• Aucun résultat trouvé

Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach

N/A
N/A
Protected

Academic year: 2021

Partager "Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach"

Copied!
8
0
0

Texte intégral

(1)

Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach

Proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 5 juli 2013 om 12:30 uur

door

Kerstin SIEMES

Diplom-Ingenieurin

Rheinische Friedrich-Wilhelms-Universit¨at Bonn, Duitsland

geboren te Wermelskirchen, Duitsland

(2)

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. D.G. Simons

Prof. dr. J.-P.O.F.G. Hermand

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. D.G. Simons, Technische Universiteit Delft, promotor Prof. dr. J.-P.O.F.G. Hermand, Universit´e libre de Bruxelles, promotor Prof. dr. ir. O.D. Debeir, Universit´e libre de Bruxelles

Prof. dr. A. Stepnowski, Gdansk University of Technology Prof. dr. C. de Mol, Universit´e libre de Bruxelles Prof. dr. ir. C.P.A. Wapenaar, Technische Universiteit Delft Dr. ir. M. Snellen, Technische Universiteit Delft

Prof. dr. G.J.W. van Bussel, Technische Universiteit Delft, reservelid

Universit´e libre de Bruxelles and Delft University of Technology made important contributions to the work described in this dissertation.

The research was supported by The Netherlands Organization for Applied Research (TNO) and by the U.S. Office of Naval Research.

ISBN 978-90-8891-641-0

Copyright c2013 by Kerstin Siemes

Some rights reserved. Chapters 4 and 5 are adapted from published work

(DOI:10.1109/JOE.2010.2066711 and DOI:10.1121/1.3569718) and are reprinted here, with permission.

Typeset by the author with the LATEXDocumentation System.

Cover design: Proefschriftmaken.nl k Uitgeverij BOXPress Printed by: Proefschriftmaken.nlk Uitgeverij BOXPress Published by: Uitgeverij BOXPress, ’s-Hertogenbosch

(3)

Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach

Dissertation

submitted for the degree of Doctor in Engineering Sciences

Kerstin SIEMES 2012/2013

thesis directors:

Prof. dr. J.-P.O.F.G. Hermand

Prof. dr. D.G. Simons

(4)
(5)

Contents

1 Introduction 1

1.1 Historic background of underwater measurements . . . 2

1.2 Recent developments in classifying the sea bottom . . . 2

1.3 Research objectives . . . 4

1.4 Outline of the thesis . . . 4

2 Underwater acoustic sensors 7 2.1 Sensors for hydrographic surveying . . . 7

2.1.1 Seafloor mapping tools . . . 8

2.1.2 Profiling tools . . . 9

2.2 Dedicated acoustic systems . . . 10

3 Trial areas and measurements 13 3.1 The MREA/BP’07 trial . . . 13

3.1.1 Equipment and measurements . . . 15

3.1.2 Bathymetry . . . 17

3.1.3 Properties of the sea bottom . . . 20

3.2 CBBC’04 . . . 23

3.2.1 Equipment and measurements . . . 23

3.2.2 Bathymetry . . . 24

3.2.3 Properties of the sea bottom . . . 25

4 Classification of SBES data 27 4.1 The SBES echo and its parameters . . . 27

4.2 Phenomenological classification by echo shape parameters . . . 30

4.2.1 Principal component analysis (PCA) and clustering . . . 30

4.2.2 Application of the PCA to the MREA/BP’07 data . . . 31

4.3 Model-based classification using the full echo envelope . . . 35

4.3.1 Method . . . 35

4.3.2 Application of the echoshape model to the CBBC’04 data . . . 37

4.3.3 Applicability of the echoshape model to an environment with soft sediments . . . 40

4.4 Model-based classification using the echo energy . . . 41

4.4.1 Method . . . 41

4.4.2 Application of the echo energy model to the CBBC’04 area . . . . 42

(6)

ii Contents

4.5 Conclusions . . . 45

5 Bayesian classification of MBES data 47 5.1 The Bayesian approach . . . 48

5.2 Application of the Bayesian approach to the MREA/BP’07 data . . . 52

5.3 Conclusions . . . 54

6 Efficient geoacoustic inversion strategies 55 6.1 Multi-frequency geoacoustic inversion approaches . . . 56

6.2 Establishing an optimal inversion strategy . . . 57

6.2.1 Criteria for comparing inversion strategies . . . 58

6.2.2 Settings of the global optimization method . . . 61

6.2.3 Frequency dependence of the inversion results . . . 70

6.3 Conclusions . . . 73

7 Geoacoustic inversion in practice 75 7.1 Confirmation of the optimal inversion strategy . . . 75

7.1.1 Inversion of synthetic vs. real data . . . 76

7.1.2 Confirmation by hydrographic data . . . 81

7.2 The effect of environmental variability on the inversion results . . . 84

7.2.1 Very soft sediments and the presence of gas . . . 84

7.2.2 Environments with a thick sediment layer . . . 87

7.3 Conclusions . . . 91

8 An integrated environmental picture 93 8.1 A combined survey . . . 93

8.2 Interpretation of the environmental picture . . . 94

8.3 Perspective . . . 95

A Sediment characteristics 97 A.1 Sampling and analysis . . . 97

A.2 Sediment type definitions . . . 97

A.3 Sediment properties affecting acoustic signals . . . 100

B Previous samples taken in the research areas 101 B.1 Sediments in the MREA/BP’07 area . . . 101

B.2 Sediments in the CBBC’04 area . . . 103

C Environmental models 105 C.1 Sound propagation in the water column . . . 105

C.2 Sound interaction with the water–sediment interface and sediment body . . 106

D Modeling the acoustic field 111 D.1 Solving the acoustic wave equation . . . 112

D.2 Normal mode modeling . . . 112

D.2.1 Normal modes in a lossy medium . . . 114

(7)

Contents iii

D.2.2 The relevance of modes . . . 114

D.2.3 Relations between the normal modes and the environment . . . 117

E Global optimization 119 E.1 Overview of global optimization strategies . . . 119

E.2 Differential Evolution (DE) . . . 120

E.2.1 Optimization strategy . . . 120

E.2.2 The performance of DE in inverting sediment properties . . . 122

Bibliography 129

Summary 135

Samenvatting 139

Acknowledgements 143

Curriculum vitae 145

(8)

Références

Documents relatifs

Port-au-Prince dataset: (a) optical ( c GeoEye, 2010) and (b) SAR images (CSK, c ASI, 2010), and classification results obtained with: (c) the proposed method applied to

properties of peat and soil samples and their respective humic substances. Qualitative comparison between raw peat

Within the context of water scarcity and anthropological influence, the objective of this PhD study is trying to better estimate the water resources by involving the human

Since it would not be realistic to use local flux measurements made at the field scale to validate the FAO-56 dual approach for applications involving low spatial resolution data

The method is tested with multi-spectral IKONOS images acquired on areas containing six major communities (oak, pine, fir, primary and secondary high tropical forests, and

Then, for each land unit, cropping systems maps were produced at a field level through object-based analysis of a Landsat8 30m resolution mosaic image, and spectral variables

The final aspect of this work will be to combine advanced land surface prod- ucts, midday observations of land surface temperature (LST) and the correspond- ing atmospheric variables

In this study, a remote sensing model of tran- spiration (the primary component of ET), driven by a time series of vegetation indices, was used to substitute transpi- ration from