• Aucun résultat trouvé

Status of Virgo detector

N/A
N/A
Protected

Academic year: 2021

Partager "Status of Virgo detector"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: in2p3-00175815

http://hal.in2p3.fr/in2p3-00175815

Submitted on 8 Oct 2007

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Status of Virgo detector

F. Acernese, P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, P. Astone,

S. Avino, D. Babusci, G. Ballardin, F. Barone, et al.

To cite this version:

F. Acernese, P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, et al.. Status of Virgo

detec-tor. 11th Gravitational Waved Data Analysis Workshop, 2006, Potsdam, Germany. pp.S381-S388,

�10.1088/0264-9381/24/19/S01�. �in2p3-00175815�

(2)

F. A ernese

6

, P. Ami o

10

, M. Alshourbagy

11

, F. Antonu i

12

, S.Aoudia

7

, P. Astone

12

, S. Avino

6

, D.Babus i

4

, G. Ballardin

2

, F. Barone

6

, L. Barsotti

11

, M. Barsuglia

8

, F. Beauville

1

, S.Bigotta

11

, S. Birindelli

11

, M.A. Bizouard

8

, C. Bo ara

9

, F. Bondu

7

, L. Bosi

10

, C. Bradas hia

11

, S. Bra ini

11

,A. Brillet

7

, V. Brisson

8

, D. Buskuli

1

, E. Calloni

6

, E. Campagna

3

, F. Carbognani

2

, F. Cavalier

8

, R. Cavalieri

2

, G. Cella

11

, E. Cesarini

3

, E. Chassande-Mottin

7

, N. Christensen

2

, C. Corda

11

, A. Corsi

12

, F. Cottone

10

, A.-C. Clapson

8

, F. Cleva

7

, J.-P. Coulon

7

, E. Cuo o

2

, A. Dari

10

, V. Dattilo

2

, M. Davier

8

, M. del Prete

11

, R. De Rosa

6

, L. Di Fiore

6

, A. DiVirgilio

11

, B. Dujardin

7

, A. Eleuteri

6

, I. Ferrante

11

, F. Fide aro

11

, I. Fiori

11

, R. Flaminio

1

,

2

, J.-D.Fournier

7

, S. Fras a

12

, F. Fras oni

11

, L. Gammaitoni

10

, F. Garu

6

, E. Genin

2

, A. Gennai

11

, A. Giazotto

11

, G. Giordano

4

, L. Giordano

6

, R. Gouaty

1

, D. Grosjean

1

, G. Guidi

3

, S. Hebri

2

, H. Heitmann

7

, P. Hello

8

, S. Karkar

1

, S.Kre kelbergh

8

, P. La Penna

2

, M. Laval

7

, N. Leroy

8

, N. Letendre

1

, B. Lopez

2

, Lorenzini

3

, V. Loriette

9

, G. Losurdo

3

, J.-M. Ma kowski

5

, E. Majorana

12

, C. N. Man

7

, M. Mantovani

11

, F. Mar hesoni

10

, F. Marion

1

, J. Marque

2

, F. Martelli

3

, A. Masserot

1

, M. Mazzoni

3

, L. Milano

6

, F. Menzinger

2

, C.Moins

2

, J. Moreau

9

, N. Morgado

5

, B.Mours

1

, F. No era

2

, C. Palomba

12

, F. Paoletti

2

,

11

, S. Pardi

6

, A. Pasqualetti

2

, R. Passaquieti

11

, D. Passuello

11

, F. Piergiovanni

3

, L. Pinard

5

, R. Poggiani

11

, M. Punturo

10

, P. Puppo

12

, K. Qipiani

6

, P. Rapagnani

12

, V. Reita

9

, A. Remillieux

5

, F. Ri i

12

, I. Ri iardi

6

, P. Ruggi

2

, G. Russo

6

, S. Solimeno

6

, A. Spalli i

7

, M. Tarallo

11

, M. Tonelli

11

, A. Ton elli

11

, E. Tourneer

1

, F. Travasso

10

, C. Tremola

11

, G. Vajente

11

, D. Verkindt

1

, F. Vetrano

3

, A. Vi eré

3

, J.-Y. Vinet

7

, H. Vo a

10

and M. Yvert

1

1

Laboratoired'Anne y-le-Vieux dePhysiquedesParti ules(LAPP), IN2P3/CNRS, UniversitédeSavoie,Anne y-le-Vieux,Fran e;

