• Aucun résultat trouvé

Lecture Notes and Memoranda Prepared at Steep Rock Lake, Ontario

N/A
N/A
Protected

Academic year: 2021

Partager "Lecture Notes and Memoranda Prepared at Steep Rock Lake, Ontario"

Copied!
38
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Report (National Research Council of Canada. Division of Building Research), 1948-07-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=68d744d0-8207-40bf-b47f-ff59f6521fea https://publications-cnrc.canada.ca/fra/voir/objet/?id=68d744d0-8207-40bf-b47f-ff59f6521fea

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331377

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Lecture Notes and Memoranda Prepared at Steep Rock Lake, Ontario

(2)

http://irc.nrc-cnrc.gc.ca

L e c t u r e N o t e s a n d M e m o r a n d a P r e p a r e d a t

S t e e p R o c k L a k e , O n t a r i o

D B R - R 1 3

S u t h e r l a n d , H .

J u l y 1 9 4 8

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

(3)
(4)

AP: ALY L - 3

He:

S'IWPPIAIG OF

CLAY

E'ROPi TIE3 S OUTH UJD OF TILE flBfv CXERIDY

The

fol-lo:,- notes have been w r i t t e n after study of a plan psesetlted

by

Ki,

. k! S m e l xlegm-ding the clay strLpping

from

the South end of t h e 11i3'1 Orebody, I&. S a m ~ - % e l propses to reduce t h e vzbrvsd clajr to a level of" appro- x h a % e l y

lJ.45

feet bn two operat,5.0ans the clay ec; removed flowing to F a l l 8 b y , Tie s b p e s 50 t h e p i t are t h e n to be fomled by s l ~ i c i n g and puniptng t h e inaterial to Falls Bay,

PbdificatLons to this plan w e sug,.;?s-ted, n o d i f i c n t i o n s which

call

for Xess removal. of r&%erie?l, LS mi'iing R e i ~ t ~ t u of banks for lmrticulan. slopes

of 5mks are a l s o saggested,

'The Analysis of .4; he

Stab~l~~~o,ff'~.l~l~u,.

If an

sartil r~e.33 consists of a granular m a t o r i d such as sand or

gp.sve3- e f ~ d it is A e s i ~ e d t,o c u t a slope in I t , then the mass ~ 1 5 1 d 3 . m y s 5e

1,

sb.l~Le despite t h z $eight, of t h e ccat slope, provided ttae slope is lese than

the angle of repuse of t he rmt erlal, t h e a n g l e of repose beiw e qvd. to the angle of i n t e r r n . ~ fricti.on of t h e ~nater:L<S f n its looaest s t a t e , Such a cond-

i t i o n i.s net true

for

a cohesive material. dith such soil, 3 cut

40

feet h3.gh

at a s!.op of 1 in

3

nay be stable while a sSnilar slope in the s m s i n a t w i d 80 feet, high may rail, %'he soil at, Steep !?oS~k Lake comes into t h e cohesive

categozy, The p-loblem of atabilizi~g the s 1 ~ g e s therefore docs not become one of f ' i d r l g one given i n c l j n a t 5 o n and s t i c H n g to it throughout but is one cP

ad&stiuig slopes in the I l g h t of the depth to which t h e y are ark, and imp5sing

L

l 9 r i l . t ~ ~ i u e l z on t,he dcight to which a giver, slope should be cut,

(5)

Re

..

StripgiPg

of

C l a y from

the

Soutih EnQ

of the "Bn

Ora,&. [Pago 2

f iret i e r

failure

by

e l i d i n g

of the

8011

on

a

oirwlar aro, Th4 eewnd

by

the struotura

of

t h e 8011

bra-

do- and a failure by 8 ~ m a d r x

rlw

resulting,

Ea&

of

them

types of

failure l o deaoribsb in

d e t a i l I n t h e foUorring

nates

and an attempt 10 made

t o present

analytiaal

methoda

for

dealing with

eaah

type,, Tbm seoond

t y w of f a i l u r e ,

by flow aud spread,

preeants

a

d i f f i c u l t

probla of

analyaia

dm

t o

tha unknown quantity

oiz, t h e water

presew'e in tbe

porw of tho

m i l .

