• Aucun résultat trouvé

Intercalation/Exfoliation and Performance of Clay-Poly(lactic acid) Nanocomposites

N/A
N/A
Protected

Academic year: 2021

Partager "Intercalation/Exfoliation and Performance of Clay-Poly(lactic acid) Nanocomposites"

Copied!
28
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

BioPlastics 2006 [Proceedings], 2006-09-27

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=f598280f-25a1-4da1-afe4-1919f93ac492 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f598280f-25a1-4da1-afe4-1919f93ac492

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Intercalation/Exfoliation and Performance of Clay-Poly(lactic acid) Nanocomposites

Ton That, Minh Tan; Denault, Johanne; Patenaude, Éric; Leelapornpisit, Weawkamol.

(2)

Intercalation/Exfoliation and Performance of

Clay-Poly(lactic acid) Nanocomposites

M-T. Ton-That , W.Leelapornpisit, J.Denault

Bioplastics 2006

Montreal, Quebec, Canada

(3)

Presentation outline

 Introduction

 Objectives

 Melt compounding; effect of clay chemistry and PLA structure  Characterization  X-ray  SEM  TEM  Mechanical properties  Tensile tests  Impact  HDT  Conclusions  Future works

(4)

Green Processing of Strong, Lightweight Polymer

Foams from Renewable Resources

Value: 1.7 M$ Duration: 3 years

NRC Partners: IMI and ICPET

Sponsor: Climate Change Technology and Innovation (PERD/OERD)

Foam manufacturing from bio-based (PLA, PHA…)

polymer nanocomposites

In Summary

(5)

Our Responsibilites

Respond to our needs for materials in the 21

st

century

 Environmental issues and economic concerns due to limited oil supply

 To cope with limitation of resources supply

 Synthetic polymers are highly durable materials (200-500 yrs) mostly used in short-term applications

 Non-biodegradable plastic represent 11% of the municipal solid waste in USA (data 2001).

 Incineration of synthetic plastic produces CO2 contributing to global warming

(6)

Why Biopolymer ?

Biopolymers are now available at large scale and reasonable

cost.

 PLA example

 In US, NatureWorks has a 300 million pound PLA plant

with a cost of 1U$/pound.

 NatureWorks is able to supply large-scale company like

Coca-Cola, Dunlop Pacific, etc.

(7)

Biopolymer Advantages

 Made from renewable ressources

(sustainable)

 Biodegradable and recyclabe

after service

 PLA advantages

 High clarity and gloss  High stiffness

 Easy to process on standard equipment

 Good film forming properties

 Properties similar to Polystyrene  Good taste and aroma barrier  Cost competitive to PET

From R. Auras et al, Macromol. Biosci., 4, 835 (2004)

(8)

PLA Applications

 Medical field

 Drud delivery systems  Healing products

 Surgical implant devices

 Packaging materials

 Food containers  Agriculture  Waste bags

 Non-woven structure

 Filtration  Hygiene products  Protective clothings

(9)

Biopolymer Applications

Henry Ford in 1937

Dream of Henry Ford in 1930

‘’Growing a car like a crop’’

 Use soy-based polymer for knobs and body panels

 Water absorption problem causes excessive body panels warpage

 Was replace by synthetic polymer after the World War II because

of economy and durability

 Now such durability becomes

(10)

PLA: Synthesis and

Structure

93%+ L-LA = Semi-Crystalline PLA 50-93% L-LA = Amorphous PLA NatureWorks Manufacturing Process:

D-LA Content (wt%) 0 2 4 6 8 Me ;ltin g T emp era tu re (°C ) 135 140 145 150 155 160 165 170 175 C ry sta llin ity (% ) 0 10 20 30 40

From R. Auras et al, Macromol. Biosci., 4, 835 (2004) and G. Schmack et al., JAPS, 91, 800 (2004)

(11)

Challenges with PLA

 Acceptance in the market place

 PLA must be competitive on a cost-performance basis

 Property limitations

 High density 1.25 g/cc  Low Tg (50°C) and HDT

 Low crystallinity and slow crystallization  Brittleness

 Heat resistance lower than PET  High moisture absorption

 Limited barrier to moisture and gases (O2 and CO2)

 Nanotechnology and foam process can upgrade PLA

(12)

Objectives

 Develop formulations of Poly(lactic acid)

Nanocomposites by melt compounding technologies

 Optimize processing

 Control the micro-nanostructure

 intercalation vs exfoliation

 Maximize performance

 Minimize cost

(13)

