• Aucun résultat trouvé

AN INDUCTION PRINCIPLE FOR THE WEIGHTED p-ENERGY MINIMALITY OF x/llxll.

N/A
N/A
Protected

Academic year: 2021

Partager "AN INDUCTION PRINCIPLE FOR THE WEIGHTED p-ENERGY MINIMALITY OF x/llxll."

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-00018444

https://hal.archives-ouvertes.fr/hal-00018444

Preprint submitted on 2 Feb 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AN INDUCTION PRINCIPLE FOR THE WEIGHTED p-ENERGY MINIMALITY OF x/llxll.

Jean-Christophe Bourgoin

To cite this version:

Jean-Christophe Bourgoin. AN INDUCTION PRINCIPLE FOR THE WEIGHTED p-ENERGY MINIMALITY OF x/llxll.. 2006. �hal-00018444�

(2)

ccsd-00018444, version 1 - 2 Feb 2006

p-ENERGY MINIMALITY OF x/kxk

JEAN-CHRISTOPHE BOURGOIN

Abstract. In this paper, we investigate minimizing properties of the mapx/kxkfrom the Euclidean unit ballBnto its boundarySn−1, for the weighted energy functionalsEp,αn (u) =R

Bnkxkαk∇ukpdx. We establish the following induction principle: if the map kxkx :Bn+1Snminimizes En+1p,α among the maps u : Bn+1 Sn satisfying u(x) = x on Sn, then the map kyky : Bn Sn−1 minimizes Enp,α+1 among the maps v:BnSn−1satisfyingv(y) =yonSn−1.

This result enables us to enlarge the range of values ofp andαfor whichx/kxkminimizesEnp,α.

1. Introduction and statement of main results

Let Bn be the unit Euclidean ball of Rn and Sn−1 its bourdary. For any couple (α, p) of real numbers, with α ≥ 0 and p ≥ 1, we define the rα-weighted p-energy functional of a mapu :Bn→Sn−1 by

Ep,αn (u) = Z

Bnkxkαk∇ukpdx.

This functional is nothing but the p-energy functional associated with the Riemannian metric rα(n−p)geuc on the ballBn, where geuc is the Euclidean metric, the sphere Sn−1 being endowed with its standard metric. The func- tional Ep,αn is to be considered on the Sobolev space

Wα1,p(Bn,Sn−1) ={u∈W1,p((Bnrα(n−p)geuc),Rn);kuk= 1a.e}. The question is to know which map minimizes Ep,α among the maps in Wα1,p(Bn,Sn−1) satisfyingu(x) =x on Sn−1.

Following the arguments of Hildebrant, Kaul and Widman [11], the map x/kxk is a natural candidate to be the minimizer of Ep,αn , forp∈[1, n+α) (notice that x/kxk ∈Wα1,p(Bn,Sn−1) if and only ifp < n+α).

The minimality ofx/kxk was first established for the 2-energy functional En2 := E2,0n by J¨ager and Kaul [14] in dimension n ≥ 7, then by Brezis, Coron and Lieb [2] in dimension 3. Coron and Gulliver [5] actually proved the minimality of x/kxk for the p-energy functional Epn := Ep,0n for any integer p ∈ {1,· · · , n−1} and any dimension n≥3. An alternative proof using the null Lagrangian method (or calibration method) of this last result was obtained by Lin [15] and Avellaneda and Lin [1].

Hardt and Lin [7, 8] and Hardt, Lin and Wang [9, 10] developed the study of the singularities ofp-harmonic andp-minimizing maps and obtained results extending those of Schoen and Uhlenbelck [16, 17]. A consequence of their results is the minimality of x/kxk for Epn for any p ∈ (n−1, n).

1

(3)

2 JEAN-CHRISTOPHE BOURGOIN

Finally, Hong [12] and Wang [18] have proved independently the minimality of x/kxk forEpn in dimensionn≥7 for anyp≤n−2√

n−1.