m e

form

of f m i l r ~ u & that whloh ha8 oawed most

t r o u b b

a t

Steep Rook,

and a l l

poesiblm sarie-de

m u d t

be taken t o

prevent a

recurrenoe,

(a)

Failure

b y

Sliding alone a

C i t o u l a r Axo

The

f i r s t a m l y ~ e e

of t h e

oauaes

of f a i l u r e of e a r t h

elopes

-re

undertaken aa

a

result of

a

nunber

of

dieaetroua f a i l u r e e in

r a i l road

ambankmonte

in Sweden,

fnvsetigatlone of the

surfaoa along tihioh f a i l u r e

took

plaos showed

t h a t

it

approximated t o

a o l r o l i l a r a r o , and as a

r e s u l t

ths CircUaz Aro

Method of Analyeirr

was

dsoaloped,

Reisrenoe t o

F i g o 1 ehowa

suoh

a

fona

o r fail-, !b

s u r f a m

A B C

of t a i l w e

i e

presumed

t o be

o l r u u -

lar and failure

takes place by

tbs

earth

mmo A B C D moving

about

tbe

o e n l e

of r o t a t i a n

0 , T3m

dilrturblng moment

oawing f a i l u r e

is

t h s r e f o r e t h e

weight

of

t h e

e a r t h

wcs

times

the

diatanoe betwen

param1 lines d r b

through

ifs

oentroid

and

point

0 ,

i , e , tho

disturbing moment o IR i

Bailure

is

r s s i e t e d by

the ahear

strength

of

t h e

8011

t h a t

is

mobilized

along the a r o A

B

C ernrdl the

r e s i s t i n g moment

is -18

t o t a l

ehear strength times the

radiue

of

the airotilar era

along

whioh f a i l u r e

takes plam, The

moil

w

ham

varying

ahear

strength

along arc A

B

C aa8

t h i a

ehould be

taken acoount of

b the

analps&sp

(6)

R e : S t r i p p i n g

.-

of

C l e w

from

the

South

End of

the

"Be

Orebody

( m e

5)

HMse 8 Ths shear Utrbngth

of tho e o l l ,

aeeumlng it to be homogeneoue

A l Len&thof the a r o A B 0

R

r

Badiue of fallure cirale

Ths

factor

o f Safety s a i n s t failure W 'Phs Reeieting mament

-

The

Disturbing moment

While a faotor of adety

of

3

or

4

ie

ueual

In

S t n o t w a l l Enginasring

Aeeign, atab@e seater than 1,,8

are

U U I B ~ ~ ~

i n t h

daeign of earth slopee,

e a ~ t h dtuw and elmiltar struo.9;uresc, Larth dama

mat

have been designed recently

in the United State8 bavle had

factor8

of safety

of

1,8

t o

%,,So

In

such

f 3 t r u c t ~ e S rigid 00ntr0l of the ccxnpaa%ion

of

the placed soil i s e x ~ e r c i s s d

during construction,

Wbon ohaeking %ha a t a b i l i t y o f existing s w t h alopea, the fw f a a t - -

or8 which m w t be de'termimd are the rradfue of the OPrcle of fallwe aria the

The radius of the f a i l u r e c i r a l e

must

be datemined by .trial and

error

so a8

to

give the smallest value of factor of wafe%yo

(7)

Re::

Strippin& of C l a y from the South Tad of the PPBFO Qrebi)Q -= (paG: B i

A @mdleh S q i n e e r , Fallsmiw, who investigated the e#ly slope failures which occurred

i n

h i s country, h a published

a

table which assists in

a

more

rapid determination of t h e centre, of the oirole of failure where ths soil

oonosmed is homogemoua and uniform,

D,, I,

Taylor haa publi~lhed i n gtaghioaf form a mathod whereby the

s t a b i l i t y o f

an

eerth slope of homogeneous

material

aan quiokly be determined,

Professor

Taylor doee not claim t h a t his method, wnd .the aeeumptions made, GIWB

an

exact anch completely accurate metbod of analysisn Eumver, t h e very

nature of s o i l , and tho v a s i a t i o w In it, l a such

es

t o make any t h e o r e t l c a ~

nnalysia

subjeat

f,o error when applied t o

a

p r a c t i c a l problem, The i n t e l l i g e n t

use of the Taylor method, i n conJurction with thorough Investigations of a site

ahowing an easentidEy homogt+moua e o l l , sbouLd give i n f o m a t i a n t o the oil

