• Aucun résultat trouvé

Table of Contents

N/A
N/A
Protected

Academic year: 2021

Partager "Table of Contents"

Copied!
8
0
0

Texte intégral

(1)

I Framework

1 Context and motivation 1-1

1.1 Space exploration . . . 1-1 1.2 Atmospheric entry . . . 1-2 1.3 TPS ablation . . . 1-4 1.4 Boundary-layer transition . . . 1-5 1.5 Thesis scope . . . 1-7 References . . . 1-10 2 Thermophysical framework 2-1

2.1 Thermodynamic flow assumptions . . . 2-1

2.2 Gas mixtures and reactions . . . 2-3

2.3 Flow equations . . . 2-5

2.3.1 Thermo-chemical non-equilibrium (TCNE) . . . 2-7

2.3.2 Chemical non-equilibrium (CNE) yet in thermal equilibrium2-10

2.3.3 Local thermo-chemical equilibrium with elemental

demix-ing (LTEED) . . . 2-10

2.3.4 Local thermo-chemical equilibrium with constant

elemen-tal composition (LTE) . . . 2-13

2.3.5 Thermal non-equilibrium yet chemically frozen (TNE) . . 2-14

2.3.6 Thermo-chemically frozen gas (TCFG) . . . 2-15

2.3.7 Thermally perfect and chemically frozen gas (TPG) . . . . 2-15

2.3.8 Calorically perfect gas (CPG) . . . 2-16

References . . . 2-17

3 Stability and transition 3-1

3.1 Linear theories . . . 3-4

3.1.1 LDNS . . . 3-4

3.1.2 Tri-global stability . . . 3-5

3.1.3 Bi-global stability or 2D-LST . . . 3-5

3.1.4 Linear stability theory . . . 3-7

3.1.5 Linear parabolized stability . . . 3-8

(2)

3.3 Non-linear theories . . . 3-10

3.4 Adjoint theories . . . 3-11

3.5 Physical implications of the choice of the wave parameters . . . . 3-11

3.6 Instability mechanisms . . . 3-12

References . . . 3-14

4 Gas properties 4-1

4.1 Thermal properties . . . 4-5

4.2 Transport properties . . . 4-8

4.2.1 Viscosity and thermal conductivity . . . 4-8

4.2.1.1 Blottner-Eucken-Wilke model . . . 4-9

4.2.1.2 Gupta-Wilke model . . . 4-9

4.2.1.3 Sutherland-Eucken-Wilke and

Sutherland-Wilke models . . . 4-10

4.2.1.4 Chapman-Enskog model . . . 4-10

4.2.1.5 Brokaw and Yos models . . . 4-11

4.2.2 Diffusion models . . . 4-12

4.2.3 Collisional models . . . 4-16

4.3 Chemical properties . . . 4-21

4.4 Gas-surface interaction model . . . 4-25

4.5 Energy exchange terms . . . 4-28

4.5.1 Vibrational source term . . . 4-29

4.5.2 Electronic source term . . . 4-30

4.5.3 Electron source term . . . 4-30

4.6 Thermodynamic derivatives . . . 4-32

4.6.1 Thermodynamic derivatives of the Chapman-Enskog

ma-trix system . . . 4-34

4.6.2 Thermodynamic derivatives of the Stefan-Maxwell matrix

system . . . 4-35

References . . . 4-36

5 Laminar base flow 5-1

5.1 Boundary-layer equations and their self-similar solutions . . . 5-1

5.1.1 CNE boundary-layer equations . . . 5-5

5.1.2 LTEED boundary-layer equations . . . 5-6

5.1.3 LTE boundary-layer equations . . . 5-8

5.1.4 TNE boundary-layer equations . . . 5-8

5.1.5 TCFG boundary-layer equations . . . 5-9

5.1.6 TPG and CPG boundary-layer equations . . . 5-9

5.1.7 Axysimmetric boundary layers – the Probstein-Elliot

transformation . . . 5-10

5.2 Base-flow and stability hypotheses . . . 5-12

5.3 Base-flow inaccuracy propagation to stability predictions . . . 5-13

5.3.1 Base-flow grid convergence . . . 5-14

(3)

