• Aucun résultat trouvé

Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders

N/A
N/A
Protected

Academic year: 2021

Partager "Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders"

Copied!
12
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16547

To link to this article : DOI:10.1016/j.ijpharm.2016.07.015

URL :

http://dx.doi.org/10.1016/j.ijpharm.2016.07.015

To cite this version : Visan, Anita Ioana and Stan, George E. and

Ristoscu, Carmen and Popescu-Pelin, Gianina and Sopronyi, Mihai

and Besleaga, Cristina and Luculescu, Catalin and Chifiriuc, Mariana

Carmen and Hussien, M.D. and Marsan, Olivier and Kergourlay,

Emmanuelle and Grossin, David and Brouillet, Fabien and Mihailescu,

Ion N. Combinatorial MAPLE deposition of antimicrobial orthopedic

maps fabricated from chitosan and biomimetic apatite powders.

(2016) International Journal of Pharmaceutics, vol. 511 (n° 1). pp.

505-515. ISSN 0378-5173

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Combinatorial

MAPLE

deposition

of

antimicrobial

orthopedic

maps

fabricated

from

chitosan

and

biomimetic

apatite

powders

A.

Visan

a

,

G.E.

Stan

b

,

C.

Ristoscu

a

,

G.

Popescu-Pelin

a

,

M.

Sopronyi

a

,

C.

Besleaga

b

,

C.

Luculescu

a

,

M.C.

Chi

firiuc

c,d

,

M.D.

Hussien

c,d

,

O.

Marsan

e

,

E.

Kergourlay

e

,

D.

Grossin

e

,

F.

Brouillet

e

,

I.N.

Mihailescu

a,

*

a

NationalInstituteforLaser,PlasmaandRadiationPhysics,077125Magurele-Ilfov,Romania b

NationalInstituteofMaterialsPhysics,077125Magurele-Ilfov,Romania

cDepartmentofMicrobiology,FacultyofBiology,UniversityofBucharest,060101Bucharest,Romania

dEarth,EnvironmentalandLifeSciencesDivision,ResearchInstituteoftheUniversityofBucharest,77206Bucharest,Romania e

UniversityofToulouse,CIRIMAT,UPS–INPT–CNRS,ENSIACET,4AlléeEmileMonso,31030ToulouseCedex4,France

Keywords: CombinatorialMAPLE Chitosan Biomimeticapatite Thinfilms Antimicrobialaction S.aureus E.coli. ABSTRACT

Chitosan/biomimeticapatitethinfilmsweregrowninmildconditionsoftemperatureandpressureby Combinatorial Matrix-AssistedPulsedLaserEvaporationonTi,Siorglasssubstrates.Compositional gradientswereobtainedbysimultaneouslaservaporizationofthetwodistinctmaterialtargets.AKrF* excimer(l=248nm,tFWHM=25ns)lasersourcewasusedinallexperiments.Thenatureandsurface

compositionofdepositedmaterialsandthespatialdistributionofconstituentswerestudiedbySEM,EDS, AFM, GIXRD, FTIR,micro-Raman,and XPS.The antimicrobialefficiencyofthechitosan/biomimetic apatitelayersagainstStaphylococcusaureusandEscherichiacolistrainswasinterrogatedbyviablecell countassay.

TheobtainedthinfilmswereXRDamorphousandexhibitedamorphologycharacteristictothelaser deposited structures composed of nanometric round shaped grains. The surface roughness has progressivelyincreasedwithchitosanconcentration.FTIR,EDSandXPSanalysesindicatedthatthe composition of theBmAp-CHT C-MAPLE compositefilmsgradually modifiedfrom pureapatiteto chitosan.

ThebioevaluationtestsindicatedthatS.aureusbiofilmismoresusceptibletotheactionof chitosan-richareasofthefilms,whilsttheE.colibiofilmprovedmoresensibletoareascontaininglesschitosan. Thebestcompromiseshouldthereforego,inouropinion,tozoneswithintermediate-to-highchitosan concentrationwhichcanassurealargespectrumofantimicrobialprotection concomitantlywitha significantenhancementofosseointegration,favoredbythepresenceofbiomimetichydroxyapatite.

1.Introduction

Natural polymersare currently employedto obtain tailored systemsfordrugpassive/activetargetinginordertodecreasethe incidence of the side effects (Kim et al., 2008). The natural polymersexhibitthemajoradvantageofbiodegradabilityinside thehumanbody,notrequiringremovaloradditionalmanipulation (NairandLaurencin,2006).Duetotheirexcellentbiocompatibility and cost-effectiveness they can be used as pharmaceutical excipients(Chifiriucetal.,2014).

Amongnaturalpolymersusedfordrugdelivery,chitosan(CHT) is a highlybiodegradable,non-toxic andbiocompatible cationic polysaccharidesynthesizedfromchitinbyalkalinedeacetylation (Vllasaliuetal.,2012;Sogiasetal.,2012;DerakhshandehandFathi, 2012;GanandWang,2007).Thechitosanpotentialtobeusedasan antimicrobial agent (Martins et al., 2014), was stressed upon together withdelivery ofantibiotics, suchas beta-lactams(e.g., penicillins, cephalosporins), aminoglycosides and daptomycin (Noel et al.,2008;Grumezescu et al.,2012; Grumezescu et al., 2011).

Nevertheless, CHT application in anti-infective strategies is limitedbecauseofitslowsolubilityatneutralorbasicpH.Forthis reason, the focus has been recently moved to the design of

* Correspondingauthor.

(3)

antimicrobial filmsconsisting of CHT and its derivatives.They demonstratedexcellentinhibitoryactivityagainstawidespectrum of Gram-positive and Gram-negative bacteria, including food contaminants(Kongetal.,2010;Duttaetal.,2009;Lecetaetal., 2013;Daietal.,2011).

Recent studies revealedthe potential of CHT/hydroxyapatite (HA)compositestobeusedascoatingsontitaniumsurfaceinorder toincreasethe osseointegrationcapacity of boneimplants(Ma etal.,2014;Lietal.,2015).Thereexisthowever,afewstudiesonly, aimingtoevaluatetheanti-biofilmactivity ofsuchcoatings,an aspect of key importance for the prevention and control of implant-associatedinfections.

Many authors have reportedthe preparation of mixtures of calciumphosphates(CaP)andCHTintheformofpowders(Yoshida etal.,2004),membranes(Itoet al.,1999), scaffolds(Zhang and Zhang,2002),ormicrospheres(Sivakumaretal.,2002). Neverthe-less,onlyfewpublicationswerefocusedondevelopingprocedures allowingthe concomitant preparation of a composite material containingthetwocomponents, whichis expectedtoensurea moreintimatecontactbetweenthem(Huetal.,2004;Davidenko etal.,2010;Thein-HanandMisra,2009).

CHT-CaP composite films have been synthesized by several methodslike:pulsedelectrochemicaldeposition(Jiaetal.,2016a), electrophoreticdeposition(Zhongetal.,2015), plasmaspraying (Songetal.,2011),orco-precipitationmethod(Peñaetal.,2006). On the otherhand, over thepast decades,laser techniques provedahighpotentialforthefabricationofantimicrobialcoatings fororthopedicimplantsformedicalapplicationssuchasthebone tissue replacement or treatment of osteoporosis or osteolytic tumors(Jiaetal.,2016b;Simchietal.,2011).

Furthermore,thelaser-basedtechnologiesareexhibitingalotof advantages,astheyallowforthefabricationofawide-rangeof differentbiomaterials,withafairlyuniformspreadingofmaterial overratherlargeareas,controlledfilmthickness(withanaccuracy of1Å),goodadhesiontosubstrate(Blindetal.,2005;Dutaetal., 2013;Mihailescuetal.,2016),andspecificsurfaceproperties(Sima andMihailescu,2013).Moreover,thesedepositionmethodsimply a low material consumption, and ensure the stoichiometry preservationofthegrowingfilms(Eason, 2006;Yuetal.,2014; Cristescuetal.,2012).Inthesametime,remarkableeffortswere recentlypaidtothedevelopmentbycombinatorialprocessingof newbiomaterialswithinnovativeproperties.Usually,the fabrica-tionofacompositelayeriscarriedoutbypremixingofbiopolymer solutionsfollowedbyheatingofcoating(Meredithetal.,2000)or filmcasting/solventevaporation(Lietal.,2012).Thecombinatorial technology for the blending of two different biomaterials (Torricellietal.,2015;Simaetal.,2014;Axenteetal.,2014;Sima etal.,2012)isbasedonMatrix-AssistedPulsedLaserEvaporation (MAPLE)method.Thisnewlydevelopedtechnique– Combinatori-al-MAPLE(C-MAPLE)–standsforasimple,singlestep,fabrication route which can easily limit the time of manipulation and biomaterialsconsumption.