engineer whicrh c m aerva aa Q

very

useful guide fm design- The Ta;gior cwmms have been ussd in the s l o p

analysie

carried out in t h i s ~ 8 ~ r ~ r a A d m , thia

amXysls b s b g oo~cernsdi only sf oaurse with stability against f a i l w e along a

19ee shear etrength of a ~ o h l can. be determined i n a number of ways,

the two moat important and frequently w e d being the direct action s h e a ~ box and

the t r i - a x i a l oompxessioe apparatus,, Tbs shear box and the nature

of t h e t e e t s performed w i t h it, have been 8iscwsed in a previous mnemoragdum t o

Mrf, Kc, Lo YcRorla, With the, tri-=ax%d camgreeeian a p p a r a t u s the epecWn f8 plaued

Inside er l u u i t e sp-linder, a oylinder i n which an a i r o r water pressure can b e

buile

up to any dasired

value,

When t h i s l a t e r a l preemare l o

built

up,

an

axial

pressure i s a p p l i e d t o the oylindrical specimen by mean8 of a piston and the

epcinnen l e loadef

t o

failure, The a x i a l pressure, o d l e d the

m j o r

p r i a c i p d

etrgss corresponding t o the lateral pressure, called the minor p r i n ~ i p a l s t r e o @ ~

(8)

RE; S m i n g ; ? G l e x o m t h e South XnP c f the R B m [gaga 5)

..-

-1--* ---=-

-

'Ilta mador and rei.nor prlnolpal streasea a r e plo-bted and a relationehip c w

%hen be obtain6.l for the ehcstw strength of She soil,

C 2

"

T

Quick

Teat

1

Uncsn4in.d c a p * * ~ i * n ?el+

f i

s

or a x i a l 6treBr,:m :, a mtp&k t e a t IQ res~lilte, 3Ef full consolidat ion i s allowed under "te SatarsP s t ~ e s e alone, a w ~ ~ o n ~ o l i d a ~ e d w k

-"-

teat* resulea,

If

fa1 ~avlsolidaticl~ I s allowlad under 'both lateral a d mink stresses t h e result- %.% t o a t oalk.@d a vT_BI~~ t ~ 8 $ * ~ a i ~ i k % c a n c e 0% the Oeat results has

be@e ~sqXained l u a prevj,~us mma on the sltncea~ box,

B s t l the shear box aud t h e trl-axial compresslorn apparatus are

expeaaive pdecr-IS of' appwatus a 8 are not availcnble at Steep Bock, A mod-

i f i e d f c m of %he tri-axial oompreaeion a.pparatu8 aan easily be constructed

so t b . t ~ t wqulok t e a t s R can be

rmn,.

'Hlaie I s known tat3 the unconfined compression

(9)

Re: Stripping of Clay from tho

-

South End o_f tho 'OBn Orebode [page 6 \ pressure and a l l y an a x i d . pressure is applied to give f a l l w e , &om %be

pPols of the d4,fferes-t t y g s s of terrts shown

in

F P w e 2, it can b e seen

that the ehear strength ~qw3.8 one half the wmpreEision streae In the

nquiokw tesP, *i,e, the p l o t of shear strength is a line parallel to the

base and with $

=

o.

