• Aucun résultat trouvé

ELECTRON-BEAM INDUCED CENTERS IN HYDROGENATED AMORPHOUS SILICON

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRON-BEAM INDUCED CENTERS IN HYDROGENATED AMORPHOUS SILICON"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220926

https://hal.archives-ouvertes.fr/jpa-00220926

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRON-BEAM INDUCED CENTERS IN HYDROGENATED AMORPHOUS SILICON

H. Schade, J. Pankove

To cite this version:

H. Schade, J. Pankove. ELECTRON-BEAM INDUCED CENTERS IN HYDROGENATED AMORPHOUS SILICON. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-327-C4-330.

�10.1051/jphyscol:1981469�. �jpa-00220926�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZ6rnent au nOIO, Tome 42, octobre 1981 page C4-327

H. Schade and J . I . Pankove

RCA Laboratories, Princeton,

NJ

08540, U. S. A.

A b s t r a c t . - Photoluminescence was used t o compare t h e e f f e c t s of low-energy e l e c t r o n bombardment and l a s e r i r r a d i a t i o n i n a-Si:H. The main e f f e c t s a r e s i m i l a r : 1 ) d e c r e a s e of t h e main luminescence peak a t 1 . 2 eV, 2) enhancement of luminescence a t 0.8 eV, and 3) complete recovery of t h e o r i g i n a l proper- t i e s a f t e r a n n e a l i n g a t 200°C. The d e c r e a s e a t 1.2 eV however, is much more pronounced w i t h e l e c t r o n t h a n w i t h photon i r r a d i a t i o n .

I. I n t r o d u c t i o n . - E l e c t r i c a l and o p t i c a l b u l k p r o p e r t i e s of hydrogenated amorphous s i l i c o n (a-Si:H) a r e a f f e c t e d by photon- (1,2,3), a s w e l l a s by e l e c t r o n - and ion- i r r a d i a t i o n ( 4 ) . With r e g a r d t o electron-induced p r o p e r t y changes, so f a r o n l y 1 NeV e l e c t r o n i r r a d i a t i o n h a s been s t u d i e d ( 4 ) . We have r e p o r t e d r e c e n t l y (5) t h a t undoped a-Si:H can be damaged by e l e c t r o n s a t much lower e n e r g i e s than c r y s t a l l i n e s i l i c o n , w i t h a damage t h r e s h o l d energy below 1 keV. The p e n e t r a t i o n d e p t h of e l e c - t r o n s w i t h a few keV i s of t h e o r d e r of 100 nm ( 6 ) , and i t i s t h u s comparable t o t h e p e n e t r a t i o n of photons i n t h e v i s i b l e range. With about e q u a l p e n e t r a t i o n of photon- and e l e c t r o n - i r r a d i a t i o n , a c l o s e comparison of t h e i r e f f e c t s can b e made; based on

-L y,,otslaninescence and a n n e a l i n g measurements, we w i l l p r o v i d e evidence t h a t t h e na- t u r e of d e f e c t s g e n e r a t e d by e i t h e r photons o r e l e c t r o n s i s very s i m i l a r .

*

Research r e p o r t e d h e r e i n was supported by S o l a r Energy Research I n s t i t u t e , under C o n t r a c t No. XJ-9-8254, and RCA L a b o r a t o r i e s .

11. Experiments.- The samples were undoped a-Si:H d e p o s i t e d on s t a i n l e s s s t e e l o r c r y s t a l l i n e s i l i c o n by glow d i s c h a r g e decomposition of s i l a n e . The hydrogen con- c e n t r a t i o n determined by secondary-ion mass-spectroscopy (7) was 5 t o 7 x 1 0 21 &3 The e l e c t r o n i r r a d i a t i o n was performed a t room temperature i n a scanning Auger m i - croprobe system, using e l e c t r o n e n e r g i e s between l and 5 keV, and an e l e c t r o n dose of t y p i c a l l y 1 x 10'' e l e c t r o n s / c m 2

.

The p h o t o n - i r r a d i a t i o n occurred a t room tem- p e r a t u r e o r e l e v a t e d temperatures (up t o 100°C) u s i n g an argon l a s e r (488 nm) a t a d o s e of about 3 x 1021 photons/cm 2

.

