• Aucun résultat trouvé

Contribution on the Structural Behaviour of Skew Slabs, Using a Model

N/A
N/A
Protected

Academic year: 2021

Partager "Contribution on the Structural Behaviour of Skew Slabs, Using a Model"

Copied!
18
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1964

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331567

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Contribution on the Structural Behaviour of Skew Slabs, Using a Model

Mehmel, A.; Weise, H.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=ee900d1d-9b90-45be-8dd2-b20f9ac1d59d https://publications-cnrc.canada.ca/fra/voir/objet/?id=ee900d1d-9b90-45be-8dd2-b20f9ac1d59d

(2)

A s t h e a u t h o r of t h i s paper p o i n t 8 o u t t h e r e i s l i t t l e a v a i l - a b l e i n f o r m a t i o n on t h e s t r u c t u r a l behaviour of continuous skewed

s l a b s . A t t h e s u g g e s t i o n of P r o f . M.W. Huggins, Chairman of t h e J o i n t CSA/NBC Committee on Reinforced Concrete Design, t h e Building S t r u c t u r e s S e c t i o n of t h e D i v i s i o n of B u i l d i n g Research r e q u e s t e d t h i n t r a n s l a t i o n i n o r d e r t o make it a v a i l a b l e t o Canadian e n g i n e e r s . The D i v i e i o n i s g r a t e f u l t o M r . D . A . S i n c l a i r of t h e T r a n s l a t i o n 8 S e c t i o n of t h e N a t i o n a l Research Council L i b r a r y f o r p r e p a r i n g t h e t r a n s l a t i o n . Ottawa May

1964

R.F. Legget D i r e c t o r

(3)

TI tle:

NATIONAL RESEARCH COUNC IL OF CANADA

Technical Translation 1128

A contribution on the atruotural behaviour of skew slabs, using

a

model

in

modellatatiecher Beltrag

zum

Tragverhalten schiefwlnkliger

platten)

Authors : A. Mehmel and H. Welae

Reference: Beton- und Stahlbetonbau,

57

(10) : 233-239, 1962

(4)

A CONTRIBUTION ON THE STRUCTURAL BEHAVIOUR OF SKEW SLABS, USING A MODEL

1. I n t r o d u c t i o n

Although almple span skew s l a b s have been d e a l t w i t h t h o r o u g h l y i n t h e l i t e r a t u r e , very few r e s u l t s a r e a v a i l a b l e on c o n t i n u o u s skew s l a b s . Refer- ence 1, f o r example, d e s c r i b e s t h e behaviour of a two-span s l a b skewed 40° w i t h spans 1, : 1, = 41.20 : 34.60 and width b = 16.60 m . Because t h e method of c u r v a t u r e measurement i n 1954/55 was s t i l l very crude and i n a c c u r a t e , t h e p r i n c i p a l moments ( l o a d p e r span) g i v e n i n t h i s work a r e n o t very r e l i a b l e . I n r e f . 2 r e s u l t s o b t a i n e d by t h e o p t i c a l r e f l e c t i o n method on a 38.5O skewed two-span s l a b w i t h 1, = 1, = 20.80, b = 8.00 m a r e r e p o r t e d f o r v a r i o u s e q u a l l o a d c a s e s and v a r i o u s p o s i t i o n s of u n i t l o a d . A p a r a l l e l t e s t shows t h e l n - f l u e n c e of a haunch on t h e p r i n c i p a l moments. I n r e f . 3 some g e n e r a l consid- e r a t i o n s r e p r e s e n t e d on t h e b e a r i n g p r o p e r t i e s of t h e c o n t i n u o u s skew s l a b , and moment boundary l i n e s a r e g i v e n q u a l i t a t i v e l y a s a f u n c t i o n of t h e a n g l e of skew, d i f f e r e n t i a t i n g between end and c e n t r e s p a n s . I n f l u e n c e a r e a s f o r t h e moments o f a space p o i n t i n t h e end span of a curved skew s l a b a r e

p r e s e n t e d i n r e f . 4, w h i l e r e f .