Obasr~~ations QT failureo of earth slope6 and dama i n Great Britain

agd the United States have ahom that vfhere euoh f ~ i l ~ a r 8 8 C ) C C U X ' ~ B ~ iu clay

material that +;he ahem strength along the w c 0% faailwe was equal t o one3

half the unoorl.'ixned compression Gost in&, equal to the shoas strength value obtained from the m q ~ i ~ k F q t e a t o

An unconfined comprasslon device has been constructed i n the machine

8' -\;3" at %sep IZock, and the valurs of sshe4ar etrength s ~ u a l to oxas half t b

~inconfbned c~n;~,resslor, strength have buen used Im stabilltiy coqutrationa,

T e a t Resu1ts

'Op to the t irce OF writing ( late Jim@ 1948) , only relatii-woPy f e w

~ ~ e s n f i n s d com,~lcession testa haas been mads, Thewe "bvaata, aboaa'c 30 in n~mbar,, give r,i averegE value of shear stronglh of about 4 Bb. per aq,

In,

"- 576 Ib, per jq, %t, and t h i s value haa been w e d throughout An the cab= eulations

-

R e ~ e a t e d checks should be made sf t h i s v d w RS the $as% fs a

simple one to ~ e r f o m , a! some modif Icatlon may be necessary t o this valw,

A fac;t,ar of safcrty of 1,25 hiis bean d o p e d tbougho~xb Pn t b calculations,

(10)

R a m ?iP C b q from @he Sowkh s f the

*BQ

O ~ e b ~ d m

--

" ",--.- -----.-PP--P-,

b )

-

FaiZ;urarr b ; - a r s a d m d Flow o f the V a s ~ o d Clay

The f am sf f a i l u x e dmoribad wder l h ~ a b i n g [a] v i z , %he fail- ure along a ciruzalar a r c , i t ! %ho type of failure moat o o m n .b ham-

gBmeeoW alays au8 wbeslvt3 nnd%ter;bals, With slaterids eueh a8 v a ~ v e d o l w y ~

where, t b r e exLi4.t layere of gilt, O P aimiPw relatively comoe uateriali

a

which i a water ;learing, t h w e occ~slra different ty-p of feilurs, Fenst=*

r n t i o z of *m.ter ??rum m ad;laasut higher waWr tablo into these bayere allom

s water p r s s s w : ~ to bs buXi.2 up in t h e pore8 of t h e material, %be atability of the soiL mast f a degcalcdennt

on

the hear ~trsngth of Qe soilc ThfB i3baa"

etreiagth i s a. %qaxot20n 09 \-,ha effeuti~a pr8eeure i , , e ; , . tha greaeuxe transmitted

from grain t o qgl sin in thcl 8013. mass, A pose pressrere acts oppos It@ t c t U e i

a f f e c t i ~ e prcsasiyss a d SO ~edueea i t l thm r~duaing %he B B I B ~ ~trsngth of

the soil and thu a t a b i l i % y o f *he sPoger A. charactarlw$fo of t h l e t o m of

fad;Ews i s the cuddamass

wI%h

which il; takas pPaoe m d BP" tihe material

In

~Hhioh it Q O C ? ~ ~ ha81 Q ~ e u t i i t i v ~ a,bructupe i s ooxldftion wriacllly asmcla%hsd

w i t h high aa%~.?k:i mZeP c(dnto~%a;), the8 bl f101 o i ' B ~ B C O U ~ ~l~aPGerlaB r b ~ d t ~ ~ The iaoe"tasvsre af tha elope faiilwfes which have occWrw3 at Stesp Rook havsl

o o m U t o t h i s c atega.ry, w d %ava beon aasoalated w i t h periods o% hi& rain- f a l l ox w i t h pe~3Gratioa sf surface chainage i n t o the ooiX mass, Both these czonditlorm b u i l c up pQrs water prsssww in the water baaking

Awers,

Figo 3

il1uat::atae %he Porn sf failwe,

- - .Im u -

.-

.,.-,,,,,--,-

...---

Y . - - - * - -

--

L

--.me--

--- +

---

I s t \ t a t sand l a y e r s

(11)

Re*

--

SCrippiug of -.-

...