Theaimofthisstudywastosynthesizethincoatingscontaining naturalbiopolymerchitosan combinedwithbiomimeticapatite (Eichertetal.,2007;Grossinetal.,2010;Visanetal.,2014)directly ontitaniumimplantsbyC-MAPLEtechnique.

As known,a biomaterial used for bone substitution should possessasetofineluctableproperties.Theyare:

(i)Anidenticalchemicalcompositiontothenaturalbone(which is a complex structure of organic and inorganic materials (Dorozhkin,2009)).Forthispurpose, thenonstoichiometric biomimeticapatite(BmAp)(Eichertetal.,2007;Grossinetal., 2010;Visanetal.,2014),hasbeenusedasmodelforthebasic constituent of theinorganicpart of thebone, and chitosan (CHT),anaturalbiopolymer,withasimilarchemicalstructure

totheglycosaminoglycan,theprevalentextracellularmatrix of the bone and cartilage, as the organic phase of bone (Vllasaliuetal.,2012).

(ii)A good mechanical strength. The coatings were therefore deposited on titanium (Ti) medical implants, thus harmo-niouslycombingtheexcellentmechanicalfeaturesofTiwith thebiomimeticsoftheorganic-inorganicbiofunctionallayers (Agarwal and García, 2015). This will confer stability and reliabilitytothemedicaldeviceassembly.

(iii) Biocompatibility.Fromthispointofview,bothCHTandBmAp exhibitexcellentcytocompatibilityandremarkable osteocon-ductiveproperties,respectively(Songetal.,2011;VandeVord etal.,2002).

(iv)Resistancetomicrobialcolonization,particularlyduringthe osseointegrationperiod.Inthis regard,CHTshowsahigher antibacterialactivityagainst abroadspectrum ofmicrobial agents (Lee et al., 2009). It is therefore expected that the compositestructuresofpolymer(CHT)/ceramic(BmAp)will exhibit a double function: antimicrobial protection and enhancement of osteoblast cell proliferation, opening new promisingopportunitiesfordevelopinganewgenerationof orthopedicimplants.

To the best of our knowledge, this is the first attempt to synthesizeacompositiongradientbetweenCHTandBmApbylaser co-evaporationofthetwodistinctcryogenictargetsfollowedbya co-depositionprocess.

2. Materialsandmethods 2.1.Materials

CHTwithalowmolecularweightwaspurchasedfrom Sigma-Aldrich,whilethebiomimeticapatitepowder,withaparticlesize <25

m

m, was prepared by the co-precipitation method in accordance with a previously described protocol (Visan et al., 2014).Solutionsconsistingof2%CHTand1%BmApindeionized water were prepared. All target solutions were poured into a coppertargetholder,pre-cooledat173K,andsubsequentlyfrozen byimmersioninliquidnitrogenfor15min.

2.2.C-MAPLEdepositionprocess

C-MAPLEtechniquewasusedforthefabricationofa composi-tional mapof thetwo compounds(i.e.,CHTand BmAp).In the experiments,anexcimerlasersource(KrF*,

l

=248nm,

t

FWHM=

25ns)operatedat10Hzfrequencyrepetitionratewasusedforthe cryogenictargetsevaporation.Asdepositionsubstrateswereused: 12mmdiameterTi(grade4)disks,Siwafersorglassslides.Inorder toobtainuniformcoatings,thetargetswerepermanentlyrotated (80rpm).Thisway,thedrillingwasavoidedandtheexpulsionof materials is promoted in a proper way, ensuring a uniform deposition.InC-MAPLEexperiments,thetwotargets(e.g.,CHTand BmAp)weresimultaneouslyevaporatedbythelaserbeam,which wasdividedintotwobeams(Fig.1a)byanopticalsplitter.Thetwo beams werefocused inparallelontothesurface ofeach target, containingthefrozensolutionstobeirradiated.

Theusedmethodallowstocombinetwodifferentbiomaterials andtoselectthebestsolvent/concentrationtobeusedforthetwo compounds. In our experiments, after preliminary studies, deionized water was chosen as solventand the concentrations of 1 and 2wt.% were used for CHT and BmAp substances, respectively.Wealsoperformedaparametricstudyonoptimum laserenergy(70,100,120and150mJ)forwhichthematerialsare depositedunaltered.Theselectedlaserenergywas:100mJinthe caseofCHTtargetandof70mJfortheBmApone.

(4)

Inaconfigurationwithadistancebetweentheplasmacenters of 30mm, one obtains a 60mm long deposition with edges consistingofCHTandofBmAPonly,andin-betweendiscreteareas ofCHT-BmApblendedcompositions.Thesoftmixingofthetwo compoundsevaporatedfromthetwodistincttargetscanresultin the deposition of a continuous and uniform film with a compositiongradient,asdepictedschematicallyinFig.1b.

Thecoatedsamplesareasdepositedontothesubstratearray composedoffiveconsecutive12mmTidisksarefurtherdenoted S1toS5;whereS1standsforthecoatingareahavingCHTasmajor component,S5representsthecoatingareawithrichercontentof BmAp.S2!S3!S4seriesindicatesblended coatingareaswith decreasingCHT/BmApratios.Forcomparisonreasons,simpleCHT andBmApfilmshave beenalsodepositedonthesametype of substrates.

Depending on the laser parameters and polymeric-ceramic composition,thethicknessofC-MAPLEcoating,asdeterminedby profilometry,wasinthe(1–2)

m

mrange.Theobtainedthickness value was calculated as the average of three independent measurements.

2.3.Physico-chemicalcharacterizationtechniques

(a)The general surface morphologyof the deposited films was investigatedbyscanningelectronmicroscopy(SEM) usinga HitachiS3400ElectronMicroscope.The investigationswere carriedoutinhighvacuumatanaccelerationvoltageof25kV. ThesampleswerecoatedwithathinAufilminordertoreduce electricalchargingduringanalysis.

(b) Further surface morphology insightful analysis has been performedinmultipleareasoftheblendedcoatingbyatomic forcemicroscopy(AFM)innon-contactmodeusinganNT-MDT NTEGRA Probe NanoLaboratory system (NT-MDT NSG01 cantileverwithtipradiusof10nm).

(c) Compositional analyses have been carried out by energy-dispersive X-ray spectroscopy (EDS) with SiLi EDAX Inc. detector(attachmentofSEMapparatus).

(d)ThestructureofthesimpleCHTandBmApMAPLEfilmswas investigatedby grazing incidence X-ray diffraction (GIXRD) usinga BrukerD8 Advance diffractometer,inparallel beam setting, with Cu K

a

(

l

=1.5418Å) incident radiation. The incidenceanglewassetto2,andthescatteredintensitywas scannedwithinthe2

u

range(20–45),withastepsizeof0.04,

and40sperstep.

(e)Fouriertransforminfrared(FTIR)spectroscopywas usedfor analyzingthefunctionalgroupspresentintheC-MAPLEcoating deposited on the 60mm long Ti plate. The analyses were performed in different regions of the films, at separation distances of 2mm, with a Perkin Elmer Spectrum BX II

spectrometer,inattenuatedtotalreflectionmode(ATR)usinga Pike-MIRaclediamondheadof1.8mmdiameter.Thespectra werecollectedintherange4000–550cm1,byrecording128 individualscansataresolutionof4cm1.