In order to close the question of the Epn-minimality of x/kxk for the remaining values of p, Hong [13] suggested a new idea. Indeed, he observed that, for any p ∈ (2, n), the minimality of x/kxk for Enp follows from the minimality of x/kxk for the r2−p-weighted 2-energy E2,2−pn . Unfortunately, we have proved in a previous paper [3], the existence of an interval of values of p∈(1, n−1) for which the mapx/kxk fails to be a minimizer of E2,2−pn . Nevertheless, we proved thatx/kxkminimizes therα-weightedp-energyEnp,α for any α ≥0 and any integer p ≤n−1. Actually, we obtained in [4] the minimality of x/kxk for more general weighted p-energy functionals of the form Ep,fn (u) = R

Bnf(kxk)k∇ukpdx, where p ≤ n−1 is an integer and f : [0,1]→R+ is a continuous non-decreasing function.

Our aim in this paper is to show that the minimizing properties ofx/kxk in dimension n and n+ 1 are not independent. Indeed, we will prove that, for anyp∈[1, n+α+ 1), ifx/kxkminimizes therα-weightedp-energyEp,αn+1 in dimensionn+1, then it also minimizes therα+1-weightedp-energyEp,α+1n in dimension n.

Theorem 1. Let n ≥ 2 be an integer, α ≥ 0 be a real number and p ∈ [1, n+α+ 1). If the map kxkx : Bn+1 7→ Sn minimizes the rα-weighted p- energy Ep,αn+1 among the maps u ∈ Wα1,p(Bn+1,Sn) satisfying u(x) = x on Sn, then the map kyky : Bn 7→ Sn−1 minimizes the rα+1-weighted p-energy Enp,α+1 among the maps v∈Wα+11,p (Bn,Sn−1) satisfyingv(y) =y on Sn−1.

The proof of this theorem relies on a construction which associates to each mapu:Bn→Sn−1such thatu(y) =yonSn−1, a mapu :Bn+1 →Sn such that u(x) =u(x) in Bn× {0} and u(x) = x on the unit sphere Sn, in such a way that, if u0 is the map defined inBn by u0(y) = kyky , then u0 is exactly the map defined on Bn+1 by u0(x) = kxkx . The energy Ep,αn+1(u) of u is estimated above in terms of the energy Ep,α+1n (u) ofu and the equality holds in the estimate for the map u0 = kyky .

Thanks to Theorem 1 and the minimality results mentioned above, we deduce the following :

Corollary 1. The mapy/kykminimizesEp,αn among the maps inWα1,p(Bn,Sn−1) which coincide with y/kyk on Sn−1 in the following cases :

i) α∈Nand p∈(n+α−1, n+α),

ii) α ≥β and p is an integer in {1,· · · , n+β−1}, for any real number β ≥0.

iii) α∈N, n+α≥7 and p≤n+α−2√

n+α−1,

1.1. Construction ofuand proof of Theorem 1.1. LetBn+1andSnbe the unit open ball and the unit sphere of Rn+1 and letBn andSn−1 be the unit open ball and the unit sphere of Rn that we identify with the subspace Rn=Rn× {0}inRn+1. Moreover, we writex= (x1,· · · , xn, xn+1) a vector of Rn+1,y = (y1,· · · , yn) a vector ofRn, h., .i the standard metric of Rn+1 and (e1,· · ·, en, en+1) the standard basis ofRn+1.

(4)

Let Πn be the projection defined by : Πn:Bn+1 −→ Bn

(x1,· · · , xn+1) −→ (x1,· · ·, xn,0) = (x1,· · · , xn).

Consider the map ϕn defined onBn\Ren+1 byϕn(x) = Πn(x)

n(x)k. We define the map udefined by

u:Bn+1 −→ Bn x −→ hen+1, x

kxkien+1+hϕn(x), x

kxkiu(kxkϕn(x)).

Lemma 1. For any x∈Bn+1,k∇u(x)k2 = kxk12 +k∇u(kxkϕn(x))k2. Proof. For anyi∈ {1,· · · , n}, we have,

du(x).ei = hΠn(x), eii kxk

1

n(x)k −kΠn(x)k kxk2

u(kxkϕn(x))

−hen+1, xihx, eii kxk3 en+1

+du(kxkϕn(x)). hΠn(x), ein(x)

kxk2 +ei−hΠn(x), ein(x) kΠn(x)k2

!

and,

du(x).en+1 = en+1

kxk − hen+1, xi2

kxk3 en+1−hen+1, xi

kxk3n(x)ku(kxkϕn(x)) +hen+1, xi

kxk2 du(kxkϕn(x)).Πn(x).

