• Aucun résultat trouvé

Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s = 13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Partager "Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s = 13 TeV with the ATLAS detector"

Copied!
25
0
0

Texte intégral

(1)

Article

Reference

Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s =

13 TeV with the ATLAS detector

ATLAS Collaboration AKILLI, Ece (Collab.), et al .

Abstract

A search for new charged massive gauge bosons, W′ , is performed with the ATLAS detector at the LHC. Data were collected in proton–proton collisions at a center-of-mass energy of s=13 TeV and correspond to an integrated luminosity of 36.1 fb−1 . This analysis searches for W′ bosons in the W′→tb¯ decay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0 TeV and considers right-handed W′

bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on the W′→tb¯ cross section times branching ratio and the W′ boson effective couplings as a function of the W′ boson mass. For right-handed W′ bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15 TeV are excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for W′→tb¯ in the fully hadronic final state. Using the combined searches, right-handed W′ bosons with masses below 3.25 TeV are excluded at the 95%

confidence level.

ATLAS Collaboration, AKILLI, Ece (Collab.), et al . Search for vector-boson resonances

decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s

= 13 TeV with the ATLAS detector. Physics Letters. B , 2019, vol. 788, p. 347-370

DOI : 10.1016/j.physletb.2018.11.032

Available at:

http://archive-ouverte.unige.ch/unige:111792

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at

s = 13 TeV with the ATLAS detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received27July2018

Receivedinrevisedform15October2018 Accepted3November2018

Availableonline22November2018 Editor: W.-D.Schlatter

A search for new charged massive gauge bosons, W, is performed with the ATLAS detector at the LHC. Datawere collectedinproton–proton collisions atacenter-of-massenergy of

s=13 TeV and correspond to an integrated luminosity of 36.1 fb1. This analysis searches for W bosons in the Wtb¯ decaychannelinfinalstateswithanelectronormuonplusjets.Thesearchcoversresonance massesbetween0.5and 5.0 TeV andconsidersright-handedW bosons.Nosignificantdeviationfrom theStandardModel(SM)expectationisobservedandupperlimitsaresetontheWtb¯crosssection timesbranchingratio andthe W bosoneffective couplingsasafunctionofthe W bosonmass.For right-handed W bosonswith couplingto the SMparticlesequal tothe SMweak coupling constant, massesbelow3.15 TeV are excludedatthe95%confidencelevel.Thissearchisalsocombinedwitha previously publishedATLAS result for Wtb¯ in the fully hadronicfinal state. Usingthe combined searches,right-handedW bosonswithmassesbelow3.25 TeV areexcludedatthe95%confidencelevel.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ManyapproachestotheoriesbeyondtheStandardModel(SM) introducenew chargedvector currents mediated by heavy gauge bosons, usually referred to as W. For example, the W boson can appear in theories with universal extra dimensions, such as Kaluza–Klein excitations of the SM W boson [1–3], or in mod- els that extend fundamental symmetries ofthe SM and propose amassiveright-handedcounterparttothe W boson [4–6].Little- Higgs [7] and composite-Higgs [8,9] theories also predict a W boson.ThesearchforaWbosondecayingintoatopquarkanda b-quark (illustratedinFig.1) exploresmodelspotentiallyinacces- sibletosearchesforaWbosondecayingintoleptons [10–15].

Forinstance,intheright-handedsector, the W boson cannot decayintoachargedleptonandahypotheticalright-handedneu- trino if the latter has a mass greater than the W boson mass (mixingbetweenW andSM W bosonsisusually constrainedto besmallfromexperimentaldata [16]).Also,inseveraltheoriesbe- yondtheSMtheWbosonisexpectedtocouplemorestronglyto thethird generationofquarksthantothefirstandsecond gener- ations [17,18].Searchesfora W bosondecayingintothetb¯ final

E-mailaddress:atlas.publications@cern.ch.