5

g i v e s t h e i n f l u e n c e a r e a s f o r t h e boundary e l o n g a t i o n s of t h e d e s i g n p o i n t s of a s i m i l a r s l a b . Reference 6 c a l c u l a t e s

a 50° skewed, narrow box-type b r i d g e w i t h t h r e e s p a n s 1 , : 1, : 1, = 72.00 : 96.00 : 72.00 a c c o r d i n g t o r e f . 7 a s a skewed s t r i p , a f t e r f i r s t d e m o n s t r a t i n g beam-like t r a n s v e r s e d i s t r i b u t i o n and r i g i d i t y c o n d i t i o n s by p l a n e b e a r i n g

s t r u c t u r e c a l c u l a t i o n .

N e i t h e r i n number n o r i n scope, however, do t h e above-mentioned examples s u f f i c e f o r a n a d e q u a t e u n d e r s t a n d i n g of t h e b e a r i n g p r o p e r t i e s of t h e con- t i n u o u s skew s l a b . The t e s t r e s u l t s r e p o r t e d below r e p r e s e n t a f u r t h e r c o n t r i b u t i o n t o t h i s s p e c i a l f i e l d . To c l a r i f y t h e b e a r i n g p r o p e r t i e s of t h e c o n t i n u o u s skew s l a b , a t h r e e - s p a n c o n t i n u o u s skew s l a b (11) i s compared w i t h a c o n t i n u o u s s t r a i g h t s l a b ( I ) of t h e same span i n t e r v a l and width, and w i t h a simple span skew s l a b of e q u a l span and a n g l e of skew (111).

e ere

t h e r e a d e r i s r e f e r r e d t o t h e comparison of t h e moments of a simple span skew s l a b

(40°) w i t h a s q u a r e s l a b ( I V ) i n r e f . 7 and 8 . ) 2 . The Messerich Bridge

The t h r e e - s p a n skew s l a b was s t u d i e d i n t h e c o u r s e of a model t e s t f o r a c o m p a r a t i v e l y s m a l l , n o n - p r e s t r e s s e d r e i n f o r c e d b r i d g e s t r u c t u r e a t Messerich

(5)

and t h e a n g l e of skew s l i g h t l y l e s s t h a n 40°. Five e l a s t i c b e a r i n g s s u p p o r t t h e s l a b a l o n g each b e a r i n g l i n e . Some of t h e s e s t a n d on abutment w a l l s and some on c o n c r e t e columns. A l o n g i t u d i n a l s e c t i o n through t h e a x i s of t h e executed s u p e r s t r u c t u r e i s shown i n F i g . 1. F i g u r e 2a shows a c r o s s - s e c t i o n of t h e b r i d g e , F i g . 2b t h e corresponding model c r o s s - s e c t i o n . I n o r d e r t o r e t a i n t h e s t i f f n e s s of t h e m o n o l i t h i c a l l y - j o i n e d c a n t i l e v e r arms t h e s e a r e added t o t h e s o l i d s l a b .

h he

i d e a l i z e d width of t h e model, t h e p l a n (11) of which i s seen I n F i g . 3, i s c a l c u l a t e d from t h e c o n d i t i o n t h a t t h e edge bending s t i f f n e s s e s of t h e s o l i d s l a b and of t h e c a n t i l e v e r e d s u p e r s t r u c t u r e a r e assumed equal .)

3 . Comparison of P r i n c i p a l Moments under Equal Load

S l a b s I , I1 and 111 i n F i g . 3 a r e d i r e c t l y comparable because a l l s p a n s have equal l e n g t h and w i d t h and hence equal p l a n a r e a . The t o t a l l o a d s p e r span a r e t h e r e f o r e c o n s t a n t :

P = p

.

b

.

1 = 1

-

14.00

-

16.00 = c o n s t .

A l l p o i n t s i n v e s t i g a t e d a r e s i t u a t e d a t t h e c e n t r e of t h e span i n each c a s e , over t h e s u p p o r t s on t h e c e n t r e a x i s of t h e s l a b and over t h e l i n e j o i n i n g t h e edge columns, w i t h o u t n e c e s s a r i l y i n c l u d i n g t h e p o s i t i o n s of

maximum moment. I n t h e skew s l a b s , f o r example, t h e maximum p o s i t i v e moments of t h e edge zone a r e d e f i n i t e l y d i s p l a c e d towards t h e o b t u s e c o r n e r . The p r i n c i p a l moments f o r t h e g i v e n dimensions and p = 1 a r e shown i n F i g . 3 .