PLA Nanocomposites

Materials and Processing

Nanoclays

Cloisite Na+ (Southern Clay Products) Cloisite 20A (Southern Clay Products) Cloisite 30B (Southern Clay Products) Nanomer I30E (NanoCor)

Conditions

Haake conical counter-rotating TSE N= 100 rpm Tmelt = 190-230°C t = 5-20min Polymer PLA 2002D, (NatureWorks) Tm=148°C  5-7% D-LA (amorphous)

(14)

PLA Nanocomposites

Structure -XRD

Cloisite 30B

MT2EtOH: methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium 2 0 2 4 6 8 10 12 Int ensit y (k cps ) 0 1 2 3 4 Neat PLA 2% Cloisite 30B 2% Nanomer I30E 2% Cloisite 30A Cloisite 30B provides a better intercalation and exfoliation (asymmetric peak) because of the

hydroxyl group in the intercalant

(15)

PLA Nanocomposites

Structure - SEM

Cloisite 30B

MT2EtOH: methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium

Cloisite 30B provides a very good

micro-dispersion even in the low shear rate of the mini-compounder

(16)

PLA Nanocomposites

Structure - TEM

Cloisite 30B

MT2EtOH: methyl, tallow, bis-2-hydroxyethyl, quaternary

ammonium

Cloisite 30B provides a fairly good intercalation and exfoliation even in the low shear rate of the mini-compounder

(17)

PLA Nanocomposites with

a Twin-screw Extruder

 Materials

 Clay: Cloisite 30B (SCP)

 PLA 8302D (PLA-A-amorphous) (9.85% d-Lactic acid)  PLA 4032D (PLA2-C-crystalline) (1.40 % d-Lactic acid)  Melt process  Twin-screw extruder  Side-feeding  200ºC  L/d = 40  200 rpm  Injection molding  200ºC PLA Clays

(18)

 Only very lightly difference in term of intercalation

 At 2wt% clay, exfoliation took place in both PLA matrices  But better exfoliation for

amorphous PLA 0 4000 8000 12000 16000 20000 1 3 5 7 9 2o In te n s it y ( c o u n ts ) Cloisite 30B Masterbatch NC-10wt% NC-4wt% NC-2wt% 1.82 nm 3.46 nm Amorphous 0 4000 8000 12000 16000 20000 1 3 5 7 9 2o In te n s it y ( c o u n ts ) Cloisite 30B Masterbatch NC-10wt% NC-4wt% NC-2wt% 1.82 nm 3.12 nm Crystalline

XRD Analysis

(19)

Annealing effect

Clay structure

 Annealing seems to decrease the intercalation-exfoliation of clay and more evidence in the PLA crystalline systems as a result of crystallization Amorphous (Annealing at 90oC ) 0 2000 4000 6000 8000 10000 1 3 5 7 9 2 (o) In te n s it y ( c o u n ts ) 2wt%-A2wt%-A-90o-1d 2wt%-A-90o-3d 4wt%-A 4wt%-A-90o-1d 4wt%-A-90o-3d Crystalline (Annealing at 90oC ) 0 2000 4000 6000 8000 10000 1 3 5 7 9 2o In te n s it y ( c o u n ts ) 2wt%-C2wt%-C-90o-1d 2wt%-C-90o-3d 4wt%-C 4wt%-C-90o-1d 4wt%-C-90o-3d

(20)

 Annealing leads to higher crystallinity

 Effect is more important in the low D content PLA; clay seems to favor the crystallization

Amorphous (Annealing at 90oC)

3000 5000 7000 9000 11000 13000 15000 15 16 17 18 19 20 2o In te n s it y ( C P s ) PLA-A PLA-A-90o-1d PLA-A-90o-3d 2wt%-A 2wt%-A-90o-1d 2wt%-A-90o-3d 4wt%-A 4wt%-A-90o-1d 4wt%-A-90o-3d

Crystalline (Annealing at 90oC )

0 10000 20000 30000 40000 50000 60000 70000 15 16 17 18 19 20 2o In te n s it y ( C P s ) PLA-C PLA-C-90o-1d PLA-C-90o-3d 2wt%-C 2wt%-C-90o-1d 2wt%-C-90o-3d 4wt%-C 4wt%-C-90o-1d 4wt%-C-90o-3d

Annealing effect

PLA structure

(21)

Mechanical Properties

Amorphous PLA 50 55 60 65 70 75

PLA-A NC-A-2% NC-A-4% NC-A-10%

Tens

ile strength (MPa)