5.3.3 Stability grid convergence . . . 5-15

5.3.4 Base-flow-induced errors . . . 5-17

5.3.5 The importance of performing joint base-flow-stability

grid convergence studies . . . 5-20

5.3.6 Conclusions . . . 5-20

References . . . 5-23

6 Boundary conditions 6-1

6.1 Wall boundary . . . 6-1

6.1.1 Blowing boundary condition . . . 6-2

6.1.1.1 Porous stability boundary condition (PSBC) . . 6-3

6.1.1.2 Ablation-mimicking continuously-blowing

sta-bility boundary condition (AMSBC) . . . 6-5

6.1.2 Thermal boundary conditions . . . 6-6

6.1.3 Concentration boundary conditions . . . 6-7

6.1.4 Perturbation compatibility boundary conditions . . . 6-8

6.2 Freestream boundary . . . 6-9

6.2.1 Shock boundary condition . . . 6-11

References . . . 6-13

II Tools

7 DEKAF flow solver 7-1

7.1 Shock-jump relations . . . 7-2

7.2 Inviscid non-equilibrium 1-D solver . . . 7-5

7.3 Numerical method . . . 7-6

7.3.1 Mappings . . . 7-9

7.3.2 Initial guess . . . 7-11

7.4 Exploiting spectral accuracy through the GICM interpolation . . . 7-13

7.5 Implementation . . . 7-15

7.6 Verification . . . 7-17

7.6.1 CPG non-bleeding flat-plates . . . 7-17

7.6.2 CPG bleeding flat-plates . . . 7-17

7.6.3 Incompressible Falkner-Skan-Cooke equation . . . 7-19

7.6.4 CPG cone . . . 7-21

7.6.5 CNE Mach 10 flat plate . . . 7-22

7.6.6 CNE Oxygen mixture . . . 7-22

7.6.7 6-degree CPG, CNE, and LTE wedge . . . 7-23

7.6.8 20-degree CPG, TPG, and CNE wedge at Mach 18 . . . . 7-26

7.6.9 15-degree CNE wedge at Mach 35 . . . 7-26

7.6.10 TNE flat plate . . . 7-28

7.6.11 10-degree CPG, CNE and LTE cone at Mach 25 . . . 7-29

7.6.12 State-of-the-art properties . . . 7-32

(4)

References . . . 7-34

8 VESTA’s Automatic Derivation and Implementation Tool 8-1

8.1 Stability equations . . . 8-2

8.1.1 Non-dimensionalization convention . . . 8-3

8.1.2 Treatment of the spatial derivatives of the dependent

per-turbation quantities Q� . . . . 8-6 8.1.3 Implementation . . . 8-7 8.1.3.1 Derivation options . . . 8-9 8.1.3.2 Provisional variables . . . 8-11 8.1.3.3 In-line derivatives . . . 8-13 8.1.4 Verification . . . 8-13 8.1.4.1 CPG flow assumption . . . 8-14

8.1.4.2 Porous boundary condition . . . 8-14

8.1.4.3 LTE flow assumption . . . 8-15

8.1.4.4 Shock boundary condition . . . 8-16

8.1.4.5 CNE flow assumption for 2 species . . . 8-18

8.1.4.6 TCNE and CNE flow assumption for 5 species . 8-18

8.1.4.7 TCNE flow assumption for 5 species . . . 8-19

8.1.4.8 Orthocurvilinear coordinate system . . . 8-19

8.2 Gas properties . . . 8-21

8.3 Summary . . . 8-24

References . . . 8-25

III Results

9 Surface outgassing and transition 9-1

9.1 Experimental-numerical investigation of an outgassing cone at

Mach 6 . . . 9-2

9.1.1 Experimental setup . . . 9-2

9.1.2 Numerical setup . . . 9-4

9.1.3 Validation of the porous boundary condition . . . 9-5

9.1.4 Interpretation of the experimental results based on the LST

analysis . . . 9-7

9.1.5 Evaluation of non-parallel effects . . . 9-10

9.1.6 Conclusions . . . 9-11

9.2 Sensitivity of instabilities to the composition of the injection gas . 9-12

9.2.1 Test conditions and gas modeling . . . 9-13

9.2.2 Case 1: self-similar multi-species blowing . . . 9-15

9.2.2.1 Span-wise wavenumber sweep . . . 9-23

9.2.2.2 Transport model comparison . . . 9-23

9.2.2.3 PSBC-HSBC comparison . . . 9-26

9.2.3 Cases 2-5: non-self-similar He blowing . . . 9-26

(5)