The u n i t v a l u e s m u l t i p l i e d by p12 a r e g i v e n i n Table I . The comparison b r i n g s o u t t h e f o l l o w i n g p o i n t s :

The b e a r i n g p r o p e r t i e s of t h e skew s l a b s a r e b e t t e r t h a n t h o s e of t h e r e c t a n g u l a r ones. The maximum moments a t t h e span c e n t r e s and o v e r t h e i n t e r - mediate columns a r e g r e a t e r f o r I t h a n f o r 11. Even t h e simple span skew s l a b h a s a more f a v o u r a b l e p a t t e r n of moments t h a n t h e s t r a i g h t continuous s l a b , a t l e a s t i n t h e end spans of t h e l a t t e r . T h i s i s due primarj-ly t o t h e f a v o u r a b l e b e a r i n g d i r e c t i o n of t h e skew s l a b . It d i s t r i b u t e s i t s l o a d a s f a r as p o s s i b l e over t h e s h o r t e s t d i s t a n c e t o t h e s u p p o r t i n g l i n e s 1 s i n 9. T h i s circumstance can be recognized most c l e a r l y from t h e d i r e c t i o n of t h e p r i n c i p a l moments a l o n g t h e c e n t r e a x e s . Moreover, t h e e l a s t i c r e s t r a i n i n g of t h e open edges a t t h e o b t u s e c o r n e r s

-

it i s absorbed by bending and t o r s i o n a l moments i n t h e s l a b s t r i p over t h e s u p p o r t s

-

r e n d e r s t h e moment s t r e s s i n g of t h e skew s l a b more f a v o u r a b l e , because i t i s more uniform.

The c o n t i n u i t y of o r t h o g o n a l b e a r i n g systems i s l e s s t h a n t h a t of t h e skewed systems. I n t h e c a s e of I t h e boundary and c e n t r e span moments a r e i n a r a t i o , on t h e average, of t h r e e t o one, whereas f o r t h e a n g l e of skew of s l a b I1 t h e r a t i o i s o n l y two t o one. The moments of t h e i n d i v i d u a l s p a n s

(6)

a r c of t h e same o r d c r of m a ~ n i t u d e , and hence t h e support moments a r e s m a l l e r f o r t h e skew s l a b t h a n f o r t h e r e c t a n g u l a r s l a b . I t i s t o be expected t h a t t h e d i f f e r e n c e w i l l l a r g e l y v a n i s h a s t h e a n g l e becomes s m a l l e r . The r e a s o n s may a g a i n be s t a t e d a s f o l l o w s : t h e load d i s t r i b u t i o n a t r i g h t a n g l e s t o t h e l i n e s of support

-

a s a consequence t h e boundary zones a r e p a r t i a l l y excluded from t h e c o n t i n u i t y

-,

t h e e l a s t i c r e s t r a i n i n g of t h e boundary zones a t t h e o b t u s e c o r n e r s , which i s observed i n a l l spans; a s a r e s u l t of t h i s boundary r e s t r a i n i n g an unfavourable e f f e c t on t h e span moments of t h e boundary zones due t o t h e p a r t i a l e x c l u s i o n from t h e c o n t i n u i t y i s compensated f o r .

F r m t h e comparison of skew s l a b s 11 and I11 t h e f o l l o w i n g f a c t a come t o l i g h t : The c o n t i n u i t y e f f e c t t o a neighbouring span b r i n g s l i t t l e improve- ment i n t h e moment d i s t r i b u t i o n of a skew s l a b , s i n c e t h e o b t u s e c o r n e r s

c o n t r i b u t e p r i m a r i l y t o a r e d u c t i o n of t h e span moments. The c o n t i n u i t y e f f e c t i s t o t a l l y a b s e n t f o r t h e boundary zones of t h e o u t s i d e spans which t e r m i n a t e a t t h e s h a r p c o r n e r s ; t h e moments a t t h e edge c e n t r e a r e p r a c t i c a l l y of t h e same magnitude and d i r e c t i o n a s t h o s e of t h e simple span. The span moment o f t h e edge s t r i p o p p o s i t e , however, h a s been d e c r e a s e d . These zones a r e a l s o r e s t r a i n e d a t t h e i r s h a r p c o r n e r s .