Both t y p e s of

i r r a d i a t i o n were a p p l i e d t o s i m i l a r samples, o r even side-by-side t o t h e same sample. Damage pro- f i l i n g , by u s i n g a combination of scanning Auger

+

10' -

microprobing and A r - s p u t t e r i n g ( 5 ) , c l e a r l y shows t h a t i n b o t h c a s e s t h e i r r a d i a t i o n h a s a f f e c t e d

-

-

t h e b u l k of t h e sample, r a t h e r t h a n j u s t t h e s u r -

'

-

f a c e . The depth of damage a s a f u n c t i o n of t h e

5 8

!A

e l e c t r o n energy i s shown i n Fig. 1; t h e e l e c t r o n Z - - o p e n e t r a t i o n a g r e e s w e l l w i t h t h a t o b t a i n e d from I- I I range-energy r e l a t i o n s ( 6 ) . The photon penetra-

t i o n was determined by damage p r o f i l i n g t o b e t

- 1 0 ~ 4 -

z

Fig. 1. Maximum d e p t h of damage a s a f u n c t i o n of - X

a t h e e l e c t r o n i r r a d i a t i o n energy f o r f o u r d i f f e r e n t

undoped a-Si:H samples. The dashed c u r v e i n d i c a t e s

z

a n average. I ; 2 3

ELECTRON ENERGY

[K~v]

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981469

(3)

JOURNAL DE PHYSIQUE

Fig. 2. Photoluminescence intensities at 1.2 eV (upper two curves) and 0.8 eV (lower two curves) across a photon- and electron-irradiated samples. Solid lines:

after irradiation; dashed lines; after partial anneal.

200 nm; this value closely corresponds to the inverse absorption constant of a-Si:H at 488 nm (8).

The photoluminescence (PL) was measured at 77 K, with the exciting beam at a sufficiently low dose to avoid irradiation damage during the measurement. The sample could be translated in the focal plane of the spectrometer to scan the lumi- nescence intensity and compare the irradiated and non-irradiated regions on the same sample. Figure 2 shows traces through electron- and laser-irradiated regions, at the luminescence peak at 1.2 eV, and at 0.8 eV, following irradiation and a par- tial anneal (see below). Figure 3 shows the spectral dependence of the PL before and after electron-irradiation. The main peak at 1.2 eV always drops in intensity after irradiation, typically by 15% after photon-irradiation, and by about 90% after electron-irradiation. At about 0.8 eV, the changes in PL are similar for both pho- ton- and electron-irradiation. While after photon exposure one always finds an in- crease at 0.8 eV, electron exposure may result in either an increase (as shown in Fig. 3) or a decrease of the PL intensity. As shown in Fig. 2 and further discussed below, the 0.8 eV emission can be turned into an enhancement by a slight anneal.

At room temperature, some annealing of the irradiation-induced defects occurs over a period of several months. Isochronal annealing (5 min periods) of a sample that contained both photon- and electron-damage resulted in a gradual disappearance of the irradiation-induced effects. Thus, Fig.

4

shows that the original intensi- ties at 1.2 and 0.8 eV are recovered at about the same annealing temperature of 230°C. In the case of electron-irradiation, we observe a transition of the 0.8 eV intensity from a decrease to an increase before the final recovery. A similar in- crease of PL at about this energy has also been observed after low-temperature anneals at about 100°C on samples irradiated with 1 MeV electrons

(4).

Secondary-ion mass-spectroscopy shows that the irradiation-induced changes are not related to a loss of hydrogen, and this is further evidenced by the full re- covery of the original PL intensity after annealing.

(4)

o i I

A

0-

-

- 0 5 -

w>:: d

o---dA

" A \ ' / ,

,(-ELECTRON- INDUCED

*--*

---Y*

-I 0 I I I

40 80 120 1 6 0 200

ANNEALING TEMPERATURE PC]

Fig. 3 . S p e c t r a l dependence of photolumi- F i g . 4. R e l a t i v e photoluminescence nescence b e f o r e and a f t e r 5 keV e l e c t r o n - change a t 1 . 2 and 0.8 eV a s a f u n c t i o n i r r a d i a t i o n . of i s o c h r o n a l a n n e a l i n g of photon- and

electron-induced i r r a d i a t i o n damage.

111. Discussion.- Our experiments cannot g i v e d i r e c t i n f o r m a t i o n on t h e atomic s t r u c t u r e of t h e d e f e c t s i n t r o d u c e d by e i t h e r photons o r e l e c t r o n s . However, t h e following c o n c l u s i o n s w i t h r e g a r d t o t h e i r p r o p e r t i e s can b e reached.

For photon-induced d e f e c t s we must p o s t u l a t e t h a t t h e y a r e caused by e l e c - t r o n i c e x c i t a t i o n s , s i n c e no d i r e c t momentum t r a n s f e r can occur. For e l e c t r o n i r r a d i a t i o n , energy and momentum can g i v e r i s e t o d i r e c t atomic displacements. But t h e Icy?-damage-thresh018 energy found f o r a-Si:H ( 5 ) would account a t most f o r t h e atomic displacement of hydrogen. Experiments w i t h a-Si:D, however, have l e d t o t h e same low-damage-threshold energy ( 9 ) . T h e r e f o r e , i n t h e c a s e of e l e c t r o n - i r r a d i a - t i o n , we can r u l e o u t d i r e c t atomic displacements of hydrogen. I n s t e a d , e l e c t r o n i c e x c i t a t i o n s may l e a d t o changes i n c e r t a i n bonding c o n f i g u r a t i o n s .