state1 havebeenperformedattheTevatron [19,20] intheleptonic top-quark decaychannel and atthe Large Hadron Collider (LHC) inboththeleptonic [21–25] andfullyhadronic [26,27] finalstates, andthemostrecentresultsexcluderight-handedWbosonswith massesupto about3.6 TeV atthe 95%confidencelevel.A previ- ousATLASsearchintheleptonicchannel [24] usingproton–proton (pp) collisions ata center-of-mass energyof

s=8 TeV yielded a lower limit of 1.92 TeV on the mass of W boson with right- handed couplings.More recently,the CMSCollaboration reported results usinga 13 TeV pp dataset of 35.9 fb1 [25], yielding a lowerlimit of3.6 TeV onthemassofright-handed W bosons.A search by the ATLAS Collaboration inthe fullyhadronicdecay of the tb¯ final state using 36.1 fb1 of 13 TeV data yieldedlower limitsonthemassofright-handedW bosonsat3.0 TeV [27]. In each oftheseanalyses,the couplingstrengthofthe W boson to right-handed particleswas assumed tobe equal tothe SM weak couplingconstant.

ThisLetterpresentsasearchforWbosonsusingdatacollected during the period 2015–2016 by the ATLAS detector [28] at the LHC,correspondingtoanintegratedluminosityof36.1 fb1 from pp collisionsat acenter-of-mass energyof13 TeV.The search is performedintheWR tb¯νbb¯decaychannel,wherethelep-

1 Thenotation“tb”¯ isusedtodescribeboththeW +tb¯andW→ ¯tbpro- cesses.

https://doi.org/10.1016/j.physletb.2018.11.032

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

Table 1

Eventgeneratorsusedforthesimulationofthesignalandbackgroundprocesses.ThePS/Hadcolumnde- scribestheprogramusedforpartonshowerandhadronization.

Process Generator PS/Had MC Tune PDF

WR MadGraph5_aMC@NLO Pythia8 A14 NNPDF23LO

t¯t Powheg-Box Pythia6 Perugia 2012 NLO CT10

Single-topt-channel Powheg-Box Pythia6 Perugia 2012 NLO CT10

Single-topW+t Powheg-Box Pythia6 Perugia 2012 NLO CT10

Single-tops-channel Powheg-Box Pythia6 Perugia 2012 NLO CT10

W,Z+ jets Sherpa2.2.1 Sherpa2.2.1 Default NLO CT10

W W,W Z,Z Z Powheg-Box Pythia8 AZNLO LO CTEQ6L1

Fig. 1.Feynmandiagramfor Wbosonproductionfromquark–antiquarkannihila- tionwiththesubsequentdecayintotb¯andaleptonicallydecayingtopquark.

ton,,iseitheran electronora muon.Right-handed W bosons, denotedWR ,aresearchedforinthemassrangeof0.5to5.0 TeV.

AgeneralLorentz-invariantLagrangianisusedtodescribethecou- plingsoftheWR bosontofermionsasafunction ofitsmass [29, 30]. The mass of the right-handed neutrino is supposed to be largerthanthemassoftheWR boson,thusnon-hadronicdecaysof theWR bosonhaveanegligiblebranchingfraction.Inthisweakly coupledmodel,theresultingbranching fractionofthe WR tothe tb¯ finalstateincreasesasafunctionofmassfrom29.9%at0.5 TeV to33.3%at5 TeV.

2. ATLASdetector

The ATLAS detectorat the LHC covers almost the entiresolid anglearoundthecollisionpoint.2 Chargedparticlesinthepseudo- rapidityrange|η|<2.5 arereconstructed withtheinner detector (ID), which consists of several layers of semiconductor detectors (pixelandstrip)andastraw-tubetransition–radiation tracker,the latter extending to |η|=2.0. The high-granularity silicon pixel detectorprovides four measurements per track;the closest layer to the interaction point is known as the insertable B-layer [31, 32], which was added in 2014and provides high-resolution hits at small radius to improve the tracking performance. The ID is immersed in a 2 T magnetic field provided by a superconduct- ing solenoid. The solenoidis surrounded by electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air–core toroid magnet systems.The calorimetersystemcoversthepseudorapidityrange|η|<4.9.Elec- tromagnetic calorimetry is provided by barrel and endcap high- granularity lead/liquid-argon (LAr) electromagnetic calorimeters, within the region |η|<3.2. There is an additional thinLAr pre- sampler covering |η|<1.8 to correct forenergy loss inmaterial upstream of the calorimeters.For |η|<2.5, the LAr calorimeters

2 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal interactionpointinthecenter ofthedetectorandthez-axisalongthebeampipe.