(f)The micro-Raman analysis of the starting powders and C-MAPLEcoatingshasbeenperformedwithaHoribaJobinYvon LabramHR800spectrometer,inthe3800–100cm1range.A laserexcitationwavelengthof632.8nmhasbeenusedinthe caseofpowders.TheC-MAPLEfilmdepositedonthe60mm long glass plate has been exposed to a continuous laser radiationprovidedbyanArgondiodelaserat532nmwitha powerof12mW.ThesampleswereplacedinanOlympusBX 41 microscope and focused byan objective 50x with long distancenumericalapertureof0.75,whichgivesthesystema lateralresolutionof1

m

mand anaxialresolutionof4.5

m

m. ThemappingswerecarriedoutusinganXYZmotorizedstage withanaccuracyof0.1

m

m.Thesizeofmappingareaswasof (80100)

m

m2,withameasurementpitchof1

m

m.

Thespectrumofeachpointwasacquiredthrougha600line/ mmgrating,withaspectralresolutionof1cm1andcollectedwith aquantumwelldetectorcooledto60CdoublePelletier’seffect

(Synapse CCD). A certified silicon standard allowed calibrating frequencyequipmentusingwiththefirstorderofsiliconlineat 520.7cm1. Each point on the map was acquired with an integrationtimeof20sand1accumulation.Abaselinecorrection processingwasperformedusingtheLabspec5software.

X-rayphotoelectronspectroscopy(XPS)analysiswasperformed using a Thermo Scientific K-Alpha apparatus. Photoemission spectraarerecordedusingAlK

a

=1486.71eVmonochromatized radiation.TheX-rayspotdiameteronthesamplesurfaceisof 400

m

m.Thepassenergywasfixedat30eVfornarrowscan,and at170eVforsurveyscans.Thebackgroundsignalwasremoved using theShirleymethod.Atomicconcentrations were deter-mined from photoelectron peak areas using the atomic sensitivityfactors,takingintoaccountthetransmissionfunction of the analyzer. Photoelectron peaks were analyzed and deconvoluted using a Lorentzian/Gaussian (L/G=30) peak fitting.

2.4.Antimicrobialassays

2.4.1.Microbialstrainsandgrowthconditions

StaphylococcusaureusATCC6538andEscherichiacoliATCC8739 werepurchasedfromAmericanTypeCultureCollection(ATCC,US). GlycerolstockswerestreakedonLBagartoobtain24hculturesto beusedforallfurtherstudies.

(5)

2.4.2.Biofilmdevelopment

Monospecificbiofilm developmentwas assessed atdifferent timesofexposure,usingsterile6wellplates(Nunc).Sterilecoated andreferencebareTidiscswereinoculatedontheirsurfacewith 50

m

Lbacterialsuspensionof0.5McFarlanddensity correspond-ingto1–3*107density.Thesampleswereallowedtoincubateat

37Cin humidatmosphere andhavebeenobservedafterthree timeperiods(6h,24hand48h)toassessthetemporaldynamicsof developedbiofilms.Afterincubation,thesampleswerecarefully washed with sterile saline buffer to remove any unattached microbialcellsandthenimmersedin1mLsterilesalinebufferin Eppendorf tubes to reach biofilm detachment by vigorous vortexing.Theresultingbiofilm–detachedcellsuspensions were furtherseriallyten-folddilutedand10

m

Lofeachserialdilution wereplatedintriplicateonLBagar.

After6h,24hand48hofincubationat37C,viablecellcounts wereperformedandthenumberofcolonyformingunits(CFU)/mL foreachsamplewereestimated.

3. Resultsanddiscussion

3.1.SEM,AFM,andEDSobservations

Theoptimalcellularresponse(cellularadhesion,spreading,and proliferation) is of great significance for tissue and medical engineering and is dependent on surface morphology and composition(Surmenev,2012;Spencer,2011).

ThegeneralsurfacemorphologyoftheCHT-BmApfilmhasbeen first investigated by SEM. Fig. 2 displays the characteristic topologicalfeaturesoftheC-MAPLEfilminvarioussurfaceregions of interest: far-most CHT rich region (S1), CHT-BmAp blended regions(withCHTdecreasingfromS2toS4),andfar-mostBmAp richregion(S5).

SEMmicrographs(Fig.2)showed thattheC-MAPLEblended coatings have a homogeneous spongy appearance all over the substrate,whichisknowntobebeneficialforcelladhesion(Boyan etal.,1999;ChangandWang,2011;Willershausenetal.,2014;Zhu

(6)

etal.,2015).Although,CHTparticulatespreservetheirspherical morphology,whileelongatedfiliformstructureswerealsonoticed intheblendedregionsofthefilm(i.e.,S2–S4).Itwasstatedthat these threadlike structures could support some toughness improvements similar tothe one provided by fibrereinforcing in the composite materials, ensuring the desired mechanical behaviorfortissuesubstitution(Mikhailovetal.,2014).

Further,theroughness(RRMS)oftheCHT-BmApfilmshavebeen

inferredbyAFManalyses.Theevolutionofthegrainsroughness alongthesubstratelengthisdepictedinFig.3.Onenoticesthata progressive increase of roughness (RRMS) occurs with the CHT

concentrationintheC-MAPLEcompositefilms.

Fig.4presentscharacteristicEDSspectracollectedfromvarious regionsofCHT-BmApC-MAPLEblendedfilm,startingwiththeCHT richregion.OnecanobservetheprogressivedecreaseofC-K

a

and N-K

a

lines with distance from the CHT rich edge, which is indicativeofitsgradualdecreaseofconcentrationinthesample. TheCa/P molarratiofor each combinatorialsurfacewas in the range 1.3–1.5, thus lower than the stoichiometric theoretical value of hydroxyapatite (i.e., 1.67), pointing to the calcium-deficientstateofbiomimeticapatitesynthesized.

3.2.GIXRDinvestigation

InthecaseofsimpleMAPLEfilmstheonlydiffractionmaxima (Fig.5)pertaintotheTisubstrate(ICDD:00-044-1294)andtoa titaniumsub-oxidephase(TiO)(ICDD:01-086-2352),visibledue tothelowthicknessoftheMAPLEfilms.ThepresenceofTiOphase ontheTisurfacemightbetheresultofsubstratemanufacturing

process. For BmAp film, a fairly pronounced hump has been observedinthe(25–35)2

u

range,wherecrystalline

hydroxyapa-tite[HA,Ca10(PO4)6(OH)2]compoundsexhibittheirmostintense

lines.It is thussuggestedthat theBmApMAPLEthin filmis in amorphousstatewithinthesensitivitylimitoftheemployedXRD apparatus. No suchhalo hasbeen revealedin the case of CHT MAPLE thin film. One may account this to the lower electron density of chitosan with respect to HA, determining a lower scattered intensity, hard to discriminate from the background noise.

3.3.FTIRspectroscopystudies

TheFTIRspectraofBmAp,HA(pureandhighlycrystalline),and CHTpowdersarepresentedcomparativelyinFig.6aandb.Onecan notice thebroaderaspectof theIRbands inthe caseof BmAp powder with respect to the pure and highly crystalline HA material.Besidesthecharacteristic(Markovic etal.,2004;Sima etal.,2010)

n

4bending,

n

1symmetricstretchingand

n

3asymmetric

stretchingvibrationbandsoforthophosphateunitsofHA(Table1), theBmAppowderelicitedsupplementalIRbandspeakingat872, 1418,1480and1635cm1.Thewell-definedbandat872cm1 couldbeattributedtothesuperimposedcontributionsofthe

n

2

bendingmodesofcarbonategroupsandthevibrationsexhibited by hydrogen phosphate ions (HPO4)2– (characteristic to

non-apatiticdomains).Theweakbandat1635cm1belongstothe bending mode of water molecules. It denotes the existence of hydration,andcorrelateswellwiththeverybroadbandranging from3600to2500cm1,engenderedbythestretchingvibrations ofadsorbedwatermolecules.ThebroadIRabsorbancemaximaof the BmAp powder spectrum, and the absence of the libration (628cm1) and stretching (3571cm1) modes of structural (OH) groups, point towards an apatite-like compound witha reduceddegreeof(short-range)order.

