• Aucun résultat trouvé

TIME-DELAY REGULARIZATION OF ANISOTROPIC DIFFUSION AND IMAGE PROCESSING

N/A
N/A
Protected

Academic year: 2021

Partager "TIME-DELAY REGULARIZATION OF ANISOTROPIC DIFFUSION AND IMAGE PROCESSING"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-00001401

https://hal.archives-ouvertes.fr/hal-00001401

Submitted on 2 Apr 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TIME-DELAY REGULARIZATION OF ANISOTROPIC DIFFUSION AND IMAGE

PROCESSING

Abdelmounim Belahmidi, Antonin Chambolle

To cite this version:

Abdelmounim Belahmidi, Antonin Chambolle. TIME-DELAY REGULARIZATION OF ANISOTROPIC DIFFUSION AND IMAGE PROCESSING. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2005, Vol.39, No.2., pp. 231-251. �10.1051/m2an:2005010�. �hal- 00001401�

(2)

image proessing

A. Belahmidi, A. Chambolle

January 2004

Abstrat

Westudyatime-delayregularizationoftheanisotropidiusionmodelforimagedenoisingofMalik

andPerona,whihhasbeenproposedbyNitzbergandShiota. Inthetwo-dimensionalase,weshowthe

onvergeneofanumerial approximationandtheexisteneofaweaksolution. Finally,weshowsome

experimentsonimages.

Keywords:Imagerestoration,Variationalmethods,Numerialapproximation,Time-delayregularization,Malikand

Peronaequation.

1 Introdution

In awell-known paper, Malik and Perona [15℄ have proposed a model for image restoration basedon the

followingpartial dierentialequation:

u

t

=div g(jDuj 2

)Du

u(;0)=u

0

: (1)

Here u

0

isthegreylevelintensityofthe originalimage, u(;t)is therestoredversion,that dependsonthe

sale parameter t, and g is a smooth non-inreasing positive funtion with g(0) = 1 and sg(s 2

) ! 0 at

innity. Themainideaisthattherestorationproessobtainedbytheequationisonditional: ifxisanedge

point, where the gradientis large, then the diusion will bestopped and thereforethe edge will bekept.

If x isin homogeneousarea,thegradienthastobesmall, andthediusion will tendto smootharoundx.

Byintroduinganedgestoppingfuntion g(jDuj 2

)inthe diusionproess, themodelhasbeenonsidered

asan importantimprovementof thetheory of edge detetion[17℄. Theexperiments ofMalik andPerona

wereveryimpressive, edgesremained stable overaverylong time. It wasdemonstrated in [16℄ that edge

detetionbasedonthis proesslearlyoutperformstheCannyedgedetetor [3℄.

Unfortunately, theMalik andPeronamodelisill-posed. Indeed,among thefuntions whih Malik and

Peronaadvoatein theirpapers,wendg(s 2

)=1=(1+s 2

) org(s 2

)=e s

2

forwhihnoorret theoryof

equation(1)isavailable. Bywritingtheequationin dimensiontwo:

u

t

=g(jDuj 2

)jDujdiv

Du

jDuj

+ g(jDuj 2

)+2jDuj 2

g 0

(jDuj 2

)

D 2

u

Du

jDuj

; Du

jDuj

; (2)

whereD 2

u(

Du

jDuj

; Du

jDuj

)istheseondderivativeofuinthegradientdiretionandjDujdiv( Du

jDuj

)istheseond

derivativeintheorthogonaldiretion,weobservethatthediusionrunsbakwardsifsg(s 2

)isnon-inreasing.

Then,in theregionswhere thegradientofasolutionislarge,theproessanbeinterpretedasabakward

heatequationwhihisatuallyillposed. Intheontinuoussetting,itmeansthat(1)mayhavenosolutionat

all. Oneouldalsoimagineverylosepituresproduingdivergentsolutions[11℄. Inpratie,theequation

isdisretizedintoa(obviouslywell-posed)nite-dimensionalversionof(1),however,itdoesnotseemorret

to interpretsuhadisretizationasanapproximationoftheill-posedproblem(1).

(3)

nd outwhether(1) anbegivenasound interpretation. There areessentiallytwoapproahes: Therst,

motivated by favorable numerial results, onsists in studying the original equation and in establishing

theoretial results that explain the observed behaviour. The seond approah onsists in modifying the

equationbyregularizingthetermg(jDuj 2

)inordertogetawell-posedequation.

