution (hence eliminating spatial correlations)

A  A  Ø

2 1 1

( ) ~

1 2

(0) 2

2 , t

kt kt

d k

dt

 

  

 

( ) ~ ( ) ~ /2, 2 ( ) ~ ln , 2

d d

t L t t d

t t d

t

c 2 dd

(9)

Reaction-Diffusion Processes

The reaction

Mean-field approach:

In fact, when

there is again a very strong depletion effect giving rise to segregation of the particles

A+B  Ø

A ,

A B

d k

dt

     

1 1

( ) ~ , (0) (0)

1 (0)

A A B

A

if

t kt

kt

  

 

 

 

( ) (0) exp (0) (0) , (0) (0)

A t A kt B A if A B

         

( ) ( )

A t B t

  

(10)

Reaction-Diffusion Processes

The reaction

A physical argument:

Initially, in a region of linear size L,

The species in excess will dominate in this region, and L is ultimately the diffusion length, L(t)~t1/2. Hence,

And the mean-field approximation is exact in , A(0) B(0) A+B  Ø for   

( ) ~

/4

, 4 ( ) ~ ln , 4

t t

d

d

t t d

t

c 4 dd  (0) (0) | /2

| A  B ~ Ld

(11)

Reaction-Diffusion Processes

The reaction

Mean-field approach:

Same depletion effect as for :

And the mean-field approximation is again exact in A  A  A

2 1 1

( ) ~

1 (0) d ,

d k t

t

t k

kt

 

  

( ) ~ ( ) ~ /2, 2 ( ) ~ ln , 2

d d

t L t t d

t t d

t

c 2 dd  A  A  Ø

(12)

Reaction-Diffusion Processes

The reaction with conservation of “mass”

Mean-field approach (Smoluchowsky’s equation):

Mean-field solution:

Only correct in

A  A  A

0

0 0

( , ) ( , ) ( , ) 2 ( , ) ( ),

( , ) , ( , )

with ( ) tot

d m

m t k m s t s t ds k m t t dt

m t dm and m t dm

t m m

    



 

c 2 dd

2

ex

( ) )

( p

,

tot

tot

m m kt m t m

kt

 

 

  

(13)

Reaction-Diffusion Processes

The reaction with conservation of “charge” and constant injection of particles (mass distribution )

Mean-field approach (Smoluchowsky’s equation):

General scaling solution:

Polydispersity

A  A  A

( , ) ( , ) ( , ) 2 ( , ) ( ) ),

( , )

( with tot

d m t k m s t s t ds k m t

m m

dt t I m

I m t dm t

    









  

  

0

(0) 1, ( ) exp( )

( , ) ( / ),

with and

x x

z

f f x x

m t m f m t



1

1

3 1

0 : 2, , 2

2

0 : 1, 3 , 3

4

2

MF

MF

and and

d

d

I z z

z

I z z

z

      

      

( ) I m

(dc  2)

(14)

Reaction-Diffusion Processes

Application to the formation of a river network

Fractal dimension:

 The “next” river is

~ 3 x longer than the previous one

V=pR2 V=R2

V=R3 V=R4/3

4

f

3

d

(15)

General Mean-Field Approach

A general physical aggregation process is described by:

 Conservation law(s):

 Nature of the collision/aggregation physical process: the merging Kernel,

Ex: d-dimensional “cross-section” ¾~Rd and m~RD

 Intrinsic growth of clusters

 Deposition:

 Fracture Kernel

 …

1 2

mmm

1 2) ( ,

K m m

( , ) I m t

 ( , ) mv m t

1/ 1/

1, 2 1 2

( m ) D D d

K mmm

1 2

mmm

(16)

General Mean-Field Approach

A general physical aggregation process is described by:

Can describe many physical situations and can lead to mono and polydispersity and even gelation…

( , )

( , )

( ( ,

, )

) ( , ) ( , ) ( , )

2 ( , ) ( , )

( , ) Fracture ...

m t v m t m t K m s s m s t s t ds

t m

m t s t ds

t

m m

s I

K

   

 









  

  

 

  

(17)

General Mean-Field Approach

The general case of pure aggregation

 Assume that the collision Kernel satisfies

 Then (Van Dongen and Ernst), there is a precise mono/polydispersity criterion:

( ( , )v m t  0, ( , )I m t  0)