TheIRspectrum(Fig.6aandb)oftheCHTpowderdisplaysan intricate envelope with multiple vibration maxima. The two prominentbands,situatedinthewavenumbersregions(i)3600– 2500cm1 and (ii) 1100–950cm1, are ascribed to the (i) overlapped stretching vibrations of adsorbed water and NH bonds, and to the(ii) symmetric stretching vibrationsof CO bondsingroupslikeCOH,COCandCH2OH,respectively(Kattietal.,

2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012). Thelowintensity,butsharpbands,centredat(iii)1150cm1and (iv) 890cm1, are related to the (iii) asymmetric stretching vibrationsofCO,and(iv)waggingvibrationsofCHbondsof thesaccharidegroupsofchitosan(Paluszkiewiczetal.,2011;Silva et al., 2012). The peaks at 1650, 1591 and 1316cm1 are

Fig.3.Surfaceroughness(RRMS)evolutionwiththedistancefromtheC-MAPLEfilm CHT-richedge.

(7)

characteristictothevibrationsofamidesI,IIandIIIgroups,whilst thebandsat1420and1376cm1areassignedtothesymmetric deformationmodesofCH3 (Kattietal.,2008;Yuanetal.,2010;

Paluszkiewiczetal.,2011;Silvaetal.,2012).

AcompleteassignmentoftheFTIRbandsispresentedinTable1.

Fig.6candddisplaythecomparativespectrarecordedforthe pure(CHTandBmAp)layersandblended(CHT-BmAp)thinfilm(in

tworegions situatedclosetoCHT-andBmAp-rich edgesof the film)depositedontitaniumsubstrate.Asageneralobservation,the spectra of pure CHT and BmAp layers elicit less defined IR envelopeswithbroaderbandswithrespecttotheparentpowders, thus indicating a decreased structural order. This was to be expected for films synthesized at room temperature in non-equilibrium conditions by a physical vapor deposition method, suchasMAPLE.However,remarkably,allmajorvibrationbandsof CHTand BmAPweredetected inthecase offilms, furthermore havingsimilarintensityratioandfeaturingonlyslightwavelength shifts.Theotherminorvibrationbands(observedmoreclearlyin thecaseofpowders)areassumedtobepresent,butoverlappedto the broader, yet convoluted, major peaks. The conservation of similarlevelsofhydration(forboth typesoffilms) astheones foundintheparentmaterialscanbealsoemphasized.

TheblendedCHT-BmApfilmwasanalyzedinvariousregions situated on a median line, starting from the CHT-rich region, takingadvantageoftheATRdiamondheadwithawindowareaof 2.54mm2.Inthiswaythecompositionalevolutionoftheblended

filmwasunveiled(Fig.7aandb).Onecannoticethateveninthe regionssituated in theBmAp-richeredge of the film,the CHT bandsaredominant (Figs.6and 7).ThissuggeststhattheCHT plume was superior expanded, whilst the BmAp was better confined, due to their different ablation and/or volatilization rates. However,the(large)shiftstointermediatepositionsand theshapeofthepeakssituatedinthe1200–800cm1regionare suggestingthat an interaction ofCHT moleculeswithBmApis

Fig.5.ComparativeGIXRDpatternsofsimpleBmAp/Tifilm,simpleCHT/Tifilm andbareTisubstrate.

Fig.6.ComparativeFTIRspectraofCHT,BmAp,andcrystallineHApowders(a,b),andsimpleCHT,BmAp,andCHT-BmApfilms(c,d)inthefingerprint(a,c)andfunctional groups(b,d)regions.Forabettervisualevaluation,thespectrawerenormalizedtotheintensityofthemostprominentbandcentredat1040–1010cm1.

(8)

occurring.Asexpected,withtheincreaseofthedistancefromthe BmAp-richeredge of thefilm, the BmApvibration bands start fading,whilsttheCHTbandsbecomemoreandmorepronounced, andareprogressivelyshiftedtothepositionsrecordedinthecase of the pure CHT film (Fig. 7a and b). Concomitantly, one can observeacontinuouschangeofthevibrationbandsshape,which evolves from a CHT-BmAp intermingled spectrum to an IR envelopeallurecloselyresemblingtheoneofpureCHT(Fig.7a andb).

3.4.Micro-Ramanspectroscopyinvestigations

Similarvibration bands tothe onesrevealed by FTIR inves-tigations(Fig.7aandbandTable1)havebeenalsoidentifiedby micro-Ramananalyses fortheCHTandBmApsourcematerials. (resultsnotshownhere).However,inthecaseofRamanspectra thesymmetricstretchingbandsarethedominantones.

InperfectagreementwiththeFTIRresults,theRamanspectra evidenced that the BmAp material elicit along combinatorial trajectoryadecreasedordering(indicatedbythebroaderaspectof thebands)andacertainlevelhydrationwithrespecttothepure andcrystallineHA.

3.5.XPSanalysis

XPSanalysisconfirmedthechemicalcompositionofthe CHT-BmApC-MAPLEcompositefilms.XPSsurveyspectracollectedon thesurfaceofCHT-BmApsamples(notpresented)indicatedthe presence of C 1s, O 1s, N 1s, Ca 2s, Ca 2p, P 2s and P 2p photoelectronpeaks.

Fig.8 shows the atomic ratioN 1s/(N1s+Ca 2p) evolution dependingonthepositionalongtheCHT-BmApblendedsample. Aspredicted,theatomicratio(N1s/N1s+Ca2p)isdecreasingfrom

CHTtoBmApcompounds,evidencingthecompositiongradientof thecombinatorialfilms.

3.6.Antimicrobialactivityassay

Composite biomaterials comprising Ap and polymers have shownpromising featuresforbone tissueengineering. Previous studies have proven the high antimicrobial activity of CHT/Ap composite particles (Ignjatovic et al., 2016; Shi et al., 2016). However,themostofthechitosancontainingcoatingsreportedin the literature have been obtained by using electrophoretic deposition or hydrothermal fabrication methods (Seuss et al., 2014;Pishbinetal.,2014;Longetal.,2014).

Duringthisstudies,theantibiofilmpropertiesoftheC-MAPLE depositedcoatingscontainingCHTandBmApinvariousratioshave beentestedusingtwomicrobialstrains,whicharerepresentative for the Gram positive (S. aureus) and Gram negative (E. coli) bacterial infections. Such pathogens could contaminate the orthopedic implants by route of exogenous or endogenous infections, leading to the occurrence of implant-associated infections,whicharehardtotreatandcouldoftenleadtoimplant failure.S.aureus,togetherwithS.epidermidisaccountsfor30%to twothirdsofallimplant-relatedinfections,whileamong Gram-negativebacteria,theetiologyisdominatedbyE.coli(Sendietal., 2011;Campocciaetal.,2006;EspositoandLeone,2008).However, little is known about the virulence features of E. coli strains involvedinprostheticinfections.Arecentstudyhasrevealedthat no specific pathogenic signature or increased ability to form biofilms in vitro were detected in E. coli strains isolated from orthopedicinfections,ascomparedtofecalisolates(Crémetetal., 2012).

Thebiofilmformationisamulti-stageprocessstartingwiththe initialattachmentofbacterialcells,followedbycellaggregation

Fig.7.FTIRspectraofsimpleCHTandBmApfilmsincomparisonwiththe“punctual”spectracollectedataseparationdistanceof2mmonthesurfaceofCHT-BmAp C-MAPLEfilm,inthefingerprint(a)andfunctionalgroups(d)regions.Forabettervisualevaluation,thespectrawerenormalizedtotheintensityofthemostprominentband centredat1040–1010cm1.

(9)

andaccumulationinmultiplecelllayers,biofilmmaturationand biofilmcellsdetachment(Arciolaet al.,2015).Inourstudy,the developmentofbiofilmsconsistingoftheGram-positiveS.aureus andtheGram-negativeE.colifollowedadifferentdynamiconthe testedsamples.Thus,bothS.aureusandE.colibiofilmsgrownon thecontrol(bareTisubstrate)revealedasimilardynamic,i.e.,a decreasingtrendofbiofilmembeddedviablecells, quantifiedat thethree consecutive point intervals(Fig.9).These results are suggestingthat thehighsurfaceroughnessof bareTisubstrate requiredforanimproved osseointegrationfavorstherapid and firmadhesionofS.aureusandE.colicells.Thisbehaviorsupports the leading position held by these species in the etiology of implant-associatedinfections.