2 The Malik and Perona equation and the regularized versions

First,weexpose themainmathematialresultsestablishedontheMalik andPeronamodel. Mostof these

results are restrited to the dimension one; the unique result in dimension two, given by You et al. [21℄

onrms theill{posedness oftheequation. Kawohland Kutev [13℄establish,in 1D,nonexisteneof global

weak solution, and prove the existene and uniqueness of a lassial solution only if the initial data has

everywhereasmallslope. Inthis asethe equation remainsparaboliforall timeand there is noedge to

preserve: the diusionsmoothesthedata, liketheheat equation woulddo. Theyalsoproveaomparison

prinipleunderspeialassumptionsontheinitialdata.

Kihenassamy[14℄showsthatingeneraltheMalikandPeronaequationdoesnothaveaweaksolutionif

theinitialdataisnotanalytiinaneighborhoodofhighgradientregions. Hisargumentisbasedoninterior

regularity properties of paraboliequations. Only in dimension one, he proposes anotion of generalized

solutions,whih arepieewiselinearwithjumps,andshowsexistene.

Adoptinganumerialviewpoint,Esedoglu[7℄studiestheone-dimensionalMalikandPeronasheme. He

establishes byasalingargumenttheonvergeneto anevolutionin theontinuoussetting. Theresulting

evolutionsolvesasystemofheatequationsoupledto eahother throughnonlinearboundaryonditions.

Working in dimension one learly redues the diÆulty by eliminating the rst term of (2) whih is

nothing but the mean urvature motion operator with theoeÆientg(jDuj 2

). As it is known, the mean

urvature motion evolveseah level line fu = Cg with a normal speed proportional to its urvature (see

[8,1℄ formoredetails).

Indimensiontwo,You et al.[21℄ express theanisotropidiusion of Malik andPeronaas thesteepest

desentof anenergysurfaeandanalyzethebehaviourofthemodel. Theyprovethat theill{posedness is

ausedbythefatthattheenergyfuntionalhasaninnitenumberofglobalminimathataredenseinthe

image spae. Eah of these minima orresponds to a pieewise onstant image. This means that slightly

dierentinitialimages mayendupindierentminimaforlarget.

Asmentionned,anotherapproahreliesontheideathattheill{posednessmaybealleviatedthroughthe

introdutionofasmoothversionofg(jDuj 2

). Thereareessentiallytwopropositionswhihweonsiderasa

diret derivationfrom theMalikand PeronaModel. Therstonsistsin aspatial regularization,asin the

followingmodel:

u

t

=div g(jDG

uj

2

)Du

; (3)

wherebyg(jDuj 2

) isreplaed by g(jDG

uj

2

), where G

is aGaussian with variane . In[4℄, Catteet

al.proveexistene,uniquenessandregularityofasolution. It isknownthatG

u(x;t)isnothingbutthe

solutionatsale oftheheatequationwithu(x;t) asinitialdata.

Arstobservationis thatnear asharporner,thediusion oeÆientg(jDG

uj

2

)mayremainvery

large,henethis modelwillbeunabletopreserveorners.

Anotherproblemisthehoieoftheregularizationparameter. Infat,thishoieisritialinthesens

thatthediusionproesswouldbeill{posedif=0,whileimagefeatureswouldbeblurredfortoolargean

. Asproposed byWhitakerandPizer[20℄,theregularizationparametershould beadereasingfuntion

int,byusinglargeinitiallytosuppressnoiseandreduingsothatimagefeaturesarenotfurtherblurred.

Inspiteofthis,thehoieoftheinitialandnalvaluesof remainsanopenquestion.

Theseond proposition is atime-delay regularization, where onereplaesjDuj 2

with an averageof its

(4)

valuesfrom0tot. Theng(jDuj )isreplaedwithg(v)with:

v(x;t)= e t

v

0 (x)+

Z

t

0 e

s t

jDu(x;s)j 2

ds; (4)

where v

0

is aninitialdata, for examplev

0

=0orjDu

0 j

2

. Therefore thenewdiusion proessis desribed

bythefollowingsystem:

u

t

= div g(v)Du

u(;0)=u

0

; (5)

v

t

= jDuj 2

v v(;0)=v

0

: (6)

ProposedbyNitzbergandShiota[19℄,thismodelisverylosetotheMalikandPeronaequationsinethere

is nospatial smoothing. Inpartiular, itshould mean that there is nopreviousmovementof the features

in the diusion proess. In [2℄ the authors of the present paper have shown that in any dimension, the

system(5)-(6)admitsauniquelassialsolution(u;v)whihan blowupinnitetime,andthataslongas

thesolution exists,the equationsatises themaximumprinipleanddoesnotreatespurious information

(that is, stritloalextrema). These properties ofthe system(5)-(6)haveenouraged us tostudy it from

a numerial viewpoint. Let us mentione that time-delay regularization has been already used in image

proessingbyCottetandEl Ayyadi[6℄asanisotropidiusiontensors.

