• Aucun résultat trouvé

The architecture of monospecific microalgae biofilms

N/A
N/A
Protected

Academic year: 2021

Partager "The architecture of monospecific microalgae biofilms"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02552391

https://hal.archives-ouvertes.fr/hal-02552391

Submitted on 23 Apr 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The architecture of monospecific microalgae biofilms

Andrea Fanesi, A. Paule, O. Bernard, R. Briandet, Filipa Lopes

To cite this version:

Andrea Fanesi, A. Paule, O. Bernard, R. Briandet, Filipa Lopes. The architecture of monospecific microalgae biofilms. 8e Colloque du Réseau National Biofilms, Dec 2019, Nancy, France. pp.1793 -1804. �hal-02552391�

(2)

RNB 2019 - 8e Colloque du Réseau National Biofilms - Nancy

The architecture of monospecific microalgae biofilms

A. Fanesi 1, A. Paule 1, O. Bernard 2, R. Briandet 3 and F. Lopes 1

1 Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

2 Université Côte d'Azur, Inria, BIOCORE, BP 93, 06902 Sophia Antipolis Cedex, France 3 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

Mots-clés: biofilm, microalgae, architecture, confocal laser scanning microscopy.

Abstract : Dans le cadre du développement des bioprocédés à biofilm de microalgues, nous nous sommes intéressés

à mieux comprendre l’impact de divers facteurs biotiques (type de microalgue) et abiotiques (conditions hydrodynamiques) sur la structure des biofilms photosynthétiques. Cette première étape est en effet indispensable pour améliorer la productivité et la stabilité de ce type de bioprocédé. Pour ce faire, nous avons suivi la dynamique de la formation du biofilm de plusieurs espèces de microalgues cultivées dans différentes conditions à l'aide de la microscopie confocale et des outils d’analyse d'image.

Microalgae biofilms have been proposed as an efficient alternative to suspended cultures [1]. They offer enhanced productivities and straightforward harvesting by simple scrapping. However, little is known about their structure (spatial arrangement of cells, colonies and Extracellular PolymerS; EPS), which may strongly impact bioprocess stability and productivity. For example, nutrient diffusion may decrease as a function of the cell density or colonies size and light is attenuated and may become limiting for the deeper cell layers in very thick biofilms [2]. In order to better understand the structure development in microalgae biofilms, several microalgae strains were cultivated under static and dynamic conditions (the latter to simulate conditions closer to reality) and their architecture characterized in situ using confocal laser scanning microscopy.

Under static conditions, the general trend of the structural parameters resembled that described for fungi and bacteria: thickness and biomass increased over time whereas the roughness of the biofilm decreased reflecting cell proliferation and voids filling, respectively. However great variability of these parameters was observed among the species suggesting species-specific architectures. The same was true for the EPS that remained constant in some species and increased over time in others. When cultivated under different hydrodynamics, the biofilms grown under higher flow rate demonstrated greater resistance to detachment. Our results revealed that the architecture of microalgae biofilms is species-specific and that growth conditions may alter their mechanical properties. This implies that the selection of the species and growth conditions are key steps to improve bioprocess stability and productivity.

Références :

[1] Berner, F., Heimann, K., & Sheehan, M. (2015). Microalgal biofilms for biomass production. Journal of applied

phycology, 27(5), 1793-1804.

[2] Schnurr, P. J., & Allen, D. G. (2015). Factors affecting algae biofilm growth and lipid production: a review.

Références

Documents relatifs

Here is described a novel technique to perform a sacral osteotomy to decrease pelvic parameters with a lumbo-pelvic construct, with first a sacral slope decrease,

Genome sequence of the Pectobacterium atrosepticum strain cfbp6276, causing blackleg and soft rot diseases on potato plants and tubers. Genome sequence of the emerging plant

The proposed algorithm combines the Markov random field (MRF) approach to Bayesian image classification with the dictionary-based stochastic expectation maximization (DSEM)

that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie.. Il est soumis à

Les grands programmes internationaux ont fait apparaître le besoin crucial d’ob- servations atmosphériques plus précises afin de mieux caractériser les processus, de valider

– global - tight : l’événement associé au début du bloc (e1) n’est pas détecté ; alors les actions du bloc sont lancées avec un délai nul si leur la position est antérieur

When breaking results down by number of counts of officer force per stop, no noticeable difference in average distance from the facility can be seen for stops with 1-3 counts of