2

EuropeanGravitationalObservatory(EGO), Cas ina(Pi),Italia;

3

INFN,SezionediFirenze/Urbino,Sesto Fiorentino,and/orUniversitàdiFirenze, and/orUniversitàdi Urbino,Italia;

4

INFN,Laboratori Nazionalidi Fras ati,Fras ati(Rm),Italia;

5

LMA, Villeurbanne,Lyon,Fran e;

6

INFN,sezionediNapoliand/orUniversitàdi Napoli"Federi oII"Complesso UniversitariodiMonteS.Angelo,and/orUniversitàdi Salerno,Fis iano(Sa), Italia;

7

DepartementArtemisObservatoiredelaCted'Azur,BP4220906304Ni e, Cedex4,Fran e;

8

LAL,UnivParis-Sud,IN2P3/CNRS,Orsay,Fran e

9

(3)

10

INFN,SezionediPerugiaand/orUniversitàdiPerugia,Perugia,Italia;

11

INFN,SezionediPisaand/orUniversitàdiPisa,Pisa,Italia;

12

INFN,SezionediRomaand/orUniversità"LaSapienza",Roma,Italia. E-mail: gabriele.vajentesns.it

Abstra t. The ommissioningoftheVirgogravitationalwavedete torhasrestarted afterseveralmajorhardwareupgrades arriedoutduring winter 2005. NowVirgo is fullyoperativeanditssensitivitygreatlyimprovedandimproving. Aprogramofshort s ienti data taking has already started and Virgo is moving toward a period of ontinuousdata taking, whi h should start at theend of May. Thea tual status of theVirgo dete tor isreportedhere, des ribingthe a tualdete tor sensitivity aswell asthelimitingnoisesandthemid-termplans.

PACSnumbers: 04.80.Nn,95.55.Ym

1. Introdu tion

The Virgo gravitational wave dete tor, jointly funded by INFN (Italy) and CNRS (Fran e) and lo ated at the European Gravitational Observatory (EGO) near Pisa, is a power re y led Mi helson interferometer with arms omposed of 3km long F abry-Perot resonant avities [1℄. A s hemati opti al layout is shown in gure 1. The input beam is generated by a 20 W high-power Nd:YVO

4

laser lo ked to a 1 W solid state Nd:YAG master laser. The beam enters the va uumand passes through a 144 m long input mode leaner (IMC) whi h is used both for spatial ltering of the beam and for pre-stabilizationof the laserfrequen y. Asmallfra tionofthe beam issenttothe rigid referen e avity (RFC), used asa frequen y referen e. The beam enters then the main interferometer, omposed by a power re y ling mirror (PR), a beam splitter (BS) and two resonant avities with at input mirrors (NI and WI) and urved terminalmirrors (NE and WE). The beams transmitted by the avity end mirrors are sensed by both photodiodes and quadrant split photodiodes: the signals obtained from the former are used inthe earlierstages oflo k a quisition[3℄, whilethose fromthe latterare used for automati alignmentpurposes, sin e inVirgothe main modulationfrequen y is hosen in order to be resonant in the re y ling avity and to make the upper sideband rst transverse mode resonantinthe arm avities[4℄. Thebeams ree ted by these ondary anti-ree tion oatedsurfa eof thebeam splitterandby thepowerre y lingmirrorare alsosentoutsidetheva uumandsensedbyphotodiodesandquadrantsplitphotodiodes. The mainoutputbeam omingfromthere ombinationatthe beam splitterpasses through an output mode leaner (OMC) whi h is suspended in va uum, in order to improvetheinterferometer ontrastbylteringouthighordermodes. Thedemodulation of this beam gives the gravitationalwave output signal.

All mirrors are suspended to multi-stage passive seismi isolation system (superattenuators [2℄) whi h an be ontrolled both by using lo al signals or global

(4)

LASER

EOM

RFC

144 m

3 km

3 km

Photodiode

Quadrant photodiodes

B2

IMC

IB

B5

B7

B8

NI

NE

WI

WE

PR

BS

B1p

B1

OMC

Q21

Q22

q71

q72

Q51 Q52

Q81 Q82

Q11

Figure1. Asimplieds hemeoftheVirgoopti allayout. Seethetextfordetails.