This paper is organized asfollows: In setion 3 we propose a naturaldisretization in time of (5)-(6)

withjDuj 2

replaedbyF(jDuj 2

),F beingasortoftrunation. Numeriallythismodiationdoesnothave

any impat on the output images sine the threshold impliitly exists in the numerial sheme. Indeed,

if the disrete sheme satises the maximum priniple, then the disrete gradientis always bounded (for

exampleby(maxu

0

minu

0

)=x, xbeingthegridsize). Theoretially, theintrodutionofF is ahuge

regularization of the system (we will see that it yields existeneof a weak solution for all time). Setion

4proposesanumerialsheme forsolvingthesystem,and setion5showssomeexperiments onsyntheti

and natural images. In setion 6 we establish a priori estimates and regularity results on the proposed

approximationandprovethemain resultofthispaper. Inthesetion7wegivetheproofsoftwotehnial

resultsonelliptiequationsthatareneededinsetion6.

3 Numerial approximation

Thegoalof thispaperistostudyandapproximate numeriallythesystem:

u

t

= div(g(v)Du) u(;0)=u

0

; (7)

v

t

= F(jDuj 2

) v v(;0)=v

0

; (8)

in (0;T)where=(0;1) 2

, 0<T <1. Wewill showthat thesystemadmits aweaksolution,under

thefollowingtehnialassumptions:

- g2C 1

([0;+1))isapositivenon-inreasingfuntion withg(0)=1andg(+1)=0.

- F 2 C 1

([0;+1)) is a smooth version of s ! min(s;M), where M >0 is a (large) real number (in

partiular,weassume0F 0

1).

FixedÆt>0,wedenethesequene(u n

Æt

;v n

Æt )

n

bythesemi-impliitsheme:

(u 0

Æt

;v 0

Æt )=(u

0

;v

0 )2 H

1

()\L 1

()

H

1

()\L 1

()

; v

0

0 and

(5)

u n+1

Æt u

n

Æt

Æt

= div(g(v n

Æt )Du

n+1

Æt )

u n+1

Æt

n

=0 (9)

v n+1

Æt v

n

Æt

Æt

= F(jDu n+1

Æt j

2

) v n+1

Æt

: (10)

Wedenethepieewiseonstant(int>0),funtions

u

Æt

(x;t)=u [t=Æt℄+1

Æt

(x);

where [℄ denotes the integerpart. Wealso dene (v

Æt

) in thesame way. Then wean write the disrete

system(9)-(10)intheform( Æt

isdened by Æt

f(;t)=f(;t Æt)):

u

Æt

Æt

u

Æt

Æt

= div(g(

Æt

v

Æt )Du

Æt );

u

Æt

n

=0; (11)

v

Æt

Æt

v

Æt

Æt

= F(jDu

Æt j

2

) v

Æt

: (12)

Themain resultofthis paperisthefollowingtheorem:

Theorem1. LetT >0. Thereexistsasubsequene(u

Æt

j

;v

Æt

j )of(u

Æt

;v

Æt

)and(u;v)aweak solutionofthe

system(7)-(8)in H 1

((0;T))\L 1

((0;T))

H

1

((0;T))\L 1

((0;T))

suhthat,wehave

the onvergenes, asj!+1:

u

Ætj

! u stronglyin L 2

(0;T;H 1

()); (13)

v

Ætj

* v weakly in L 2

(0;T;H 1

()): (14)

Theproofofthistheoremwill begiveninsetion6.

4 Disretization

To disretize (9)-(10) we denote by u n

i;j

(resp. v n

i;j

) the approximation of u (resp. v) at point (ih;jh)

(0 i;j N)and time t =nÆt, wherethe size of theinitial image u

0

is given by NN and h=1=N.