Thex-axispointsfromtheinteractionpointtothecenter oftheLHCring,andthe y-axispointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane, φbeingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefined intermsofthepolarangleθasη= −ln tan(θ/2).Observableslabeled “transverse”

areprojectedintothex–yplaneandangulardistanceismeasuredinunitsofR= (η)2+(φ)2.

aredividedintothreelayersindepth.Hadroniccalorimetryispro- videdby a steel/scintillator-tilecalorimeter,segmentedinto three barrel structures within |η|<1.7, and two copper/LAr hadronic endcap calorimeters,which coverthe region 1.5<|η|<3.2. The forwardsolid angleout to|η|=4.9 iscoveredbycopper/LArand tungsten/LAr calorimetermodules, which are optimized forelec- tromagnetic and hadronicmeasurements, respectively. The muon spectrometer comprisesseparate triggerandhigh-precisiontrack- ingchambersthatmeasurethedeflectionofmuonsinamagnetic fieldgeneratedbythethreetoroidmagnetsystems.TheATLASde- tector selects eventsusing a tiered trigger system [33]. The first levelisimplementedincustomelectronicsandreducestheevent ratefromtheLHCcrossingfrequencyof40MHztoadesignvalue of100kHz.The secondlevelisimplementedinsoftwarerunning onacommodityPCfarmwhichprocessestheeventsandreduces therateofrecordedeventsto1.0kHz.

3. Dataandsimulatedsamples

This analysis uses 36.1±0.8 fb1 of pp collisions data at

s=13 TeV recordedusingsingle-electronandsingle-muontrig- gers. Additional data-quality requirements are also imposed, and thesearedetailedinSection 4.During 2015thiscorrespondedto 3.2 fb1 withanaverageof13.4interactions perbunchcrossing.

The2016data-takingperiodcorrespondsto32.9 fb1withanav- erageof25.1interactionsperbunchcrossing.

The WR boson search isperformed inthe semileptonicdecay channel,wheretheWR decaysintoatopquarkandab-quark,the top quark decaysintoa W bosonandab-quark, andthe W bo- son decays in turn into a lepton and a neutrino. The final-state signature thereforeconsistsoftwob-quarks,one chargedlepton3 andaneutrino, whichisundetectedandresultsinmissingtrans- verse momentum, ETmiss.The dominant backgroundprocesses for thissignaturearethereforetheproductionofW/Z+jets(jetsaris- ing fromlight and heavy partons),electroweak single top quarks (t-channel, W tands-channel),t¯t pairsanddibosons(W W,W Z, and Z Z).Aninstrumental backgroundduetomultijetproduction, where ahadronicjet ismisidentified asalepton, isalsopresent.

MonteCarlo(MC)simulatedeventsareusedtomodeltheWR sig- nal andall the SM background processes, withthe exception of the multijetbackground prediction, which is derived using data.

TheMCgeneratorprogramsandconfigurationsaresummarizedin Table1,anddescribedingreaterdetailinthetextbelow.

Simulated signal events were generatedat leading order(LO) byMadGraph5_aMC@NLOv2.2.3 [34–37] usingachiralWR boson model in which the couplings to the right-handed fermions are likethoseintheSM.MadGraph5_aMC@NLOisalsousedtomodel thedecaysofthetop quark,takingspincorrelationsintoaccount.

3 The analysis selects electrons or muons, while the simulation includes τ-leptons.Thustheeventyieldincludesasmallcontributionduetoleptonicde- caysofτ-leptons.

(4)

Pythia8v8.186 [38] wasusedforpartonshoweringandhadroniza- tion, wherein the NNPDF23LO [39] parton distribution functions (PDF)oftheprotonandasetoftunedparameters calledtheA14 Pythiatune [40] were used.Allsamplesofsimulatedeventswere rescaledtonext-to-leading-order(NLO) calculationsusingNLO/LO K-factorsrangingfrom 1.1to1.4, decreasing asa function ofthe massofthe WR boson,calculatedwithZTOP[30].Signalsamples weregenerated between0.5and3 TeV insteps of250 GeV, and between3and5 TeV instepsof500 GeV.