Our t e n t a t i v e model f o r t h e mechanism of d e f e c t formation i s t h a t i r r a d i a t i o n breaks t h e weaker bonds between S i atoms. Those a r e t h e bonds between atoms t h a t a r e f a r t h e r a p a r t t h a n i n a c r y s t a l , o r bonds t h e s t e r i c conformation of which is n o t o p t i m a l l y t e t r a h e d r a l . Such bonds a r e a l r e a d y p r e s t r e s s e d and r e q u i r e l e s s energy f o r d i s s o c i a t i o n .

For electron-induced d e f e c t s , t h e depth of damage a f t e r a given e l e c t r o n energy and dose i n c r e a s e s w i t h t h e hydrogen c o n t e n t of t h e sample ( 9 ) . Hydrogen t h u s p l a y s a r o l e i n t h e n a t u r e of t h e damage. But we cannot d i s t i n g u i s h , whether Si-H bonds a r e d i r e c t l y involved, o r whether Si-Si bonds c l o s e t o Si-H bonds a r e broken more e a s i l y , a s h a s been suggested (3,lO). Note t h a t s i n c e t h e Si-H bond is s t r o n g e r t h a n t h e Si-Si bond ( l l ) , i t i s l e s s l i k e l y t h a t i r r a d i a t i o n would i o n i z e t h e Si-H. This e x p l a i n s t h e s t a b i l i t y of t h e H c o n c e n t r a t i o n , a s evidenced by t h e secondary-ion mass-spectroscopy r e s u l t s and by t h e complete recovery of PL upon a n n e a l i n g .

I n an amorphous m a t e r i a l , t h e r e i s a l a r g e r a n g e of b i n d i n g e n e r g i e s . Blue l i g h t p r o v i d e s a t most 2.5 eV t o t h e d i s s o c i a t i o n p r o c e s s . The low-energy e l e c - t r o n i r r a d i a t i o n , on t h e o t h e r hand, p r o v i d e s m u l t i p l e , and p o s s i b l y more e n e r g e t i c e x c i t a t i o n s . T h e r e f o r e , provided t h e c r o s s - s e c t i o n s f o r e l e c t r o n - and photon-pro- duced d e f e c t s a r e n o t v a s t l y d i f f e r e n t , comparable damage can b e generated a t a much s m a l l e r e l e c t r o n t h a n photon dose. The l a r g e r drop i n PL a t 1.2 eV a f t e r e l e c t r o n i r r a d i a t i o n , compared t o photon i r r a d i a t i o n , may b e due t o more e n e r g e t i c e x c i t a - t i o n s t h a t r e s u l t i n a b r o a d e r range of bond breaking. From t h e PL r e s u l t s -ye con- c l u d e t h a t a t l e a s t two d i f f e r e n t d e f e c t c e n t e r s a r e involved: 1) n o n - r a d i a t i v e c e n t e r , causing a r e d u c t i o n of t h e main peak a t 1.2 eV, and 2) deep g a p - s t a t e s ,

(5)

C4-330 JOURNAL DE PHYSIQUE

opening new r a d i a t i v e r e c o m b i n a t i o n p a t h s a t e n e r g i e s around 0.8 eV, and t h u s ac- c o u n t i n g f o r t h e observed i n c r e a s e s i n PL.

It i s b e l i e v e d t h a t t h e n o n - r a d i a t i v e c e n t e r s a r e r e l a t e d t o t h e S t a e b l e r - Wronski e f f e c t (2) which g r e a t l y lowers t h e room t e m p e r a t u r e d a r k c o n d u c t i v i t y a f t e r e x p o s u r e t o l i g h t . Presumably, t h e c a r r i e r l i f e t i m e i s g r e a t l y reduced by t h e newly formed r e c o m b i n a t i o n c e n t e r s . Such recombination c e n t e r s would b e e x p e c t e d t o ad- v e r s e l y a f f e c t t h e performance of s o l a r c e l l s .