Usingthefollowingnite-dierenesformulas:

x

+ w=w

i+1;j w

i;j

;

x

w=w

i;j w

i 1;j

;

y

+ w=w

i;j+1 w

i;j

et

y

w=w

i;j w

i;j 1

;

theapproximationofdiv g(v)Du

atpoint(ih;jh) andatsalet=(n+1)Ætisgivenby:

1

h 2

x

g(v n

i;j )

x

+ u

n+1

i;j

+ y

g(v n

i;j )

y

+ u

n+1

i;j

:

Thentheequation(9)beomes:

u n+1

i;j u

n

i;j

Æt

= 1

h 2

n

g(v n

i;j ) u

n+1

i+1;j u

n+1

i;j

g(v n

i 1;j ) u

n+1

i;j u

n+1

i 1;j

+g(v n

i;j ) u

n+1

i;j+1 u

n+1

i;j

+g(v n

i;j 1 ) u

n+1

i;j u

n+1

i;j 1

o

(15)

withtheNeumannboundaryondition:

u n+1

i;0 u

n+1

i;1

=0; u n+1

i;N 1 u

n+1

i;N

=0; for 0iN;

u n+1

0;j u

n+1

1;j

=0; u n+1

N 1;j u

n+1

N;j

=0; for 0jN:

(6)

u n+1

u n

Æt

+h 2

A(v n

)u n+1

=0;

where thematrixA(v n

)is tridiagonalby bloks, andpositivedened. Bylassialarguments[5℄weknow

that [I+Æth 2

A(v n

)℄isinvertible.

To avoid any additional anisotropy in the sheme, we try to build adisrete gradient of u in (10) as

rotationallyinvariantaspossible. Weusethedisretizationproposed in[4℄and[19℄whih writes:

x

w = (1+2 1

2

) 1

n

w

i+1;j w

i 1;j

+2 1

2

w

i+1;j 1 w

i 1;j 1

+2 1

2

w

i+1;j+1 w

i 1;j+1

o

;

y

w = (1+2 1

2

) 1

n

w

i;j+1 w

i;j 1

+2 1

2

w

i+1;j+1 w

i+1;j 1

+2 1

2

w

i 1;j+1 w

i+1;j 1

o

:

Thedisretizationof(10)isthenwritten(assumingthatinthewholerange

0;max ( x

u) 2

+( y

u) 2

,we

haveF(s)=s)

v n+1

i;j

= 1

1+Æt Æth

2

((

x

u) 2

+( y

u) 2

)+v n

i;j

: (16)

Weannowgiveadisreteversionofthemaximumprinipleandshowthattheproposedalgorithmwill

notreatenewinformation(loal extrema).

Lemma1. Foralln>0and(k;l),0k;lN,wehave:

min

i;j u

0

i;j

:::min

i;j u

n

i;j u

n+1

k ;l

max

i;j u

n

i;j

max

i;j u

0

i;j

; (17)

In partiular, ifu n+1

k ;l

isa stritloal maximum(resp. stritloal minimum) of u n+1

i;j

then

u n+1

k ;l

<u n

k ;l

resp. u n+1

k ;l

>u n

k ;l

: (18)

Proof : Letu n+1

k ;l

aglobalmaximumof u n+1

i;j

, theninpartiular:

u n+1

k ;l u

n+1

k +1;l

0; u

n+1

k ;l u

n+1

k 1;l 0;

u n+1

k ;l u

n+1

k ;l+1

0; u

n+1

k ;l u

n+1

k ;l 1 0:

(19)

Using(15),andthefatthat g>0,weobtain:

u n+1

k ;l u

n

k ;l

;

andwededue:

max

i;j u

n+1

i;j

max

i;j u

n

i;j

max

i;j u

0

i;j :

In thesame way we provethe\min" partof (17), by onsidering u n+1

k ;l

a global minimumof u n+1

i;j

. We

prove(18)byusingthesameargumentandthefatthat wenowhavestritinequalitiesin(19).

5 Experiments

In gure1weompare theperformanes of oursheme to theCatteand al.model[4℄ and in gure 2we

present an example of restoration on a natural image. The experiments have been done with the edge

stoppingfuntion

g(s 2

)= 1

1+(s 2

= 2

) :

(7)

to theonventionintheprevioussetion). ThetemporalinrementwehaveusedisÆt=0:1.

Figure1-(a)isasynthetiimage(128128)representingsuperimposedshapeshavingeahoneaonstant

greylevel. Figure1-bshowsimage1-awhere 20%ofgaussiannoiseis added. Werepresentbygures1-()

therestorationofthenoisyimagewiththeCatteetal.model(3) atsales4and8(fromleftto right)and

by gures1-(d) the restorationwith ourshemeat thesamesales. Notie that respetively, the sales4

and 8orrespond tothe stoppingtime t=8and32. As explainedin [4℄by theauthors ofthe model (3),

thesale used intheonvolutiontermG

umustbein takeninrelationto thestoppingtime. Thusin

gures1-()wehaveused=4and8.