2. Hardware modi ation during winter 2005 shutdown

Athreemonthsshutdowntookpla ejustaftertheC7 ommissioningrun,startingfrom mid September 2005 and ending in De ember of the same year. During this period two mainhardware hanges were arriedout: the powerre y lingmirrorandthe whole suspended inje tionben h havebeen substituted.

2.1. Power re y lingmirror

The power re y ling mirror originally suspended was a ompound one, with a urved se ondary surfa e to form the last part of the beam mat hing teles ope. The main drawba k of this ompound mirror was that it showed internal resonan es between 100 Hz and 500 Hz that made the design of the ITF ontrol system more di ult.

The new mirror is instead monolithi , at and has a higher ree tivity (95 % instead of 92 %). Apart from the in reased re y ling gain expe ted due to the in reased ree tivity, the new mirror allowed to strongly improve the performan es of the longitudinal ontrolsystem, due tothe absen e of internalresonan es (see gure 2).

(5)

Figure2. Comparisonoftheopenlooptransferfun tionforthelongitudinal ontrol ofa avity omposed bythePR mirrorand theNImirror. Thebla k urveshowsa measurementperformedwith theold powerre y lingmirror,whilethered urveis a measurementwith thenew mirror. Internal resonan es of the ompound PR mirror arewellvisibleinthelattermeasurement.

2.2. New suspended inje tion ben h

Beforetheshutdown,thesuspendedinje tionben hin ludedapartiallyree tingmirror whi hwasused toattenuatethe powerentering the interferometerby afa tor 10. This was ne essary to avoid ba k-ree ted light to interfere inside the IMC, spoiling the ontrol of this avity and the level of laser frequen y noise. The new inje tion ben h has been designed in ludinga Faraday insulator pla ed intransmission of the IMC, in order to inje t the full power inside the ITF and to avoid the quoted problem. This insulatorgivesanattenuationofthe beam omingba kby afa torroughly1000, whi h proved tobesu ient. Anotherfeatureofthe newinje tionben histhe teles opeused for mat hing the beam with the resonant mode of the interferometer: this teles ope is omposedoftwoparaboli mirrorsand hasbeendesigned inorder toredu easmu has possibletheastigmatismofthebeam. Thelastimportantpointtonoteisthephotodiode used for stabilizing the laser power, whi h is now pla ed on this suspended ben h, in va uum, intransmission of the IMC.

2.3. A ousti insulation

During another shorter shutdown, in September 2006, an a ousti insulation shielding hasbeeninstalledaroundthelaserben handtheexternalinje tionben h. Severaltests performedafterthisoperationshowsarelevantredu tionofa ousti noise ontamination of the dark fringesignal.

3. Commissioning restart

The main hallenge in re overing a stable lo k of the interferometer after these major hanges was the appearan e of thermalee ts in the nal steps of the lo k a quisition sequen e. Whenthe interferometer isnallybring todarkfringe, meaningthatthe full

(6)

Power Stab.

Photodiode

To

the ITF

Parabolic

Telescope

Parabolic

Telescope

Faraday Isolator

To the RFC

Dihedron

IMC Reflection

ITF Reflection

Figure 3. Simplieds hemeof the newsuspended inje tionben h. Notethe mode mat hingparaboli teles ope,the suspended photodiodefor laserpowerstabilization pla edin transmissionoftheIMCandtheFaradayisolator.

powerbuild-up takes pla e in the arm avities,the two input mirrors start to heat up, hanging the interferometer state and response. This ee t made the development of a workinglo ka quisitionstrategymoredi ultandtheinterferometerstronglysensitive to the amount of input power. We were for ed to de rease the power inje ted inside the interferometer, whi h is now of the order of 5.3 W. In this ondition it is possible to a quire the lo k, but the full sequen e takes about 20 minutes, due to the need of waiting for the mirrors tothermalize.

4. Week-end S ien e Runs

From September 2006 a program of short s ien e data taking (week-end s ien e run, WSR)hasstarted. Inmeantwi epermonthafullweek-end, startingfromFridaynight untilMonday morning,is dedi ated to ontinuous datataking, with the interferometer lo kedinthebestpossible onguration. ThemaingoalsofthisWSRprogramistotake periodi pi tures of the state and sensitivity of the dete tor; to tra k the improvement in sensitivity, robustness and duty y le; to olle t some data in lean and ontrolled onditions, to be used for both ommissioning and data analysis purposes; to start movingtoward the organizationneeded for alonger s ien erun. It must benoted that the priority remainsalways on the ommissioning a tivities, and therefore a WSR run an be an eled or postponed if the dete tor is not in good working onditions or if there are other needs.