As t o t h e n a t u r e of t h e 0.8 eV l w n i n e s c e n t c e n t e r , i t s i d e n t i f i c a t i o n w i l l r e - q u i r e f u r t h e r s t u d y . Its energy s u g g e s t s a mid-gap s t a t e (E

;

1 . 6 eV). Deep

g

c e n t e r s , by v i r t u e of t h e i r s t r o n g l o c a l i z a t i o n , can b e e f f i c i e n t r a d i a t o r s . It a p p e a r s t h a t t h e s e c e n t e r s r e s p o n s i b l e f o r t h e PL i n c r e a s e a t 0.8 e V a r e t h e r e s u l t of a t e m p e r a t u r e - a s s i s t e d rearrangement of i r r a d i a t i o n - a f f e c t e d bonds t h a t o c c u r s e i t h e r d u r i n g t h e i r r a d i a t i o n , o r t h e r e a f t e r . Thus t h e enhancement of t h e 0.8 eV PL i s observed always a f t e r p h o t o n - i r r a d i a t i o n and sometimes a f t e r e l e c t r o n - i r r a d i a - t i o n . However, when t h e e m i s s i o n a t 0.8 eV i s d e c r e a s e d a f t e r e l e c t r o n - i r r a d i a t i o n , a s l i g h t a n n e a l t r a n s f o r m s t h e d e c r e a s e i n t o a n i n c r e a s e ( s e e F i g . 4 and ( 4 ) ) . I V . Conclusion.- Both e l e c t r o n - and p h o t o n - i r r a d i a t i o n produce two t y p e s of c e n t e r s : n o n - r a d i a t i v e c e n t e r s t h a t a r e dominant, and r a d i a t i v e c e n t e r s t h a t emit a t about 0.8 eV. The b e h a v i o r of t h e s e c e n t e r s i s a s f o l l o w s : 1 ) The s p e c t r a l dependence of t h e PL i s a f f e c t e d s i m i l a r l y by e l e c t r o p - and p h o t o n - i r r a d i a t i o n , namely, a d e c r e a s e of PL i n t e n s i t y a t t h e e m i s s i o n peak and an i n c r e a s e of t h e PL i n t e n s i t y around 0.8 eV. 2) The t e m p e r a t u r e h i s t o r y l e a d i n g t o t h e PL i n t e n s i t y i n c r e a s e a t 0.8 eV i s s i m i l a r , namely, a moderate h e a t i n g ( t o %lOO°C) d u r i n g i r r a d i a t i o n ( I ) , o r l a t e r d u r i n g a n n e a l i n g ; enhances t h e i n c r e a s e . 3) F u l l r e c o v e r y of t h e PL i n t e n s i t y i s o b t a i n e d a t t h e same a n n e a l i n g t e m p e r a t u r e a f t e r b o t h e l e c t r o n - and p h o t o n - i r r a d i a - t i o n .

V. R e f e r e n c e s

.-

1. PANKOVE J. I. and BERKEYHEISER J . E., Appl. Phys. L e t t .

37

(1980) 705.

2. STAEBLER D. L. and WRONSKI C . R., Appl. Phys. L e t t .

2

(1977) 292.

3. HIRABAYASHI I., MORIGAKI K., and NITTA S., J a p . J . Appl. Phys.

19

(1980) L357.

4. STREET R.

,

BIEGELSEN D., and STUKE J., P h i l . Mag.

B-40

(1979) 451.

5. SCHADE H . , Le Vide, Les Couches Minces 201 (Suppl.) (1980) 999.

6 . GLEDHILL J . A., J . Phys. (1973) 1 4 2 0 7

7. MAGEE C. W. and CARLSON D. E., S o l a r C e l l s 2 (1980) 365.

8 . ZANZUCCHI P. J . , WRONSKI C . R., and CARLSON D. E., J . Appl. Phys.

48

(1977)

5227.

9. SCHADE H., 2nd I n t e r n a t i o n a l Conference on S o l i d F i l m s and S u r f a c e s , U n i v e r s i t y of Maryland, J u n e 1981.

10. DERSCH H., STUKE J., and BEICHLER J., Appl. Phys. L e t t .

2

(1981) 456.

11. ZELLAMA K., GERMAIN P., SQUELARD S., MONGE J . , and LIGEON E., J . Non-Cryst.

S o l . 35 & 36 (1980) 225.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

Second, Compton scattering is a two body process so that the angle and energy on the produced X/gamma rays are correlated and θ =0 (see Fig. 1) corresponds to the maximum scattered

In summary, the inclusion of the new cross section data from HERA-2 with polarised electron and positron beams lead to a substantial improvement of the precision on the weak

MELTING AND FREEZING KINETICS INDUCED BY PULSED ELECTRON BEAM ANNEALING IN ION-IMPLANTED SILICON.. La vitesse d e recristallisation depend principalement du gradient

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

(i) For the discussion of dislocation pinning it will be assumed that during irradiation at 4.2 K equal numbers of interstitials and va- cancies are produced, and that in staue

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des