As mentionned in setion 2 the threshold introdued by F impliitly exists in the numerial sheme.

Indeed, sine the disrete sheme satises the maximum priniple and the fat that spatial inrement is

assumedtobe1,thenthedisretegradientisalwaysboundedby p

2(maxu

0

minu

0

)andManbehosen

to be2(maxu

0

minu

0 )

2

.

Intheleftimageof1-(b),thenoiseissmoothedinthehomogeneousareasbutiskeptneartheedges. This

drawbakis ausedby thefat that thediusion is inhibitedalso in the neighborhood of edges. Whereas

in theleft imageof 1-(),thenoiseisonly partiallysmoothedbut in auniformway. In therightimage of

1-(b) theedgesandornersareblurred. Indeed,weknowthat kDG

uk

L 1

dereasesforlargevaluesof

onsequentlyforlargevaluesofwediusemorenearedges: inpartiular,ifkDG

uk

L 1

<,thediusion

is never inhibited. Whereas in the rightimage of 1-(), the noise has disappeared and the reonstruted

imageis verylosetotheoriginal.

Figure2-(Right)representsanaturalimage(256256)withoutadditivenoiseandgure2-(Left)repre-

sentsitsrestorationwithourshemeat sale5thatorrespondstothestoppingtime t=12:5. Weremark

that salient edges and textures are preserved (see for example the top of the hat) whereas the noise in

homogeneousareasissmoothed.

6 Numerial analysis

First we hek that our shemes makessense. Indeed, for all Æt > 0, the sequene (u n

Æt

;v n

Æt

) exists and is

unique. Equation(10)allowstowrite v n+1

Æt

expliitly:

v n+1

Æt

= 1

1+Æt

ÆtF(jDu n+1

Æt j

2

)+v n

Æt

: (20)

andbyindutionwend

0v n+1

Æt

1 (1+Æt) (n+1)

M+ 1+Æt

(n+1)

jjv

0 jj

L 1

() :

Wededuethat(v n

Æt

)isuniformlyboundedinL 1

() andsatises:

0v n

Æt

max(M ;jjv

0 jj

L 1

() ):=M

0

; forallnand Æt: (21)

Using the fat that g is a positive non-inreasing funtion, we have 0 < g(M 0

) g(v n

Æt

) 1. Therefore

equation(9)isstritlyelliptiandweknowthatthere existsauniquesolutionu n+1

Æt in H

1

(). Inaddition,

u n+1

Æt

isgivenbytheproblem

min

E

(Æt ;n) (w)=

Z

g(v

n

Æt )jDwj

2

dx+ 1

2Æt Z

jw u

n

Æt j

2

dx:w2H 1

()

: (22)

Bythemaximumpriniple,itislearthatforalmostallx2wehave

infu

0

infu n

Æt u

n+1

Æt

(x)supu n

Æt

supu

0

: (23)

Multiplying byu n+1

Æt

theequation(9)andintegratingonweget

0Æt Z

g(v

n

Æt )jDu

n+1

Æt j

2

dx Z

u

n

Æt u

n+1

Æt dx

Z

ju

n+1

Æt j

2

; (24)

(8)

Line: ()Image(b)restoredbytheCatteetal.model[4℄withsales4,and8. Bottom Line: (d)Image

(b)restoredbyourshemewithsales4,and 8.

Références

Documents relatifs

Some additional tools for stability analysis of time-delay systems using homogeneity are also presented: in particular, it is shown that if a time-delay system is homogeneous

This aspect is also addressed in this paper for linear systems, where identifiability conditions, which can be formulated in terms of controllability of time delay systems, are

The obtained correspondences are used to map chroma information from the reference to the target image, pro- ducing an initial colorization result.. Finally, a regularization

The geometric temporal wavelet shrinkage for both change information enhancement and regularization aims at simplifying the analysis of long time series of SAR images.. Indeed,

E Interactive Tuples Extraction from Semi-Structured Data 115 F Learning Multi-label Alternating Decision Trees from Texts and Data125 G Text Classification from Positive and

Il appartiendra alors aux différentes instances et équipes, soucieuses de mettre plus de lien entre les différents services et institutions soutenant des jeunes en difficultés,

In this paper, we propose a nonlocal anisotropic discrete regularization on graphs of arbitrary topologies as a framework for image, data filtering and clustering.. Inspired by

The family of filters presented in Section 3 can be used to regularize any function defined on discrete data by constructing a weighted graph, and by considering the function to