Thebenchmarksignal modelusedforthiswork nominallyas- sumesthattheWR bosoncouplingstrengthtofermions, g,isthe sameasforthe W boson: g=g,whereg istheSMSU(2)L cou- pling.The couplingof left chiralfermions tothe WR is assumed tobe zero.Thetotal widthofthe WR boson increasesfrom2to 130 GeV formasses between0.5 and5 TeV [29] for g=g and scalesasthe squareof theratio g/g. Inorderto explorethe al- lowedrangeofthe WR coupling g, sampleswerealsogenerated forvaluesof g/g upto5.0, forseveral WR bosonmasshypothe- ses,allowingtheeffectofincreasedWR widthtoalsobeincluded.

Simulated top-quark pair and single-top-quark processes (t- channel,s-channelandW t)wereproducedusingtheNLOPowheg- Box[41,42] generatorwiththeCT10PDF [43].Thepartonshower and the underlying event were added using Pythia v6.42 [44]

with the Perugia 2012 tune [45]. The top-quark pair produc- tion MC sample is normalized to an inclusive cross section of

σt¯t=832+4651 pb for a top-quarkmass of 172.5 GeV as obtained from next-to-NLO (NNLO) plus next-to-next-to-leading-logarithm (NNLL)QCDcalculationswiththeTop++2.0program [46–52].

The background contributions from W and Z boson produc- tion in association with jets were simulated using the Sherpa v2.2.1 [53] generator. Matrix elements were calculated for up to twopartonsatNLO andfourpartons atLOandmergedwiththe SherpapartonshowerusingtheME+PS@NLOprescription [54–56].

TheW/Z+jetssamplesarenormalizedtotheinclusiveNNLOcross sectionscalculatedwithFEWZ [57,58].

Theproductionofvector-bosonpairs (W W, W Z or Z Z) with at least one charged lepton in the final state was simulated by thePowheg-Box generatorin combinationwithPythia8 andthe leading-orderCTEQ6L1PDF [59].Thenon-perturbativeeffectswere modeled withtheAZNLOsetoftunedparameters [60].

ForallMadGraphandPowhegsamples,theEvtGenv1.2.0pro- gram [61] wasusedforthebottomandcharmhadrondecays.

Allsimulated eventsamplesinclude theeffect ofmultiple pp interactionsinthesameandneighboring bunchcrossings(pile-up) byoverlaying,oneachsimulatedsignalorbackgroundevent,sim- ulatedminimum-biaseventsgenerated usingPythia8,the A2set oftunedparameters [62] andtheMSTW2008LOPDFset [63].

Simulatedsamples were processed through the Geant4-based ATLAS detectorsimulationorthrough a fastersimulation making useof parameterized showers in the calorimeters [64,65]. Simu- latedevents were then processed using the same reconstruction algorithmsandanalysischainasusedfordata.

4. Eventselectionandbackgroundestimation

This search makes use of the reconstruction of multi-particle vertices,theidentificationandthekinematicpropertiesof recon- structedelectrons, muons, jets, andthe determinationofmissing transversemomentum.

Collisionverticesarereconstructedfromatleasttwo IDtracks withtransversemomentum pT>400 MeV. Theprimary vertexis selectedastheonewiththehighest

pT2,calculatedconsidering allassociatedtracks.

Electrons are reconstructed from ID tracks that are matched tonoise-suppressedtopologicalclustersofenergydepositions [66]

inthe electromagneticcalorimeter.Theclustersare reconstructed using the standard ATLAS sliding-window algorithm, which clus- ters calorimeter cells within fixed-size rectangles [67]. Electron candidates are requiredto satisfy criteriaforthe electromagnetic showershape,trackquality,andtrack–clustermatching;thesecri- teria areappliedusinga likelihood-basedapproach.Electroncan- didatesmustmeetthe“Tight”workingpointrequirementsdefined inRef. [68] andare furtherrequiredto have pT > 25 GeV anda pseudorapidityofthecalorimeterclusterposition,|ηcluster|,smaller than2.47. Events withelectrons falling inthecalorimeterbarrel–

endcaptransitionregion,1.37<|ηcluster|<1.52,whichhaslimited instrumentation,arerejected.