2000 3000 4000 5000 6000 7000 Tens

ile modulus (MPa)

Strength Modulus 80 90 100 110 120 130

PLA-A NC-A-2% NC-A-4% NC-A-10%

Flex ural str ength (MPa) 3000 4000 5000 6000 Flex ural modu lus (MPa ) Strength Modulus 10 15 20 25 30

PLA-A NC-A-2% NC-A-4% NC-A-10%

Notched Izod impa

ct (J/ m) 55 57 59 61 63 65 HDT ( o C) Impact HDT

 Clay improves strength and modulus and does not affect the impact and HDT

 At high clay concentration of 10%: loss in tensile and impact strength are noticeable

(22)

Mechanical Properties

Crystalline PLA 50 55 60 65 70 75 PLA-C NC-C-2% NC-C-4% NC-C-10% Tens

ile strength (MPa)

2000 3000 4000 5000 6000 7000 Tens

ile modulus (MPa)

Strength Modulus 80 90 100 110 120 130 PLA-C NC-C-2% NC-C-4% NC-C-10% Flex ural str ength (MPa) 3000 4000 5000 6000 Flex ural modu lus (MPa ) Strength Modulus 10 15 20 25 30 PLA-C NC-C-2% NC-C-4% NC-C-10%

Notched Izod impa

ct (J/ m) 55 57 59 61 63 65 HDT ( o C) Impact HDT

 Similar observation as for amorphous systems:

 Clay improves strength and modulus and does not affect the impact

 At high clay concentration of 10%: loss in tensile and impact strength are noticeable

(23)

Amorphous PLA

 Good exfoliation has achieved although very few multiple stacks remain (may be due to the imperfection of clay treatment or clay degradation)

(24)

Crystalline PLA

(25)

Summary and

Conclusions

 Cloisite 30B is the most appropriate commercial organo-clay for the fabrication of PLA nanocomposites by melt compounding

 Good exfoliation can be achieved with Cloisite 30B by

melt-compounding (but processing parameters play a very important role)  With the addition of less than 5wt% clay, strength and modulus of

the PLA matrix are improved why impact strength is not affected  Amorphous PLA seems to give better intercalation-exfoliation

structure

 However HDT is not improved

 Problem of clay-PLA interaction?  Intercalant degradation?

(26)

Future work

 Optimize of the processing procedure to minimize

intercalant and PLA degradation and optimize clay-PLA

interaction

 Better understanding the crystallinity effect in the

intercalation/exfoliation and the mechanical performance

 Extrusion parameters

 Use more thermally stable intercalant

 Use of coupling agent if necessary

(27)
(28)

Commercial nanoclays

• Southern Clay Products, Inc.

– MMT: 92.6 meq/100g – Intercalant:

• Cloisite 10A (2MBHT)

• Cloisite 15A, 20A (2M2HT) • Cloisite 35A (2MHTL8) • Cloisite 30B (MT2EtOH) • Cloisite 93A (M2HT)

MT2EtOH: methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium

2MBHT: dimethyl, benzyl,

hydrogenatedtallow, quaternary ammonium

2M2HT: dimethyl, dihydrogenatedtallow, quaternary ammonium

2MHTL8: dimethyl, hydrogenatedtallow, 2-ethylhexyl quaternary ammonium

M2HT: methyl,

Références

Documents relatifs

Les analyses les plus élaborées dans ce domaine insistent sur le caractère multiscalaire des processus à l’œuvre, dans un jeu de va-et-vient entre le niveau communautaire,

Proverbs’ concision is simultaneously connected with a specific rhythm created through the repetition of certain words and sounds, which results in some kind of an

We highlight the use of CRISPR/Cas-based gene editing to fix desirable allelic variants, generate novel alleles, break deleterious genetic linkages, support pre-breeding and

Leur singularité réside dans le traitement du fantastique puisque le conte semble ici témoigner d’une représentation de la vie psychique conçue comme le lieu d’un refoulement

La question alimentaire a pris une importance grandissante ces dernières années, elle est devenue un nouvel enjeu de développement durable pour les territoires, une politique

We present results for the differential and cumulative 1-jettiness cross sections, and express both in terms of structure functions dependent not only on the usual DIS variables x, Q

The choice of the mechanical test and measurement device depends on the type of bio film (bio films on a solid surface or at the air-liquid interface), the spatial scale of the

Afin d’améliorer la prise en charge de ces patients un relais avancé a été mis en place au sein du centre de santé à la frontière avec le Brésil à S t Gorges de l’Oyapock..