Fig.9Inthecaseofmicrobialbiofilmsdevelopmentonthe CHT-BmApsurfaces,amorepronouncedinhibitoryeffectwasgenerally

observedagainsttheGram-positiveS.aureusbiofilm,ascompared toE.coli,forallthethreetestedtimeintervals(Fig.10).TheS2,S3 andS4samplesinhibitedthefirststageofS.aureusinitialmicrobial adherencetothetestedsurfacequantifiedafter6h,whilenoneof thetestedsamplesinhibitedtheadherenceoftheGram-negativeE. coli strain (Fig. 10a). At 24h, all tested CHT-BmAp samples decreased the number of S. aureus biofilm embedded cells (Fig.10b); the most intensive inhibitory effect being observed

Table1

TheassignmentofFTIRbandsofchitosanandhydroxyapatite. Position(cm1) Bandassignment

563–557 601–600

Bendingn4of(PO4)3groups(Markovicetal.,2004;Simaetal.,2010) 628 Librationofstructural(OH)groups(Markovicetal.,2004;Simaetal.,2010) 872–867 Bendingn2of(CO3)2groups(Markovicetal.,2004;Simaetal.,2010)

Stretchingof(HPO4)2(Markovicetal.,2004)

897–895 WaggingofCHbondsofthesaccharidestructureofchitosan(Yuanetal.,2010;Silvaetal.,2012) 963–942 Symmetricstretchingn1of(PO4)3groups(Markovicetal.,2004;Simaetal.,2010)

994–993 1034–1026 1068–1061

SymmetricstretchingofCObondsinCOH,COCandCH2OHgroups(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012)

1018–1002 1096–1087

Asymmetricstretchingn3of(PO4)3groups(Markovicetal.,2004;Simaetal.,2010)

1155–1150 AsymmetricstretchingofCOCbondsofthesaccharidestructureofchitosan(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silva etal.,2012)

1262 Stretchingof(COH)bonds(Yuanetal.,2010) RockingofNH2(Kattietal.,2008)

1317–1315 Stretchingof(CH3)ofamideIIIgroups(Kattietal.,2008;Yuanetal.,2010) 1376–1375

1420–1417

Symmetricdeformationof(CH3)(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012) 1427–1418

1480

Asymmetricstretchingn3of(CO3)2groups(Markovicetal.,2004;Simaetal.,2010)

1591–559 Stretchingof(NH)ofamideIIgroups(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012) 1635–1610 Bendingofwatermolecules(Markovicetal.,2004)

1650–1640 Stretchingof(C¼O)ofamideIgroups(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012)

2871–2870 Symmetricstretchingn2of(CH)bondsin(CH3)groups(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012) 2922 Symmetricstretchingofaliphatic(CH)bonds(Pengetal.,2008)

2977 Asymmetricstretchingof(CH3)(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012) 3288–3286

3357–3355

Stretchingvibrationsof(NH)bonds(Kattietal.,2008;Yuanetal.,2010;Paluszkiewiczetal.,2011;Silvaetal.,2012) 3571 Stretchingofstructural(OH)groups(Markovicetal.,2004)

3600–2500 Stretchingvibrationsof(OH)bondsinadsorbedwatermolecules(Markovicetal.,2004)

Fig.8. TypicalXPSmeasurementalongthecompositeCHT-BmApC-MAPLEfilms.

Fig.9.Graphicrepresentationofthenumberofviablebiofilmembedded(a)S. aureusand(b)E.colicellsdevelopedonthebareTisubstrateusedascontrol.

(10)

fortheS4sampleinthecaseofS.aureusbiofilm.TheE.colibiofilm developmentwasinhibitedbytheS1–S5samples,butthemost intensiveantibiofilmeffectwasnoticedforS4andS5(Fig.10b).

Anintensiveanti-biofilmeffectwasexhibitedafter48hagainst S.aureusinthecaseofallCHT-BmAptestedsamples(Fig.10c)but themostsignificantactivitywasobservedforS1andS2samples. TheE.colibiofilmwasinhibitedonlybyS3–S5samples,themost intensiveeffectbeingnoticedforS5(Fig.10c).

Takentogether,theresultsregardingtheanti-biofilmeffectof theobtainedcoatingsexhibitedagainstbothbiofilmtypesandfor the three tested intervals recommend S3 and S4 as the most promisingcompositions,assuringananti-biofilmprotectionona longperiodoftimeagainstbothbacterialspecies(Table2).

AlthoughthemechanismsofantimicrobialactionofCHTarenot elucidated,theliteraturestatesthatitstargetisatthemicrobial cellsurface,assuggestedbytheelectronmicroscopyfindings.They show cellular wall disorganization both in Gram-positive and Gram-negativebacteria,aswellasin fungalstrains, due tothe electrostatic interaction of positively-charged—CHT with the negatively charged bacterial components (proteins, phospholi-pids)(Cuero,1999;Muzzarellietal.,1990; Noetal.,2002).This action mechanism is responsible for a wide spectrum of the antimicrobial activity of CHT and its derivatives including filamentous fungi,yeasts and bacteria (Raafat and Sahl, 2009). Nevertheless, it seems that CHT is more active against Gram-positive than Gram-negative bacteria, as revealed also by our study. In this regard, S. aureus biofilm proved to be more susceptiblethanE.coli,probablyduetothestrongerinteraction

of CHTwiththeamino acidsrich fractionof theGram-positive bacterialwall(Kumaretal.,2005).Inexchange,theGram-negative strainshaveamorecomplexcellularwallduetothe negatively-chargedlipopolysaccharideswhichcanactasanadditionalbarrier intheinteractionofchitosanwithotherstructuresofthecellular wallandmembrane(Helanderetal.,2001).

4. Conclusions

ThesynthesizedCHT-BmApblendedthinfilmsareamorphous, rough,withamorphologycharacteristictoMAPLEstructures.The compositiongradientofthechitosan-to-biomimetic hydroxyapa-titehasbeenconfirmedlongwisethecombinatorialfilms.

Theantimicrobialactivitywascontrolledbytheconcentration ofchitosan,whiletheblendedstructureswerebetterintegratedfor quasi-equal presence of the two compounds (i.e.,chitosan and biomimetic apatite). The most efficient antimicrobial activity, consideredas long-termprotectionagainst initialadhesion and biofilmsdevelopedbyGram-positiveandGram-negativestrains, wasassignedtoS3andS4samples.

C-MAPLE technique used in this study proves to be a prospectiveandviablemethodforthefabricationofbiomimetic andbioactiveantimicrobialorthopedic coatingswhichresemble thenativeboneextracellularmatrix(consistingofwater,minerals, fibrousproteins,proteoglycans)andthus,createafavorableliving environmentforosteogeniccells,whileassuringprotectionfrom microbialcolonization.

Acknowledgements

The authors acknowledge the financial support of UEFISCDI under the France–Romania bilateral contract 778/2014, the “Ministère des Affaires étrangères” under the PHC BRANCUSI 2015 (N 32648SD) and the National Authority for Scientific Research andInnovationin theframeof NucleusProgramme– contract 4N/2016. The authors thank to Iuliana Urzica for performing the profilometry thickness measurements. G.E.S. acknowledgeswiththanksthesupportofNIMPCoreProgramme PN1648-3/2016.Theauthorsacknowledgewiththanksthehelpof Dr.FelixSimaandDr.EmanuelAxenteforassistanceforthedesign andset-upoftheC-MAPLEexperiment.

References

Agarwal,R.,García,A.J.,2015.Biomaterialstrategiesforengineeringimplantsfor enhancedosseointegrationandbonerepair.Adv.DrugDeliv.Rev.94,53–62.

Arciola,C.R.,Campoccia,D.,Ehrlich,G.D.,Montanaro,L.,2015.Biofilm-based implantinfectionsinorthopaedics.Adv.Exp.Med.Biol.830,29–46.

Axente,E.,Sima,F.,Sima,L.E.,Erginer,M.,Eroglu,M.S.,Serban,N.,Ristoscu,C., Petrescu,S.M.,Stefana,ToksoyOner,E.,Mihailescu,I.N.,2014.Combinatorial MAPLEgradientthinfilmassembliessignallingtohumanosteoblasts. Biofabrication6,035010.