, . " l ~ irom the SouthEnd o f

tW9

*Bn Orebo%x (page 8 ) me quffstion has Been raiaed a t tXrnea as t o the e f f e c t af the

a

natural. d i p of t h e verved clay, The direction of the dig cannot p f e c t the machgnica of a s t a b i l i t y analyeis as neither the t o t a l mas (constituting the disturbing e1a~en-t In .l;b s l i d i n g cirole failure) nor the pare water pressure

(the disturbing element i n the flow or spread f a i l w e ) i s influenced,

However,

the nxteat of $he o l i d e where flow or epread oceurs i s effected by the direction 02 the va.'ves ae shown i n Figure 4 ,

Idaterial o w &

flmsamy

so

easUy, end , ~ s e S s t a n ~ e toe

can

be bui18 q ~ ,

Dip of vcirves w i : , h g L ~ ~ Dip of a m s against

aope

Figrule 4

6 )

F f m e 4 siil

h e 4 ( 1 with the vwvea l y i n g with %ha s1.0pe1, the materieal

once f a i l e d flow8 dom the slope and lends %s prsgressivs failwe by cutting

baak of tbs slope If a p t.t of open exoavari;lon 1.I.a~ some d i s t a e o e down tiha

elope .then the qieccrw mataria1 o m f lorn i n t o t h e pit,'. I f as i n

B

i i ) above the slope of the ~ a r v e s is opposite to the earth

m a s s

slope, then the spread material t,anda t c f l o ~ "upfq the vervels and builds up a too which caxl o i f e r

some resistanas t a further flow

ma

progressive bretakiw back of t;hs material

in thn slogs.

no

r e l l s b l e spinion canbe f a m d conoernlng the iaator of safety

a f tho slope with resj?uot t o flow and spreading unless the pore water pressure i 8 knowno

(12)

R e .: 3 t a m @ h y f r o m t b South End of" the mIPw Orebody (gage 9

1

Thle psessure can only bes determined i n the field by pressure gauge obser-

vw'i;Sonar, hrkodla sbsemat ion of the gauge8 oould give v~arniDg of a sblde,

If the obaer'satione

over

a period indloated a how fautor of safety, drainage co~fidl be i n s t e l l e d t o keep the pore water pressure down t o s ~ f e limita,

h t h these greoautione are oxpensive ond time consuming, Unfort-

unately t h i e type of failuse appear8 t o be that whiah oocurred most fregtrgntly at Steep Rook,

Dr,

T e r z e i , thlrir in%ea'nationaP authority on so61 m~chanios, b s

iavoatigatgd the problem and p o g o ~ e d a peeauS109lasy n~eaawe to guard agalrmt fadlurs. Aa menBioned e s ~ ~ l l o r i n thier mennosadm: there i s a orlt-

iatth height t o tvhfoh a &Pmn shop~1, om be o u t in a eah@alv@ material, 3Cr,

Tern@% $NS

8bm

%PJbe~r@ticd,P~ Chat if the I I E L X I ~ ~ I ~ b i g h t of slope Pn a

V ~ V O ~ ! o l a y i a keg3 dovm to Ithe m a x i n u m height to vtbiclh a v e ~ t f o a l . cuk ccaxl be mde i n tho matexaial., then a ~afegurcR o m be grovidsd tigabst failure

bg spread and flow, Sueh a l h i t a t f o n , applied in m n j u a t ~ t i o n wPth a analysie for the oFrau;Zar two type of failme s@ou%d give proteo'clon slgabrst

Pallure,

If

f l o w of ground vatar towards the olay can b e readily divereed t h i s should be done

ae

auch water can penetrate the water bear- layere sf sand or s;b:l.% and b u i l d up a prosaws

in

the pores,

I&

a Icscatittn i n the, Qnited States whiolh as v a v e a clay depoeits,

f l o w failures ilave beern observed at i n t e m ~ l a of' about 20 years, oorresg-

onding t o periods of maximuin rainfall,, The frequency of such failures,

of c o w e e , d e p n d e oa ooxlditiona 02' e x i s t l q water %able levels and the factor of eafa%p @xji.eting .,-ezorc increased pore arater prasswo, and the frequsnoy will vary f r o m glaoae t o plaoe,

(13)

Apply3.q

Dr,

Torzaghi08 method, the critical height to which a

vertical out can b e made

In

the vamred aPay a% Stsop Rook is approxlnmtely

22 feet, This valve i s based on the relatively mall nmber of unconfined oomprsssiou t ~ ~ t 8 t h a t have been performed, and

mw

bs s u b j e o t to

revision

as further teats esa perfomad, Born t h i a data,

I

auggceat that the f i n a l

bench intervd.8 b e 20 faet apart verticallye !This should give praterctioo.