Sofar,tenweek-ends ien erunhasbeenperformed(refertotable1fortheirdates). Two ofthese has been an eled dueto badworking ondition of theinterferometer. All the other runs had quite a good duty y le and the longest lo k obtained so far was

(7)

Table1. Thefollowingtableliststhedatesandduty y lesofpastWSRruns.

Run Date Duty y le

WSR1 September08-11,2006 88% WSR2 September22-25,2006 69% WSR3 O tober06-09,2006 an eled WSR4 O tober13-16,2006 an eled WSR5 November10-13,2006 62% WSR6 De ember01-04,2006 81% WSR7 January12-17,2007 76% WSR8 February09-12,2007 92% WSR9 February17-19,2007 100% WSR10 Mar h09-12,2007 60%

that of WSR9, when the dete tor was stably lo ked for more than 55hours. The main fa tor limiting the stability of the interferometer islinked toenvironmental onditions, mainly mi ro-seismi a tivity due to sea and wind. A lot of eorts has been devoted to improve this situation: during the rst runs it was di ult toa quire the lo k with strong windand sea a tivity, whilenow the situationismu h improved: the sensitivity is however stillslightly varying in dependen e of the mi ro-seismi onditions.

In gure 4 it is possible to see the improvements in sensitivity obtained during the lastmonths, ompared tothat of the lastVirgo ommissioningrun C7 whi h took pla einSeptember2005. Theimprovementsinthehighfrequen y region(above1kHz) are due to the in reased laser power when passing from C7 to WSR1 and to better mat hing of the beam and redu ed frequen y noise oupling for the other WSR runs. The improvements in an intermediate frequen y region (between 200 Hz and 1 kHz) are due to the large eorts being arried out to redu e ontamination by diused and ba k-s attered light than an ouple with a ousti noise and seismi vibrations of the external ben hes. The improvementbetween 50Hz and 200 Hz between the rst WSR runsand WSR7isdue totheuse ofadierentand lessnoisyerrorsignalforthe ontrol of one of the longitudinal degrees of freedom, namely the length of the powerre y ling avity. Great improvementsin the stability and a ura yof the angular ontrolservos helpedtoredu ethelowfrequen y RMSmotionofthe interferometer,allowingabetter tuning of the longitudinal ontrol systems. This resulted in the improvements visible between WSR7 and WSR8, when a frequen y dependent noise subtra tion te hnique has been used. Finallybeforethe start ofWSR10 run asour eof ele tromagneti noise has been found and redu ed, resultingin the strong suppression of noise in the region around 100 Hz.

5. Noise performan es

(8)

10

-22

10

-21

10

-20

10

-19

10

-18

10

-17

10

-16

10

1

10

2

10

3

10

4

Strain sensitivity [Hz

-1/2

]

Frequency [Hz]

Virgo Design

Virgo C7 (Sep 05)

Virgo WSR1 (Sep 06)

Virgo WSR5 (Nov 06)

Virgo WSR6 (Dec 06)

Virgo WSR7 (Jan 07)

Virgo WSR8 (Feb 07)

Virgo WSR10 (Mar 07)

Figure 4. Strain sensitivity of the Virgo dete tor during some of the WSR runs, ompared to that of the C7 ommissioning run. The light gray urve is the Virgo designsensitivity.

longitudinal ontrol servos, mainly the one ontrolling the short Mi helson degree of freedom. Angular ontrolnoise is for the momentbelow the a tual sensitivity, and for most of the angulardegrees of freedom a tually the ontributiontodarkfringenoise is even below the design sensitivity above 30-40 Hz. The noise at high frequen y (above 1kHz)isalsoquitewellunderstood,andit omesmainlyfromshot noiseatdarkfringe and frequen y noise in a small region around 6 kHz. The noise in the intermediate region, between 50 Hz an up to1 kHz is likely to be due to a ousti noise and seismi noise at the level of the external ben hes, reintrodu ed due to diused and s attered light.

Thestabilityandstationarityofthedete tornoisehas alsogreatlyimprovedduring the last months, allowingstable and repeatableoperation of the dete tor.