Blind,O.,Klein,L.H.,Dailey,B.,Jordan,L.,2005.Characterizationofhydroxyapatite filmsobtainedbypulsed-laserdepositiononTiandTi-6AL-4vsubstrates.Dent. Mater.21,1017–1024.

Boyan,B.D.,Lincks,J.,Lohmann,C.H.,Sylvia,V.L.,Cochran,D.L.,Blanchard,C.R., Dean,D.D.,Schwartz,Z.,1999.Effectofsurfaceroughnessandcompositionon

Fig.10.Graphicrepresentationofthenumberofviablemicrobialcellsadheredto thesurfaceofCHT-BmApcompositefilmafter(a)6h,(b)24hand(c)48hof incubation.

Table2

Syntheticrepresentationoftheanti-biofilmefficiencyoftheCHT-BmApsurfaces dependingonthebiofilmspeciesanddevelopmentstage.

Species S.aureus E.coli

Incubationtime 6h 24h 48h 6h 24h 48h S1 x x x S2 x x x x S3 x x x x x S4 x x x x x S5 x x x x

(11)

costochondralchondrocytesisdependentoncellmaturationstate.J.Orthop. Res.17,446–457.

Campoccia,D.,Montanaro,L.,Arciola,C.R.,2006.Thesignificanceofinfection relatedtoorthopedicdevicesandissuesofantibioticresistance.Biomaterials 27,2331–2339.

Chang,H.I.,Wang,Y.,2011.Cellresponsestosurfaceandarchitectureoftissue engineeringscaffolds.In:Eberli,D.(Ed.),RegenerativeMedicineandTissue Engineering–CellsandBiomaterials.InTech,Rijeka,pp.569–588.

Chifiriuc,M.C.,Grumezescu,A.M.,Grumezescu,V.,Bezirtzoglou,E.,Lazar,V., Bolocan,A.,2014.Biomedicalapplicationsofnaturalpolymersfordrugdelivery. Curr.Org.Chem.18,152–164.

Crémet,L.,Corvec,S.,Bémer,P.,Bret,L.,Lebrun,C.,Lesimple,B.,Miegeville,A.F., Reynaud,A.,Lepelletier,D.,Caroff,N.,2012.Orthopaedic-implantinfectionsby Escherichiacoli:molecularandphenotypicanalysisofthecausativestrain.J. Infect.64,169–175.

Cristescu,R.,Popescu,C.,Popescu,A.C.,Popescu,C.,Socol,G.,Mihailescu,I.N., Caraene,G.,Albulescu,R.,Buruiana,T.,Chrisey,D.,2012.Pulsedlaserprocessing of functionalized polysaccharides for controlled release drug delivery systems:functionalizedpolysaccharidesprocessedfordrugdelivery.NATO ScienceforPeaceandSecuritySeriesA:ChemistryandBiology.Springer,pp. 231–236.

Cuero,R.G.,1999.Antimicrobialactionofexogenouschitosan.In:Jollès,P., Muzzarelli,R.A.A.(Eds.),ChitinandChitinases.BirkhäuserVerlag,Basel,pp. 315–333.

Dai,T.,Tanaka,M.,Huang,Y.Y.,Hamblin,M.R.,2011.Chitosanpreparationsfor woundsandburns:antimicrobialandwound-healingeffects.ExpertRev.Anti Infect.Ther.9,857–879.

Davidenko,N.,Carrodeguas,R.G.,Peniche,C.,Solís,Y.,Cameron,R.E.,2010.Chitosan/ apatitecompositebeadspreparedbyinsitugenerationofapatiteorSi-apatite nanocrystals.ActaBiomater.6,466–476.

Derakhshandeh,K.,Fathi,S.,2012.Roleofchitosannanoparticlesintheoral absorptionofGemcitabine.Int.J.Pharm.437,172–177.

Dorozhkin,S.V.,2009.Nanodimensionalandnanocrystallineapatitesandother calciumorthophosphatesinbiomedicalengineering,biologyandmedicine. Materials2,1975–2045.

Duta,L.,Oktar,F.N.,Stan,G.E.,Popescu-Pelin,G.,Serban,N.,Luculescu,C., Mihailescu,I.N.,2013.Noveldopedhydroxyapatitethinfilmsobtainedby pulsedlaserdeposition.Appl.Surf.Sci.265,41–49.

Dutta,P.K.,Tripathi,S.,Mehrotra,G.K.,Dutta,J.,2009.Perspectivesforchitosan basedantimicrobialfilmsinfoodapplications.FoodChem.114,1173–1182.

Eason,R.,2006.PulsedLaserDepositionofThinFilms:Applications-LedGrowthof FunctionalMaterials.JohnWiley&Sons,Hoboken(NJ).

Eichert,D.,Drouet,C.,Sfihi,H.,Rey,C.,Combes,C.,2007.Nanocrystallineapatite basedbiomaterials:synthesis,processingandcharacterization.In:Kendall,J.B. (Ed.),BiomaterialsResearchAdvances.NovaSciencePublishers,NewYork,pp. 93–143.

Esposito,S.,Leone,S.,2008.Prostheticjointinfections:microbiology,diagnosis, managementandprevention.Int.J.Antimicrob.Agents32,287–293.

Gan,Q.,Wang,T.,2007.Chitosannanoparticleasproteindeliverycarriersystematic examinationoffabricationconditionsforefficientloadingandrelease.Colloids Surf.B59,24–34.

Grossin,D.,Rollin-Martinet,S.,Estournes,C.,Rossignol,F.,Champion,E.,Combes,C., Rey,C.,Geoffroy,C.,Drouet,C.,2010.Biomimeticapatitesinteredatverylow temperaturebysparkplasmasintering:physico-chemistryandmicrostructure aspects.ActaBiomater.6,577–585.

Grumezescu,A.M.,Saviuc,C.,Holban,A.,Hristu,R.,Croitoru,C.,Stanciu,G.,Chifiriuc, C.,Mihaiescu,D.,Balaure,P.,Lazar,V.,2011.Magneticchitosanfordrugtargeting andinvitrodrugdeliveryresponse.Biointerf.Res.Appl.Chem.1,160–165.

Grumezescu,A.M.,Andronescu,E.,Ficai,A.,Bleotu,C.,Mihaiescu,D.E.,Chifiriuc,M. C.,2012.Synthesis,characterizationandinvitroassessmentofthemagnetic chitosan-carboxymethylcellulosebiocompositeinteractionswiththe prokaryoticandeukaryoticcells.Int.J.Pharm.436,771–777.

Helander,I.M.,Nurmiaho-Lassila,E.L.,Ahvenainen,R.,Rhoades,J.,Roller,S.,2001. Chitosandisruptsthebarrierpropertiesoftheoutermembraneof Gram-negativebacteria.Int.J.FoodMicrobiol.71,235–244.

Hu,Q.,Li,B.,Wang,M.,Shen,J.,2004.Preparationandcharacterizationof biodegradablechitosan/hydroxyapatitenanocompositerodsviainsitu hybridization:apotentialmaterialasinternalfixationofbonefracture. Biomaterials25,779–785.

Ignjatovic,N.,Wu,V.,Ajdukovic,Z.,Mihajilov-Krstev,T.,Uskokovic,V.,Uskokovic, D.,2016.Chitosan-PLGApolymerblendsascoatingsforhydroxyapatite nanoparticlesandtheireffectonantimicrobialproperties,osteoconductivity andregenerationofosseoustissues.Mater.Sci.Eng.C60,357–364.

Ito,M.,Hidaka,Y.,Nakajima,M.,Yagasaki,H.,Kafrawy,A.H.,1999.Effectof hydroxyapatitecontentonaphysicalpropertiesandconnectivetissuereactions toachitosan-hydroxyapatitecompositemembrane.J.Biomed.Mater.Res.45, 204–208.

Jia,L.N.,Liang,C.H.,Huang,N.B.,Zhou,Z.M.,Duan,F.,Wang,L.X.,2016a.Morphology andcompositionofcoatingsbasedonhydroxyapatite-chitosan-RuCl3system onAZ91Dpreparedbypulsedelectrochemicaldeposition.J.Alloy.Compd.656, 961–971.