a&ainst the psriodio building lap of

pore

water pressuse, Exambatilon of Sectionrs 1 .to 9 shows that in ths more recent +*i;rl=pgilag operatiom the

reoomnda%ion,

The method of calculation al the

maximum

vertical cub i n a clay bank i s elhorn at %he end of .&hese na4'ceso :.nd a copy of Profssso~

Taylor's

(14)

Re:

S t r ~ a

o f Clay f r m t h e Soul;h End of t h e "Bn Orebody (Page 11)

COX CLTIS ION

After an examination of M r . Sesrmelgs proposed scheme,' I should like t o make t h e following comenta:

1 am of t h e opinion t h a t t h e clay need not be removed t o such an

extent as sugge,3ted, i.eo t o a l e v e l varying from 114705 a t Section 10 t o ll4.0 a t Section 15. S t a b i l i t y calculations on Section 10 Lo 15 show t h a t benches can be formed a t higher l e v e l s while s t i l l r e t a i n i n g t h e s t a b i l i t y of t h e slopes, Observations of the conditions existing a t Sections

1

t o

9

show %ha% my propoaed amendments do not incur any mre severe conditions than exist i n these sectisncs. Sections 10 t o 15 do not l i e on t h e l i n e of ,geates't slope of t h e clay. Therefore a t a b i l f t y calculations on these sect;iana can bo misleading, and new sections should be drawn on t h e l i n e of

s e a t e s t slope so t h a t a plan of t h e p r o p s e d ber~ches can be properly dram, Hawaver, it i s d i f f i c u l t t o draw a plan view o f the benches p l o t t i n g from sections, aa the sand and gravel l e v e l a vary t o a g r e a t mLsrlt, P l o t t i n g a

plan from the sections givea an extremely e r r a t i c arre~gement of benches due .to the variaticns.

I

have drawn up a sketch plan, which is attached t o this memorandum, i n which t h e trend of bench location is shown, T1ds plan, w%th the approximate location o f t h e bonchea shown thereon, w i l l serve as a guide t o t h e s e t t i n g out of t h e benches, It i s r e a l i s e d t h a t l o c a l conditions and exigencies make i t d i f f i c u l t t o follow a set plan, and t h e sketch plan sub- mltted i s intended be a general guide to the scheme of t h e slopes r a t h e r 'than a r i g i d specification,

Demands f o r production of ore mag a l t e r t h e planning and c a l l f o r

an acceleration of the s t r i p p i n g programe, The following a r e general rec-

ommendationa t h a t should be followed in order t o a f f o r d s a f e t y against c i r c u l a r a r c f a i l u r e s . Theae values a r e based on t h e assumption t h a t the

(15)

Reg

S D l r j a $ ~ a f Clay from the

South

End

of the t'Blt Orebody (Page

12)

t h e and and

gravel l e v e l l i e 8 throughout

a t

approxiaately t h e same l e v e l as

the t o e

of

t h e s l o p . Where the sand and gravel surface p a r u e l a the varved

clay surface, these values are

too

severe and can be

modified,

In

such a

case

individual

slopes

should

be checked as shown i n Figure

5,

. . -

Check e t a b i l l t y from

ic

t o G

Check s t a b i l i t y from

P

t k

A

With slopes w i t 2 20 feet risea between benches,and w i t h berms 50 f e e t wide, s lbmi'ting t o t a l rise of

54

feet

above

the toe is recommended, Greater risecs a r e permissible by widening the berms and 80 f l a t t e n i q t h e o v e r a l l slope,

The

following t a b l e

gives

t h e r e l a t i o n s h i p between rise and o v e r a l l s l o p ,

Difference

in elevation

between t o e of slops and

c r e s t o f slope?

Horizontal distance

between toe of alope

and c.rest of slope Feet

Equivalent o v e r a l l

slops measured Prom

crest t o t o e of slope

"..