1 2 1 2

1 2 1 2 2 1

( , ) ( , )

( , ) ~ , for

m m m m

m

K K

m m m

K m m

 

  

0

0 : 0)

0 : 1

0 : 1

2 ( )

the mass distribution is

the mass distribution is with the mass distribution is with

can be determined b

(

y

x  f x dx

 

  

  



 

  

  

 

monodisperse polydisperse polydisperse

perturbative and non - perturbative methods

( , )m t m f m t( / z); f (0) ~ 1

 

1/ 1/

1, 2 1 2

( )

/ , 0

D D d

m m m

d K m

D

 

 

Ex:

(18)

Scaling distribution of fortunes (stacks):

Scaling equation (integro-differential and non-linear; no parameter):

Scaling in Poker Tournaments

(19)

Internet & WPT Data

(20-10000$ buy-in)

(20)

Dynamical Phase Transitions

Consider the reaction/breakdown process for diffusing particles: A+A → Ø (rate k), A → (n+1)A (rate p)

Mean-field approach:

Mean-field completely fails in describing the fact that for d<dc, one has pc>0, and different universality classes depending on the parity of n

2

( , ) ) , 0,

2 ,

2 1

( , ) ~ , 1

( with and

with

c c

c

d k np

n p p

k t

t

p t

d

p

 

    

 

(21)

Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

4 ; for 1, 0.276486(6) ... and 0.159464(6 )...

d

c

d     

1 1/ 5 / 2

0.276393..

1 . !

Best theoretical estimate in d  :    

Field theoretical methods available for close to d dc

( 1 / 6 0.01128 ...;  2   4 d)

Absorbing State

Active State

(22)

Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

 DP universality class is ubiquitous in out of equilibrium physics and is thus very robust (adding the reaction A+A → A does not change anything…),… except in the presence of disorder

 In principle, many possible experimental realizations:

Catalytic reactions on a surface (CO+O → CO2)

Growing interfaces

Flowing granular matter

Porous media

Turbulent liquid crystals

Douady & Daer

(23)

Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in turbulent liquid crystals

(intermittent regimes between to dynamic scattering modes – DSM)

(24)

Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in turbulent liquid crystals (scaling function)

 

1/

( ) ~t t f t ; p pc

   

(0) 1; ( ) ~ ; / ; ( ) ~ exp( | |)

x x

f f x x    f x x

 

(25)

Dynamical Phase Transitions

Even n: the parity conserving (PC) universality class (a “theorist’s curiosity”)

dc>1, but dc· 5/3<2 !

Different critical exponents from DP (in d=1, ¯¼ 0.4, ±¼ 0.2)

Strong numerical corrections to scaling (DP ???)

No analytical (even approximate) results available

(26)

Conclusion

Reaction/aggregation processes:

Are ubiquitous in Nature

Appear at all spatial and temporal scales

Offer rich physical properties (dynamical phase diagram, fractals, dynamical scaling…)

Involve all the modern tools of theoretical physics

(field theory, renormalization group, perturbative and non perturbative methods, sophisticated numerical methods…)

Thank you for your attention

Références

Documents relatifs

equilibrium positions at a given temperature T of all the atoms as well in the bulk as in the vicinity of the adsorbed monolayer.. The expansions done above can be

Having provided the general properties of any quantum map M, we are now interested in the specific map describing the time evolution of the density matrix ˆρ of a system weakly

Trie different lifetimes of the first generation intervals are assumed to take their values into a finite set of I( real distinct values:.. (tk)Î=1 It is convenient to represent

 Alfred Kastler (Prix Nobel 1966) pour « la découverte et le développement de méthodes optiques pour étudier les. résonances dans les

 Contrairement à la plupart des autres branches des mathématiques, de nombreux problèmes centraux en théorie des nombres peuvent être exposés aux néophytes, même s’ils

 Vous devez choisir le meilleur candidat parmi n qui se présenteront successivement pour un entretien ( n =11 pour les femmes de Kepler).  Malheureusement, après chaque

Une fois toutes les cartes remises dans le paquet, faire mine de chercher la carte, en plaçant la carte choisie (ici, le 7♣) en position égale à la somme des cartes de

Nous avons entrepris une enquête épidémiologique prospective sur la prévalence des antigènes érythrocytaires dans les systèmes de groupes sanguins les plus immunogènes