Jia,Z.,Xiu,P.,Li,M.,Xu,X.,Shi,Y.,Cheng,Y.,Wei,S.,Zheng,Y.,Xi,T.,Cai,H.,Liu,Z., 2016b.BioinspiredanchoringAgNPsontomicro-nanoporousTiO2orthopedic

coatings:trap-killingofbacteria,surface-regulatedosteoblastfunctionsand hostresponses.Biomaterials75,203–222.

Katti,K.S.,Katti,D.R.,Dash,R.,2008.Synthesisandcharacterizationofanovel chitosan/montmorillonite/hydroxyapatitenanocompositeforbonetissue engineering.Biomed.Mater.3,034122.

Kim,S.,Kim,J.H.,Jeon,O.,Kwon,I.C.,Park,K.,2008.Engineeredpolymersfor advanceddrugdelivery.Eur.J.Pharm.Biopharm.71,420–430.

Kong, M., Chen, X.G., Xing, K., Park, H.J., 2010. Antimicrobial properties of chitosanandmodeofaction:astateoftheartreview.Int.J.FoodMicrobiol.144, 51–63.

Kumar,A.B.V.,Varadaraj,M.C.,Gowda,L.R.,Tharanathan,R.N.,2005.

Characterizationofchito-oligosaccharidespreparedbychitosanolysiswiththe aidofpapainandpronase,andtheirbactericidalactionagainstBacilluscereus andEscherichiacoli.Biochem.J.391,167–175.

Leceta,I.,Guerrero,P.,Ibarburu,I.,Dueñas,M.T.,delaCaba,K.,2013.

Characterizationandantimicrobialanalysisofchitosan-basedfilms.J.FoodEng. 116,889–899.

Lee,M.,Li,W.,Siu,R.K.,Whang,J.,Zhang,X.,Soo,C.,Ting,K.,Wu,B.M.,2009. Biomimeticapatite-coatedalginate/chitosanmicroparticlesasosteogenic proteincarriers.Biomaterials30,6094–6101.

Li,X.,Nan,K.,Shi,S.,2012.H.ChenPreparationandcharacterizationof nano-hydroxyapatite/chitosancross-linkingcompositemembraneintendedfor tissueengineering.Int.J.Biol.Macromol.50,43–49.

Li,X.,Ma,X.Y.,Feng,Y.F.,Ma,Z.S.,Wang,J.,Ma,T.C.,Qi,W.,Lei,W.,Wang,L.,2015. Osseointegrationofchitosancoatedporoustitaniumalloyimplantbyreactive oxygenspecies-mediatedactivationofthePI3K/AKTpathwayunderdiabetic conditions.Biomaterials36,44–54.

Long,T.,Liu,Y.T.,Tang,S.,Sun,J.L.,Guo,Y.P.,Zhu,Z.A.,2014.Hydrothermal fabricationofhydroxyapatite/chitosan/carbonporousscaffoldsforbonetissue engineering.J.Biomed.Mater.Res.BAppl.Biomater.102,1740–1748.

Ma,X.Y.,Feng,Y.F.,Ma,Z.S.,Li,X.,Wang,J.,Wang,L.,Lei,W.,2014.Thepromotion ofosteointegrationunderdiabeticconditionsusingchitosan/hydroxyapatite compositecoatingonporoustitaniumsurfaces.Biomaterials35,7259–7270.

Markovic,M.,Fowler,B.O.,Tung,M.S.,2004.Preparationandcomprehensive characterizationofacalciumhydroxyapatitereferencematerial.J.Res.Natl. Inst.Stand.Technol.109,553–568.

Martins,A.F.,Facchi,S.P.,Follmann,H.D.M.,Pereira,A.G.B.,Rubira,A.F.,Muniz,E.C., 2014.AntimicrobialactivityofchitosanderivativescontainingN-quaternized moietiesinitsbackbone:areview.Int.J.Mol.Sci.15,20800–20832.

Meredith,J.C.,Karim,A.,Amis,E.J.,2000.High-throughputmeasurementof polymerblendphasebehavior.Macromolecules33,5760–5762.

Mihailescu,N.,Stan,G.E.,Duta,L.,Chifiriuc,M.C.,Bleotu,C.,Sopronyi,M.,Luculescu, C.,Oktar,F.N.,2016.I.N.MihailescuStructural,compositional,mechanical characterizationandbiologicalassessmentofbovine-derivedhydroxyapatite coatingsreinforcedwithMgF2orMgOforimplantsfunctionalization.Mater.Sci.

Eng.C59,863–874.

Mikhailov,G.P.,Tuchkov,S.V.,Lazarev,V.V.,Kulish,E.I.,2014.Complexationof chitosanwithaceticacidaccordingtoFourierTransformRamanSpectroscopy data.Russ.J.Phys.Chem.A88,973–978.

Muzzarelli,R.,Tarsi,R.,Filippini,O.,Giovanetti,E.,Biagini,G.,Varaldo,P.E.,1990. AntimicrobialpropertiesofN-carboxybutylchitosan.Antimicrob.Agents Chemother.34,2019–2023.

Nair,L.S.,Laurencin,C.T.,2006.Polymersasbiomaterialsfortissueengineeringand controlleddrugdelivery.Adv.Biochem.Eng.Biotechnol.102,47–90.

No,H.K.,Park,N.Y.,Lee,S.H.,Meyers,S.P.,2002.Antibacterialactivityofchitosans andchitosanoligomerswithdifferentmolecularweights.Int.J.FoodMicrobiol. 74,65–72.

Noel,P.,Courtney,H.,Bumgardner,J.D.,Haggard,W.O.,2008.Chitosanfilms:a potentiallocaldrugdeliverysystemforantibiotics.Clin.Orthop.Relat.Res.466, 1377–1382.

Paluszkiewicz,E.,Stodolak,M.,Hasik,M.,2011.FT-IRstudyofmontmorillonite– chitosannanocompositematerials.Spectrochim.ActaA79,784–788.

Peña,J.,Izquierdo-Barba,I.,García,M.A.,Vallet-Regí,M.,2006.Roomtemperature synthesisofchitosan/apatitepowdersandcoatings.J.Eur.Ceram.Soc.26, 3631–3638.

Peng,P.,Wark,I.,Voelcker,N.H.,Kumar,S.,Griesser,H.J.,2008.Concurrentelutionof calciumphosphateandmacromoleculesfromalginate/chitosanhydrogel coatings.Biointerphases3,105–116.

Pishbin,F.,Mouriño,V.,Flor,S.,Kreppel,S.,Salih,V.,Ryan,M.P.,Boccaccini,A.R., 2014.Electrophoreticdepositionofgentamicin-loadedbioactiveglass/chitosan compositecoatingsfororthopaedicimplants.ACSAppl.Mater.Interfaces6, 8796–8806.

Raafat,D.,Sahl,H.,2009.Chitosananditsantimicrobialpotential–acritical literaturesurvey.Microb.Biotechnol.2,186–201.

Sendi,P.,Banderet,F.,Graber,P.,Zimmerli,W.,2011.Periprostheticjointinfection followingStaphylococcusaureusbacteremia.J.Infect.63,17–22.

Seuss,S.,Lehmann,M.,Boccaccini,A.R.,2014.Alternatingcurrentelectrophoretic depositionofantibacterialbioactiveglass-chitosancompositecoatings.Int.J. Mol.Sci.15,2231–2242.

Shi,Y.Y.,Li,M.,Liu,Q.,Jia,Z.J.,Xu,X.C.,Cheng,Y.,Zheng,Y.F.,2016.Electrophoretic depositionofgrapheneoxidereinforcedchitosan-hydroxyapatite

nanocompositecoatingsonTisubstrate.J.Mater.Sci.–Mater.Med.27,48.

Silva,C.R.C.,Braga,M.V.L.,Fook,C.M.O.,Raposo,L.H.,Carvalho,E.L.,2012. Applicationofinfraredspectroscopytoanalysisofchitosan/clay nanocomposites.In:Theophile,T.(Ed.),InfraredSpectroscopy–Materials Science,EngineeringandTechnology.InTech,Rijeka,pp.43–62.