By the use of these figures as a general guide, slopes can be

laid out

on

eections

on t h e l i n e s of %he greateat slope of t h e clay, Protection against c i r c u l a r a r c

(16)

Re: Strip- *--- of Clay from the South

-

End of t h e $PBH Orebody (Page

33)

failures can thus be given. By limiting diTerance

in

level between benches to 20 feet, an attempt can be made to stabilise t h e slope against failure by

f l o w and spread. Using a 20 feet rise bekween benches at a alope of 1 i n

3

? and knowing the total rise,the o v e r a l l equivalent slope can be found from the

abovtl. table and t h e necessary widtho of benches determined.

Theee --.-I"--- values hare been based on

a

r e l a t i v e l y

8mll

rider o f t e s t a

c o n s i d e r i n ~ t h e extent of the area involved, Check t e s t s f o r the uglconf ined

com~easion

str211gbl-1 of t h e soil should be carried Q L I ~ at every opportxmitg,

-

--.--

Tho lrLTormation obtained from t h e foregoing analysis is intended as

a guide and m s k be combined w i t h tno observaLions and experience of the

operators on t h e job, ~ r r , should not be taken as a r i g i d specification bub

should be used w i t h good Jud~pcnP;, a3 f l e x i b - i l i t y of thought must be retained a t all t b e s ,

(17)

o f Clav -,-- from the S ~ u t h

--

]End of the

--

i s B 3 &

(Page 1 1 4 ) Spscimen Calculatj.ons -..: used

in

Slope Analysis

1, ?!o f i n d 'the height to which a can be safeXy cut, t o observe the following condjtiona :

Average valueof shear s t r e n g t h o f clay

h

S

.

4

ib./in2 576 i b / f i 2 0 ! 5 ~ 3 d u e d

3

by "btkylar)

Density of Clay ;

k

-

= 105 lb/ft

.

Bank r i ~ a a at 1. vertizLS. to 3 horieantd for B vertical distmce of 20 feet

has a 50 f e e t berm, rises apain a t 1 in

3

for 20 f e a t e t c . T h i s gives

an

average o v e r a l l slope value o f approxhmtoly

a*,

FacPIor of safety against c i r c u l a r arc failure e 1-25

Ratlo of distance from slope crest t o hard underlying surface to vertical

height of slope

=

B

1. From Taylor @ s r:umes :

0

Stability Number f o r

Dm

1

andd z

13

and

P)

=

o i a 0,81

* C ~ 0 0 8 1 o o o H o C

O D

-

-

-

576

34

Feet.

F ~ H

F.

L

0081 lo25xl05x0. 81

(18)

R s s S t r i p , C l a y fromthe Soukh a d of the 'qBLg Ore%,& (page 15)

2, To find the height to which a bank can be cut v e r t i c a l l y

in

a c l a y h a w t h e same properties a s in example 1,

Critical h e i r l ~ t to which a cZAy can be cut vertically

._

3.85

-

S Where S

=

shear strength of s o i l l b / n 2

r

1

density of s o i l 1b/f't3

0 Q

H

z =13.85 x

-

1,

=

approximately 22 f e e t

105

A table is attachedbdow showing. the variation i n t h i s c r i t i c a l height to which a vertical c u t can be i ~ ~ d a as the s h e a r strength and density varisa,

- -- 4

V

(19)

zkx-~~\v

8 47;; ~~,@~&T&JA"F a p l y T a e f

.*-A &@s:~~+&~&2a&k:2:A~~%z:5s

These tesks (L)

me

&uick T ~ s t (11) The Coaseil5dskad Quick TosP, ( U l ) 'Phs

Slm T e s t ,

A

description

of

each c f thsss te@%s

fo3lows,

(20)

1.

j, ;;;S -j--i.,& e'.?v"'..<.:]l.~ - = j,, ~r.,~;->-.- I: I

c ."