Since ku(x)k2 = 1, one has hdu(x).h, u(x)i = 0 for any h∈ Rn. Hence, for any i∈ {1,· · · , n}, we have,

kdu(x).eik2 = hΠn(x), eii2 kxk2

1

n(x)k −kΠn(x)k kxk2

2

+ hen+1, xi2hx, eii2 kxk6

+

du(kxkϕn(x)).

n(x), eii 1

kxk2 − 1 kΠn(x)k2

Πn(x) +ei

2.

kdu(x).en+1k2 = 1 kxk2

1−hen+1, xi2 kxk2

2

+hen+1, xi2

kxk6n(x)k2 +hen+1, xi2

kxk4 kdu(kxkϕn(x)).Πn(x)k2. Finally, we have,

k∇u(x)k2 = 1

kxk2 +k∇u(kxkϕn(x))k2.

Letxn+1be a real number in (0,1), consider the setAxn+1 = (xn+1en+1+ en+1)∩Bn+1\Ren+1, where en+1 is the orthogonal subspace to Ren+1 for

(5)

4 JEAN-CHRISTOPHE BOURGOIN

h., .i. Let θbe the map :

θ:Axn+1 −→ Cxn+1 ={y∈Rn;kyk>|xn+1|}

x= (x1,· · · , xn+1) −→ kxkϕn(x) =y = (y1,· · ·, yn).

Lemma 2. For any y∈Rn, the Jacobian determinant of θ−1 is : Jac(θ−1)(y) = kyk2−x2n+1n−22

kykn−2 . Proof For any i∈ {1,· · ·, n}and for any x∈Axn+1,

dθ(x).ei = 1

kxk − kxk kΠn(x)k2

n(x), eii

n(x)k Πn(x) + kxk kΠn(x)kei. Let us set, for any i∈ {1,· · · , n},

λi= 1

kxk − kxk kΠn(x)k2

n(x), eii

nk and α= kxk kΠn(x)k. Hence, for any i∈ {1,· · ·, n},

dθ(x).eiiΠn(x) +αei. Then, for any x∈Axn+1,

Jac(θ)(x) = det(λ1Πn(x) +αe1, λ2Πn(x) +αe2,· · · , λnΠn(x) +αen)

=

n

X

i=1

det(αe1,· · · , αei−1, λiΠn(x), αei+1,· · · , αen) +αndet(e1,· · · , en)

=

n

X

i=1

αn−1λidet(e1,· · · , ei−1n(x), ei+1,· · ·, en) +αn,

where det is the determinant in the basis (e1,· · ·, en+1).

Jac(θ)(x) =

n

X

i=1

αn−1 1

kxk − kxk kΠn(x)k2

n(x), eii2n(x)k +αn

= αn−1 1

kxk− kxk kΠn(x)k2

n(x)k2

n(x)k +αnn−2. Therefore, we have

Jac(θ)(x) = kxkn−2

n(x)kn−2 = kykn−2 kyk2−x2n+1n−22

.

We deduce that,

Jac(θ−1)(y) = kyk2−x2n+1n−22 kykn−2 .

(6)

Lemma 3. For any x∈Bn+1, we have, Z

Bn+1kxkαk∇u(x)kpdx1· · ·dxn+1 ≤ np/2−1 Z

Bn+1

1

kxkp−αdx1· · ·dxn+1 +2(1−1/n)1−p/2Wn−1

Z

Bnkykα+1k∇u(y)kpdy, where Wn−1=Rπ2

0 (cos(γ))n−1dγ.

Proof. Writing kxk12+k∇u(kxkϕn(x))k2 = n1(nkxk12)+(1−1n)( 1

1−1

n

k∇u(kxkϕn(x))k2) and using that x→xp2 is a convex map, for anyp∈[1, n+α+ 1), we have,

k∇u(x)kp = 1

kxk2 +k∇u(kxkϕn(x))k2 p/2

≤ np/2−1 1

kxkp + (1−1/n)1−p/2k∇u(kxkϕn(x))kp. Hence,

Z

Bn+1kxkαk∇u(x)kpdx1· · ·dxn+1 ≤ np/2−1 Z

Bn+1kxkα 1

kxkpdx1· · ·dxn+1 +(1−1/n)1−p/2

Z

Bn+1kxkαk∇u(kxkϕn(x))kpdx1· · ·dxn+1

≤ np/2−1 Z

Bn+1kxkα 1

kxkpdx1· · ·dxn+1 + 2(1−1/n)1−p/2

Z 1 0

dxn+1

Z

Bnkxkαk∇u(kxkϕn(x))kpdx1· · ·dxn. Using the change of variables y=θ(x) and Lemma 1.2 we get,