6. Con lusions

TheVirgodete torsensitivityhasrea hedalevel omparedtothatoftheLSCdete tors above 500 Hz (see gure 6), and very lose in the remaining part of the observational bandwidth. Therefore the main goal of the Virgo ollaboration is to join the LSC dete torsfora oin identdatatakingperiod. ThisrstVirgolongs ien erunisplanned

(9)

10

-23

10

-22

10

-21

10

-20

10

-19

10

-18

10

-17

10

1

10

2

10

3

10

4

Strain sensitivity [Hz

-1/2

]

Frequency [Hz]

MICH

PRCL

CARM

Diff.Light

Phase noise

Shot Noise

Frequency Noise

Electronic Noise

Sensitivity

Design

Figure5. NoisebudgetfortheWSR10run. MICH,PRCLandCARM urvesrefersto longitudinal ontrolnoise,respe tivelyfortheshortMi helson,powerre y ling avity lengthandlong avities ommonmodedegreesoffreedom. Theshotnoiseis omputed taking into a ount the a tual powerrea hing the dark fringe port. Ele troni and phasenoiseare estimatedusinganalyti almodels. The diusedlight urveshowsan exampleofproje tionsofa ousti andseismi ex itationofexternalben hes,estimated usingnoiseinje tion.

the LIGO S5run.

Before the beginning of the s ien e run, the main task for the ommissioning remains to improve as mu h as possible the dete tor sensitivity and duty y le. Main a tivities on erns ontrol noise hara terization and possibly redu tion for the low frequen y region; a ousti shielding installation in the dete tion laboratory and substitution of sensitive opti al element to redu e a ousti and seismi noise ontamination due to diused and s attered light; implementation of a new ele troni for the laser frequen y stabilizationservo.

These modi ations should allow to further improve the sensitivity, rea hing the level of the other dete tors even in the frequen y region between 50Hz and 500 Hz.

[1℄ http://www.virgo.infn.it

[2℄ F.A erneseetal.[Virgo Collaboration℄,Measurementoftheseismi attenuationperforman eof theVirgo Superattenuator,Astroparti lePhys. 23(2005)557-565

[3℄ F.A erneseetal.[VirgoCollaboration℄,Thevariablenesselo kingte hnique,Class.Quantum Grav.23(2006)S85.

(10)

10

-23

10

-22

10

-21

10

-20

10

-19

10

-18

10

-17

10

-16

10

-15

10

-14

10

-13

10

1

10

2

10

3

10

4

Strain sensitivity [Hz

-1/2

]

Frequency [Hz]

LIGO LHO 4km S5

LIGO LLO 4km S5

LIGO LHO 2km S5

GEO S5

Virgo WSR10

Figure 6. Comparison oftheVirgo sensitivity duringWSR10 withthat ofthe LSC dete torsduringS5run.

[4℄ F.A erneseetal.[VirgoCollaboration℄,TheVirgoautomati alignmentsystem,Class.Quantum Grav.23(2006)S91.

Figure

Figure 1. A simplied sheme of the Virgo optial layout. See the text for details.
Figure 2. Comparison of the open loop transfer funtion for the longitudinal ontrol
Figure 3. Simplied sheme of the new suspended injetion benh. Note the mode
Figure 4. Strain sensitivity of the Virgo detetor during some of the WSR runs,
+3

Références

Documents relatifs

The objectives of this workshop are to carry out a situation assessment of computerization of health statistical information systems in the countries of the Eastern

Amplitude spectral density of noise of the Virgo detector during various stages of commissioning and during the science runs VSR1 and VSR2 in comparison to Virgo+ design

This report will describe the Virgo+ upgrades and the commissioning work performed between the first (VSR1) and the second Virgo Science Run (VSR2).. Some first results of VSR2 will

This framework has been used to illuminate the roles of the field and cultural domains in the generation of advertising ideas’ (Vanden Bergh and Stuhlfaut 2006). In this paper

Prior research suggests a lack of gender diversity in creative departments since subjectivity of creativity has a negative impact on women (Mallia 2009), however our data

investigation focused on creativity in PR although authors in the PR literature cite it as part of the professional competence of a PR practitioner (see Wilcox et al., 2007,

As it will be explained, Virgo is not a bare Michelson interferometer; several optical components are used in addition to the classical 50% reflecting beam splitter (BS) and

After the installation of a new Power Recycling mirror together with a new suspended Injection Bench, a second commissioning phase started to debug the up-grades acquiring