L,:,?,~.2sy a d k , , L x p *.:! %.;\dtx.-"~. 2~ .". +, L;>y2z;,;L<2;:~ g.c>d ,..,,, +;2te.,-2 , ,,,,& L . A t + - , s A , ;+:$re;!.s< 8~,ti3&6$;@$ k.3 &

(21)
(22)
(23)
(24)
(25)
(26)

T * @ % @ f p @ > Tragb @#~%&m&?

a,

The a@$& cbype, Th%s hog becn tf*a@&b i f i a G P ~ Q p ~ @ ~ @ c i d ~ p ~ p & g ~ e : p h ~ ~

The %@ps

of

a a ~ B

of

$h@ & ~ G & @ D B I@ &%p% b&km T~s@%gng~

B

a%@@

[a)

%a% BT gar -&he Roam%%

isn of

t h e $-ce Lajnrrs is d r ~ v % % f ~ o a %h@ ba$$@& 132

@m@z@@s,

&&& $@@ if %&@b@ 2,&2f433?& E~Y&%%wu@B u&G%% % h e B&BT%&

(27)

Gaze8

[ a )

[ B ) u@J,&ed oCAQBQB ~ *6ya4;@m8. ~ ~ - - ~ Cass [bj $.a a~GL&ed aa t8 e3ae cx%

u 7 c l im

Q p a ~ ~ @ys&afm

@&a@@

$ha Gowrab&@

izL

e ~ g i ~ n e e ~ b n g p~$3jaa%@,

nine@

%be %a@ % e i y w ~ @&a

@@w

o&rrl; hxda&ely 8 % ~ -80

t h o

r @ p l @ ~ i & m ~ % Lha v@-%er s~p*, Thla

~ a c o c m ~ ~ n

in

azeaa B B G ~ EQE Ea&mQp a ~ i a h h ~ a ~rn~5e~g:e e aIaJgii%~pr T ~ ~ B Q $ ~ $ P @ B

be

rin@ven

due Gu msa uaifonaFBy

of

%be underJayin& sod.&,

cvla

as c.,

aaaeequsnoe

hlgP(sgrr3 iccab&d nbow t h e heaeimg acae lithely

%a

ba hrokara, up. % h a *&ha gpr-

~ m @ s ~ x?I%.EP % h e @ub@698q18&%

%ha%)

t h e m@Xt$s& %@yep@ %~ana?~~qqg %he 80gl bnbo er w@py

ma~s, ??&ax+@ l e r

na

@f fe@% %TQ 4~~a\$wag@

&&am

=ti %la, %&l&v%ng As f PW % h~ fi;

ap

dam fa, sdad

I~GB&%%PI~: o(Bs~%%B;%QB B$i B ~ E $ P ~ @ & B debr%rn@~%~J. %Q hfb@%~ay~r

$z?m

F1gu.w pp) 2%

@@a

'$fa

SB@B box? & ~ V ~ % & C @ O D B 2%

@a

b~4

t o

the

aag8na@2 f l ha @@a mav@t

an

@ p @ ~ gyp% rn $XI%@ a &o@ed @$g%m by %%~a

3.n$rsdu&%@n

Q% k ~ 3 m : ~ a 92 Q@EAP&@ ga&r18& m&82%do %%@ @p&$*@&$@%4a of bo%&86&8, tmd a

(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)

Références

Documents relatifs

Left panel: IRES activities in testes of young mice treated with testosterone (3W+T) and of adult mice without treatment (6W) are expressed relatively to the untreated

By characterizing chemomechanical coupling effects in a model oxide material, including both directly observing chemical expansion

However, if the imposed temperature gradient is even smaller, θ = o( 2 ), or absent (isothermal boundary conditions), the temperature non-homogeneities induced by vibrations or

We then introduce our method where the compliance matrix W is asynchronously evaluated at low rates, while a local contact problem is computed at high rates to update haptic

The PN reversible reachability problem consists in deciding given a PN A and two configurations x and y if they are mutually reachable for A. This result can be refined by

La tendance vers un dedin de la part representee par Ie secteur de la construc- tion dans I'economie nationale ainsi que Ie ralentissement de croissance prevu (voir Tableau 8 et

The most used definition of network lifetime is the time period during which the network is operational; this means that coverage is ensured (the application sensing requirements

Using the classical connexion between downward skip-free random walks and branching processes and standard arguments of weak convergence on the space of cadl`ag paths, this enables