Z

Bn+1kxkαk∇u(x)kpdx1· · ·dxn+1 ≤ np/2−1 Z

Bn+1

1

kxkp−αdx1· · ·dxn+1

+ 2(1−1/n)1−p/2 Z 1

0

dxn+1 Z

Cn+1

kyk2−x2n+1n−22

kykn−2 kykαk∇u(y)kpdy1· · ·dyn, Z

Bn+1kxkαk∇u(x)kpdx1· · ·dxn+1 ≤ np/2−1 Z

Bn+1

1

kxkp−αdx1· · ·dxn+1

+ 2(1−1/n)1−p/2 Z

Bnkykαk∇u(y)kp

 Z kyk

0

kyk2−x2n+1n−22 kykn−2 dxn+1

dy.

But we have, Z kyk

0

kyk2−x2n+1 kyk2

n−22

dxn+1 = Z kyk

0

1− xn+1

kyk

2!n−22 dxn+1

= Z 1

0 kyk(1−t2)n−22 dt=kyk Z π/2

0

(cosγ)n−1dγ.

(7)

6 JEAN-CHRISTOPHE BOURGOIN

Let us set Wn−1 =Rπ/2

0 (cosγ)n−1dγ. Then, we have the inequality, Z

Bn+1kxkαk∇u(x)kpdx1· · ·dxn+1 ≤ np/2−1 Z

Bn+1

1

kxkp−αdx1· · ·dxn+1 + 2(1−1/n)1−p/2Wn−1

Z

Bnkykα+1k∇u(y)kpdy.

Lemma 4. Let Γ be the Gamma function defined by, Γ(x) =

Z +∞

0

tx−1e−tdt.

We have,

Wn−1

Γ(n+12 ) Γ(n2) =

√π 2 .

Proof From the equality Γ(x+ 1) =xΓ(x) for anyx∈(0,+∞), we have, ifn= 2l, where l∈N,

Γ(2l+ 1

2 ) = 2l−1 2

2l−3 2 · · ·3

2 1 2Γ(1

2) and

Γ(2l

2) = 2l−2 2

2l−4 2 · · ·2

2Γ(1).

Moreover we have,

W2l−1 = (2l−2)(2l−4)· · ·2 (2l−1)(2l−3)· · ·3.1 then,

W2l−1Γ(2l+12 ) Γ(2l2) =

√π 2 . If n= 2l+ 1 where l∈N, we obtain,

Γ(2l+ 2 2 ) = 2l

2 2l−2

2 · · ·2 2Γ(1), Γ(2l+ 1

2 ) = 2l−1 2 · · ·3

2 1 2Γ(1

2) and

W2l= (2l−1)(2l−3)· · ·3.1 (2l)(2l−2)· · ·2 .π

2. We deduce that

W2lΓ(2l+22 ) Γ(2l+12 ) =

√π

2 .

Proof of Theorem 1.1. Suppose that u0 is a minimizer map of Ep,α. Since the measure of Sn is |Sn| =

n+1 2

Γ(n+12 ) and since k∇u0k(x) = n

p 2

kxk, by

(8)

Lemma 1.3, for any map u∈Wα+11,p (Bn,Sn−1) satisfying u(y) =y on Sn−1, we have,

np/2 n+ 1 +α−p

n+12 Γ(n+12 ) =

Z

Bn+1kxkαk∇u0(x)kpdx1· · ·dxn+1

≤ Z

Bn+1kxkαk∇u(x)kpdx1· · ·dxn+1

≤ np/2−1 Z

Bn+1

1

kxkp−αdx1· · ·dxn+1

+2(1−1/n)1−p/2Wn−1

Z

Bnkykα+1∇u(y)kpdy

≤ 1 n

np/2 n+1+α−p

n+12 Γ(n+12 ) + 2Wn−1(1− 1

n)( n n−1)p/2

Z

Bnkykα+1k∇u(y)kpdy.