Muons are identified by matching tracks found in the ID to either full tracks or track segments reconstructed in the muon spectrometer(“combinedmuons”),orbystand-alonetracksinthe muon spectrometer [69]. They are requiredto pass identification requirementsbasedonqualitycriteriaappliedtotheIDandmuon spectrometer tracks. Muon candidates must meet the “Medium”

identificationworkingpointrequirementsdefinedinRef. [69],have atransversemomentum pT >25 GeV,andsatisfy|η|<2.5.

Electron andmuon candidates must further satisfy additional isolationcriteriathatimproverejectionofcandidatesarisingfrom sourcesotherthanpromptW/Z bosondecays(e.g.hadronsmim- ickinganelectronsignature,heavy-flavor hadrondecaysorphoton conversions).Muonsarerequiredtobeisolatedusingtherequire- mentthatthescalarsumofthe pT ofthetracksinavariable-size conearoundthemuondirection(excludingthetrackidentifiedas the muon) be less than 6% of the transverse momentum of the muon. The trackisolation cone size is givenby the minimum of R=10 GeV/pμ

T andR=0.3.Electronsarealsorequiredtobe isolatedusingthesametrack-basedvariableasformuons, except thatthemaximumR inthiscaseis0.2.Forthepurposeofmul- tijet background estimation (see Section 5) electrons and muons satisfyingaloosersetofidentificationcriteria,inparticularwith- outanisolationrequirement,arealsoconsidered.

Jetsarereconstructedfromtopologicalcalorimeterclustersus- ingtheanti-kt algorithm [70] witharadiusparameterof R=0.4, and must satisfy pT > 25 GeV and |η| < 2.5. To suppress jets originating from in-time pile-up interactions, jets in the range pT<60 GeV and |η|<2.4 are required to pass the jet vertex tagger [71] selection, which has an efficiency of about 90% for jetsoriginatingfromthe primaryvertex. Theclosest jetsoverlap- ping with selectedelectron candidates within a cone ofsize R equal to 0.2 are removed from events, as the jet and the elec- tron very likely correspond to the same reconstructed object. If a remaining jet with pT > 25 GeV isfound close toan electron withinaconeofsizeR=0.4,thentheelectroncandidateisdis- carded.SelectedmuoncandidatesnearjetsthatsatisfyR(muon, jet)<0.04+10 GeV/pμ

T are rejectedifthejet hasatleastthree tracksoriginatingfromtheprimaryvertex.Anyjetswithlessthan threetracksthatoverlapwithamuonarerejected.

Theidentificationofjetsoriginatingfromthe hadronizationof b-quarks(“b-tagging”)isbasedonpropertiesspecifictob-hadrons, such aslong lifetimeandlargemass. Suchjetsare identified us- ing the multivariate MV2c10 b-tagging algorithm [72,73], which makes useof informationaboutthejet kinematic properties,the characteristicsoftrackswithinjets,andthepresenceofdisplaced secondary vertices. The algorithm is used at the 77% efficiency working point and provides a rejection factor of 134 (6.21) for jetsoriginatingfromlight-quarksorgluons(charmquarks),asde- termined in simulatedt¯t events.Jets satisfyingthese criteriaare referredtoas“b-tagged”jets.

The presence of neutrinos can be inferred from an apparent momentumimbalanceinthetransverseplane.Themissingtrans- versemomentum(EmissT )iscalculatedasthemodulusoftheneg-

Références

Documents relatifs

139 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 140 State Research Center Institute for High Energy Physics, NRC KI, Protvino, Russia 141

Sur cette question de la pauvreté en milieu rural, dont tout le monde s’accorde à reconnaître l’importance, les analyses les plus clairvoyantes sont sans doute celles qui

U. Mitra is with the Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA, ubli@usc.edu.. Figure 1:

22.315J - Structural Mechanics in Nuclear Power Technology - Brief introduction to nuclear power engineering and nuclear reactor physics. Components and structures in

To define how the Convergence and Soft Landing quota allocation rules lead to various prices of carbon and welfare impacts depending on assumptions regarding carbon trading

étape : Création des fichiers de sorties et exploitation des résultats pour la vérification des éléments et calcul de ferraillage. IV.1 :Dimensions en plan salle

Region D, which contains events with (t W , t W ) buckets and tight b-tagged jets, is the most sensitive to the benchmark signals and hence chosen to be the main signal region (SR)

139 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 140 State Research Center Institute for High Energy Physics, NRC KI, Protvino, Russia 141