9.2.5 Conclusions . . . 9-34

9.3 Sensitivity of instabilities to the wall boundary condition . . . 9-36

9.3.1 Baseline case – homogeneous condition . . . 9-37

9.3.2 Porous condition for case O . . . 9-38

9.3.3 Cases M-, M+, O, T-, and T+ for all boundary conditions . 9-41

9.3.4 Porous stabilizing/destabilizing maps and experimental

re-sult analysis . . . 9-45

9.3.5 Conclusions . . . 9-47

References . . . 9-49

10 High-enthalpy effects and transition 10-1

10.1 Gas modeling influence on stability predictions . . . 10-1

10.1.1 Case 1 – influence of the transport model . . . 10-2

10.1.2 Case 2 – influence of the diffusion model . . . 10-5

10.1.3 Cases 1 and 2 – influence of the collision model . . . 10-7

10.1.4 Case 3 – influence of the chemical equilibrium model . . . 10-11

10.1.5 Case 4 – influence of the chemical kinetic model . . . 10-11

10.1.6 Case 1 – effects of transport modeling on perturbation terms10-15

10.1.7 Mode shapes . . . 10-15

10.1.8 Conclusions . . . 10-15

10.2 Enhanced and weakened diffusion fluxes . . . 10-19

10.3 Flow-assumption adequacy for different earth entry flow regimes . 10-22

10.3.1 Laminar base-flow field . . . 10-23

10.3.2 LST N-factor curves . . . 10-27

10.3.3 LPSE N-factor curves . . . 10-28

10.3.4 Conclusions . . . 10-28

10.4 Ionization and dissociation . . . 10-30

10.4.1 Laminar base flow . . . 10-32

10.4.2 LST analyses . . . 10-37

10.4.2.1 Consistent base-flow and perturbation hypotheses10-37

10.4.2.2 Base-flow cooling, diffusion and chemical

source term . . . 10-41

10.4.2.3 Equilibrium-perturbation hypothesis . . . 10-44

10.4.2.4 Supersonic modes . . . 10-47

10.4.2.5 Transport model in CPG . . . 10-50

10.4.3 Free-stream boundary condition . . . 10-51

10.4.4 Conclusions . . . 10-51

References . . . 10-55

11 Decoupling ablation-transition problems 11-1

11.1 Flow assumptions . . . 11-2

11.2 Boundary conditions . . . 11-3

11.3 Results . . . 11-5

11.3.1 Wall profiles from the CNE11-Abl case . . . 11-7

(6)

11.3.3 Vibrational excitation and air chemistry effects . . . 11-14

11.3.4 Surface chemistry effects . . . 11-18

11.3.5 CPG assumption with different transport models . . . 11-21

11.3.6 Influence of the transport models on the fully-ablating case 11-22

11.3.7 N-factor budgets of the physical phenomena . . . 11-23

11.3.8 Linearized Rankine-Hugoniot relations . . . 11-26

11.4 Conclusions . . . 11-26

References . . . 11-30

12 Conclusions 12-1

References . . . 12-9

IV Appendices

A General relations between species and mixture quantities A-1

References . . . A-4

B Equilibrium system of equations B-1

B.1 Equilibrium-composition derivatives with respect to temperature,

pressure or elemental fractions . . . B-2

B.2 The air-5 equilibrium system . . . B-6

B.3 The air-11 equilibrium system . . . B-7

B.4 Verification . . . B-8

References . . . B-8

C Coefficients for the transport properties C-1

C.1 Coefficients for the polynomial approximation of

Chapman-Enskog’s theory for transport properties . . . C-1

C.2 Coefficients for Brokaw and Yos’ simplification of Chapman &

Enskog’s theory for transport properties . . . C-3

References . . . C-4

D Requirements for the existence of self-similar solutions to the

boundary-layer equations D-1

D.1 CPG with a viscosity power law and with qe = qe(ξ) . . . D-2

D.2 CPG with other viscosity laws and qe = qe(ξ) . . . D-5

D.3 TPG with qe = qe(ξ) . . . D-6

D.4 LTE and LTEED with qe = qe(ξ) . . . D-6

D.5 TCFG with qe = qe(ξ) . . . D-7

D.6 Surface thermal boundary condition . . . D-7

D.7 Surface mass injection . . . D-8

D.8 y-vector rebuilding for βH �= 0 . . . D-8

D.9 Summary . . . D-9

(7)