Then we have, 2Wn−1

1−1

n

n n−1

p/2R

Bnkykα+1k∇u(y)kpdy R

Bnkykα+1k∇ky)ky kpdy ≥ np/2 n+1+α−p

n+12 Γ(n+12 )

×n+1+α−p (n−1)p/2

Γ(n2) 2πn2

1−1

n

By Lemma 1.4 we finally get, Z

Bnkykα+1k∇u(y)kpdy≥ Z

Bnkykα+1k∇ y

kykkpdy

References

[1] M. Avellaneda, F.-H. Lin, Null-Lagrangians and minimizingR

|∇u|p,C. R. Acad.

Sci. Paris,306(1988), 355-358.

[2] H. Brezis, J.-M. Coron, E.-H. Lieb, Harmonic Maps with Defects,Commun. Math.

Phys.,107(1986), 649-705.

[3] J.-C. Bourgoin, The minimality of the mapx/kxkfor weighted energy,Calculus of Variation and P.D.E’s, (to appear in number526).

[4] J.-C. Bourgoin, On the minimality of thep-harmonic map for weignted energy, submit for publication in Ann. and global analysis geometry,

[5] J.-M. Coron, R. Gulliver, Minimizing p-harmonic maps into spheres, J. reine angew. Math.,401(1989), 82-100.

[6] B. Chen, R. Hardt, Prescribing singularities for p-harmonic mappings, Indiana University Math. J.,44(1995), 575-601.

[7] R. Hardt, F.-H. Lin, Mapping minimizing the Lp norm of the gradient, Comm.

P.A.M., 15(1987), 555-588.

[8] R. Hardt, F.-H. Lin, Singularities forp-energy minimizing unit vectorfields on pla- nar domains ,Calculus of Variations and Partial Differential Equations,3(1995), 311-341.

[9] R. Hardt, F.-H. Lin, C.-Y. Wang, Thep-energy minimality of kxkx , Communica- tions in analysis and geometry,6(1998), 141-152.

(9)

8 JEAN-CHRISTOPHE BOURGOIN

[10] R. Hardt, F.-H. Lin, C.-Y. Wang, Singularities ofp-Energy Minimizing Maps, , Comm. P.A.M., 50(1997), 399-447.

[11] S. Hildebrandt, H. Kaul, K.-O. Wildman, An existence theorem for harmonic mappings of Riemannian manifold,Acta Math.,138(1977), 1-16.

[12] M.-C. Hong,, On the Jager-Kaul theorem concerning harmonic maps, Ann.

Inst. Poincar, Analyse non-linaire,17(2000), 35-46.

[13] M.-C. Hong, On the minimality of thep-harmonic map kxkx :Bn Sn−1,Calc.

Var.,13(2001), 459-468.

[14] W. Jager, H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J.Reine Angew. Math.,343(1983), 146-161.

[15] F.-H. Lin, Une remarque sur l’application x/kxk, C.R. Acad. Sci. Paris 305(1987), 529-531.

[16] R. Shoen, K. Uhlenbeck, A regularity theory for harmonic mapsJ. Differential Geom.. 12(1982), 307-335.

[17] R. Shoen, K. Uhlenbeck, Boundary theory and the Dirichlet problem for har- monic maps, J. Differential Geom., 18(1983), 253-268.

[18] C.Wang, Minimality and perturbation of singularities for certain p-harmonic maps., Indania Univ. Math.J.,47(1998), 725-740.

Laboratoire de Math´ematiques et Physique Th´eorique, UMR CNRS 6083, Universit´e de Tours, Parc de Grandmont, F-37200 Tours France

Références

Documents relatifs

Their proof is based on a deep studies of singularities of harmonic and minimizing maps made in the last two decades.. There is no reason for this fact to be true, the

p -induction, tensor products, p -nuclear operators, induction in stages, Kronecker product, Frobenius reciprocity theorem, Peter Weil theorem, subgroup theorem.. Part of the

We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the p-Laplacian under homogeneous Dirichlet boundary conditions on certain

On the basis of our S receiver functions, the lithosphere-asthenosphere boundary of the subducting African plate is at 100 km depth beneath the southern part of the Aegean region

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Although stochastic analysis on Riemannian manifolds is well-developed [13], [14], [15], [20], an essential dif culty in applying stochastic methods to nonlinear geometric PDE

[r]

2014 We establish classically the probability distribution (P-distribution) for the complex amplitudes of multimodal and unimodal optical fields belonging to the class