Sima,F.,Mihailescu,I.N.,2013.Biomimeticassembliesbymatrix-Assistedpulsed laserevaporation.In:Schmidt,V.,Belegratis,M.R.(Eds.),LaserTechnologyin

(12)

Biomimetics,PartofSeries:BiologicalandMedicalPhysics,Biomedical Engineering.Springer-Verlag,Heidelberg,NewYork,pp.111–141.

Sima,L.E.,Stan,G.E.,Morosanu,C.O.,Melinescu,A.,Ianculescu,A.,Melinte,R., Neamtu,J.,Petrescu,S.M.,2010.Differentiationofmesenchymalstemcellsonto highlyadherentradiofrequency-sputteredcarbonatedhydroxylapatitethin films.J.Biomed.Mater.Res.A95A,1203–1214.

Sima,F.,Axente,E.,Sima,L.E.,Tuyel,U.,Eroglu,M.S.,Serban,N.,Ristoscu,C., Petrescu,S.M.,ToksoyOner,E.,Mihailescu,I.N.,2012.Combinatorial Matrix-AssistedPulsedLaserEvaporation:single-stepsynthesisofbiopolymer compositionalgradientthinfilmassemblies.Appl.Phys.Lett.101,233705.

Sima,F.,Axente,E.,Iordache,I.,Luculescu,C.,Gallet,O.,Anselme,K.,Mihailescu,I.N., 2014.CombinatorialMatrixAssistedPulsedLaserEvaporationofa

biodegradablepolymerandfibronectinforproteinimmobilizationand controlledrelease.Appl.Surf.Sci.306,75–79.

Simchi,A.,Tamjid,E.,Pishbin,F.,Boccaccini,A.R.,2011.Recentprogressininorganic andcompositecoatingswithbactericidalcapabilityfororthopaedic applications.Nanomed.-Nanotechnol.Biol.Med.7,22–39.

Sivakumar,M.,Manjubala,I.,PandurangaRao,K.,2002.Preparation, characterizationandin-vitroreleaseofgentamicinfromcoralline

hydroxyapatite-chitosancompositemicrospheres.Carbohydr.Polym.49,281– 288.

Sogias,I.A.,Williams,A.C.,Khutoryanskiy,V.V.,2012.Chitosan-basedmucoadhesive tabletsfororaldeliveryofibuprofen.Int.J.Pharm.436,602–610.

Song,L.,Gan,L.,Xiao,Y.F.,Wu,Y.,Wu,F.,Gu,Z.W.,2011.Antibacterial hydroxyapatite/chitosancomplexcoatingswithsuperiorosteoblasticcell response.Mater.Lett.65,974–977.

Spencer,N.D.,2011.TailoringSurfaces:ModifyingSurfaceCompositionand StructureforApplicationsinTribology,BiologyandCatalysis.WorldScientific PublishingCompany,London.

Surmenev,R.A.,2012.Areviewofplasma-assistedmethodsforcalcium phosphate-basedcoatingsfabrication.Surf.Coat.Technol.206,2035–2056.

Thein-Han,W.W.,Misra,R.D.K.,2009.Biomimeticchitosan–nanohydroxyapatite compositescaffoldsforbonetissueengineering.ActaBiomater.5,1182–1197.

Torricelli,P.,Sima,F.,Axente,E.,Fini,M.,Mihailescu,I.N.,Bigi,A.,2015.Strontium andzoledronatehydroxyapatitesgradedcompositecoatingsforbone prostheses.J.ColloidInterfaceSci.448,1–7.

VandeVord,P.J.,Matthew,H.W.T.,DeSilva,S.P.,Mayton,L.,Wu,B.,Wooley,P.H.,2002. Evaluationofthebiocompatibilityofachitosanscaffoldinmice.J.Biomed. Mater.Res.59,585–590.

Visan,A.,Grossin,D.,Stefan,N.,Duta,L.,Miroiu,F.M.,Stan,G.E.,Sopronyi,M., Luculescu,C.,Freche,M.,Marsan,O.,Charvillat,C.,Ciuca,S.,Mihailescu,I.N., 2014.BiomimeticnanocrystallineapatitecoatingssynthesizedbyMatrix AssistedPulsedLaserEvaporationformedicalapplications.Mater.Sci.Eng.B 181,56–63.

Vllasaliu,D.,Casettari,L.,Fowler,R.,Exposito-Harris,R.,Garnett,M.,Illum,L., Stolnik,S.,2012.Absorption-promotingeffectsofchitosaninairwayand intestinalcelllines:acomparativestudy.Int.J.Pharm.430,151–160.

Willershausen,I.,Barbeck,M.,Boehm,N.,Sader,R.,Willershausen,B.,Kirkpatrick,C. J.,Ghanaati,S.,2014.Non-cross-linkedcollagentypeI/IIImaterialsenhancecell proliferation:invitroandinvivoevidence.J.Appl.Oral.Sci.22,29–37.

Yoshida,A.,Miyazaki,T.,Ishida,E.,Ashizuka,M.,2004.Preparationofbioactive chitosan-hydroxyapatitenanocompositesforbonerepairthrough mechanochemicalreaction.Mater.Trans.45,994–998.

Yu,Q.,Ge,W.,Atewologun,A.,López,G.P.,Stiff-Roberts,A.D.,2014.RIR-MAPLE depositionofmultifunctionalfilmscombiningbiocidalandfoulingrelease properties.J.Mater.Chem.B2,4371–4378.

Yuan,Q.,Shah,J.,Hein,S.,Misra,R.D.K.,2010.Controlledandextendeddrugrelease behaviorofchitosan-basednanoparticlecarrier.ActaBiomater.6,1140–1148.

Zhang,Y.,Zhang,M.,2002.Calcium/phosphatecompositescaffoldsforcontrolledin vitroantibioticdrugrelease.J.Biomed.Mater.Res.62,378–386.

Zhong,Z.,Qin,J.,Ma,J.,2015.Electrophoreticdepositionofbiomimeticzinc substitutedhydroxyapatitecoatingswithchitosanandcarbonnanotubeson titanium.Ceram.Int.41,8878–8884].

Zhu,Y.,Zhu,R.,Ma,J.,Weng,Z.,Wang,Y.,Shi,X.,Li,Y.,Yan,X.,Dong,Z.,Xu,J.,Tang,C., Jin,L.,2015.Invitrocellproliferationevaluationofporousnano-zirconia scaffoldswithdifferentporosityforbonetissueengineering.Biomed.Mater.10, 055009.

Figure

Fig. 1. (a) C-MAPLE experimental setup. (b) Schematic representation of the coating with compositional gradient obtained by C-MAPLE.
Fig. 2. SEM micrographs recorded in various regions of the CHT-BmAp coating obtained by C-MAPLE (magnification bar = 4 m m).
Fig. 4. EDS spectra collected in various regions of CHT-BmAp C-MAPLE blended film.
Fig. 6. Comparative FTIR spectra of CHT, BmAp, and crystalline HA powders (a,b), and simple CHT, BmAp, and CHT-BmAp films (c,d) in the fingerprint (a,c) and functional groups (b,d) regions
+3

Références

Documents relatifs

AN INFLUENCE OF DOPING ON THE KINETICS OF BPSG DEPO- SITION PROCESS AND THE PROPERTIES OF THE DEPOSITED LAYER... GRABIEC and

permit proper comparison. As it is not known whether errors and total time are alike, it is uncertain whether either response measure actually characterizes visual

Finally, by introducing the ratio V d /V c between the deposition and crystallization rates as a major parameter, different deposition behaviours and

Et puis c’est une mauvaise compréhension de l’intérêt d’un logiciel de calcul formel : les fonctions prédéfinies sont là pour gagner du temps, et écrire une procédure

Comme il s’agit de tableaux d’une ligne, nous allons plutôt nous tourner sur des objets de type liste, facilement manipulables en MAPLE, mais il faut bien faire la différence entre

Cette étude a été menée pour révéler l'existence de liens entre le mode de développement du Cornouiller stolonifère (Cornus sericea L. syn Cornus stolonifera MichX, Cornaceae) et

Incorporation of copper ions into HA was associated to an interstitial insertion along hexagonal channel of the HA structure which leads to the increase in the

In a simple test of the hypothesis that permanent and transitory components have the same MPC, quarterly data on money income and con- sumption from the first quarter of 1946