E Rebuilding of the wall-normal velocity from a boundary-layer solutionE-1

F Base-flow wall-normal velocity treatment in LST when using the

AMSBC F-1

References . . . F-2

G Integration matrices of arbitrary-order accuracy G-1

References . . . G-2

H Neutral curve Newton-Raphson solver H-1

References . . . H-3

I Non-dimensional form of the boundary conditions I-1

J Gas mixtures and reaction rate constants J-1

J.1 Air-2 . . . J-1 J.2 Air-2-He . . . J-1 J.3 Air-2-Ne . . . J-1 J.4 Air-2-Ar . . . J-1 J.5 Air-2-CO2 . . . J-2 J.6 O-2-Bortner . . . J-2 J.7 Air-5-Park85 . . . J-2 J.8 Air-5-Park90 . . . J-3 J.9 Air-5-Park01 . . . J-4 J.10 Air-5-Stuckert . . . J-5 J.11 Air-5-Bortner . . . J-6 J.12 Air-11-Park93 . . . J-8 J.13 AirC-6-Mortensen . . . J-11 J.14 AirC-11-Mortensen . . . J-12 References . . . J-16 K Species-parameters tables K-1 K.1 Thermal parameters . . . K-1 K.2 Transport parameters . . . K-12 K.3 Collision parameters . . . K-14

K.3.1 Stuckert’s [16] curve fits (Eq. 4.56) . . . K-14

K.3.2 Gupta et al.’s [15] curve fits (Eq. 4.55) . . . K-16

K.3.3 Novel curve fits (Eq.4.57) to recent data . . . K-18

K.3.3.1 Air neutral species (N, O, NO, N2, O2) . . . K-18

K.3.3.2 Air neutral (N, O, NO, N2, O2) and charged

species (N+, O+, NO+, N+

2, O+2) . . . K-20

K.3.3.3 Air neutral species (N, O, NO, N2, O2) and

ar-gon (Ar) . . . K-26

K.3.3.4 Air neutral species (N, O, NO, N2, O2) and

car-bon species (CO, CO2, CN, C, C2, C3) . . . K-27

(8)

L Collision-integral fits L-1

L.1 Air collisions of neutral-to-neutral species (N, O, NO, N2, O2) . . L-1

L.2 Air collisions of charged-to-charged species (N+, O+, NO+, N+ 2,

O+

2, e-) . . . L-4

L.3 Air collisions of ion-to-neutral species (N+, O+, NO+, N+

2, O+2 to

N, O, NO, N2, O2) . . . L-7

L.4 Air collisions of electron-to-neutral species (e- to N, O, NO, N

2, O2)L-12

L.5 Air collisions of argon-to-neutral species (Ar to N, O, NO, N2, O2) L-14

L.6 Collisions of neutral air and carbon species (N, O, NO, N2, O2 and

Références

Documents relatifs

Chapter II: Transmembrane transport of chloride and organic ion pairs with calix[6]arene-based receptors

2.3 Study on baseline 18 F-FDG PET/CT-based whole-body metabolically active tumor volume and early metabolic response as prognostic and predictive biomarkers in metastatic

crobial systems generates bistability via an Allee effect (section 4.3.2) 185 Appendix C Supplementary material of A spatial model of cooperation 201 Appendix D Excitable

Urban form, road transport infrastructure and energy consumption in the Brussels-Capital Region: cointegration, correlation and causality analysis .... Empirical

Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins.. Sampling and

Evaluating the impact of the hemostatic powder as an add on therapeutic modality in combination with SOC medical and endoscopic treatment compared to the SOC alone.. THE

3.2.1 Detailed Balance Theory for Conventional Solar

5.2.12.2 Encapsulation of Prednisolone (PRD) using solid-in-oil-in-water - solvent extraction process