Comparison of s l a b s I1 and I11 a l s o shows t h a t t h e d i r e c t i o n of t h e p r i n c i p a l moments i s a l s o changed by t h e a d d i t i o n of s p a n s . A t a m a j o r i t y of p o i n t s i n v e s t i g a t e d t h e a n g l e between t h e p r i n c i p a l b e a r i n g d i r e c t i o n and t h e l o n g i t u d i n a l a x i s of t h e s l a b d e c r e a s e s . The span i n t h e p r i n c i p a l b e a r i n g d i r e c t i o n i s t h u s i n c r e a s e d by t h e c o n t i n u i t y . Reinforcement of t h e c r o s s - s e c t i o n i n t h e d i r e c t i o n of t h e i n t e r m e d i a t e s u p p o r t s (haunch) i n c r e a s e s t h i s e f f e c t ( 2 ) , a s does an i n c r e a s e i n t h e c o e f f i c i e n t of expansion, a s c a l c u l a t e d f o r t h e simple span skew s l a b i n r e f . 9 .

A comparison of t h e b e a r i n g r e a c t i o n s of s l a b s I1 and I11

-

f o r a t o t a l of f i v e columns on each support l i n e

-

shows that t h e c o n t i n u i t y e f f e c t

smooths o u t t h e d i f f e r e n c e s between t h e s e p a r a t e column ~ ~ e a c t i o n s

a able

11). The curve of column r e a c t i o n s f o r I11 i s d i s t i n g u i s h e d by a very h i g h peak v a l u e a t t h e o b t u s e c o r n e r and a s t e e p drop towards t h e neighbouring second column, w h i l e t h e 3 r d , 4 t h and 5 t h columns v a r y about t h e mean v a l u e ~ / 1 0 .

For t h e c o n t i n u o u s s l a b I1 t h e b e a r i n g r e a c t i o n curve i s f l a t t e r , e s p e c i a l l y between t h e s p a n s .

I n t h i s connection n o t e t h a t t h e d i f f e r e n c e s between t h e column r e a c t i o n s depend on t h e p l a n shape o f t h e s l a b , t h e number of columns p e r b e a r i n g

1 i n e ( l o ) and t h e e l a s t i c c o n s t a n t s of t h e columns. I n t h e p r e s e n t I n s t a n c e t h e l a t t e r two parameters were k e p t c o n s t a n t . The model s u p p o r t was v i r t u a l l y r i g i d . With e l a s t i c support t h e colwnn r e a c t i o n s can be more o r l e s s

(7)

p r e s e n t time i n t h e I n s t i t u t e f o r Concrete C o n s t r u c t i o n of t h e Technische Hochschule Darmstadt.

4 .

Comparison of I n f l u e n c e Areas

4 . 1 Loading p o i n t 1 a t t h e c e n t r e of t h e s l a b ( ~ i g . 4 )

The i n f l u e n c e s u r f a c e s confirm what was i n d i c a t e d i n F i g .

3

w i t h r e s p e c t t o b e a r i n g d i r e c t i o n and c o n t i n u i t y e f f e c t of t h e m u l t i p l e span skew s l a b . For example, i f we compare t h e a r e a s enclosed by t h e contour l i n e s 0.05, t h e d i f f e r e n t b e a r i n g e f f e c t becomes c l e a r . I n s l a b s I t h e a r e a s mx and m d i f f e r Y g r e a t l y . m remains s m a l l f o r a l l p o s i t i o n s of t h e l i v e l o a d , 1 . e . l e s s t h a n xy 0.05. On account of t a n 2 a = 2

m d ( m x

-

"Y

,

t h e d i r e c t i o n s of t h e p r i n -

c i p a l moments a t p o i n t 1 a r e l a r g e l y independent of t h e load p o s i t i o n . They c o i n c i d e w i t h t h e d i r e c t i o n of t h e a x i s . Hence t h e measured a x i a l moments a r e a l s o t h e p r i n c i p a l moments. I n I1 t h e a r e a s mx and m a r e approximately

Y

equal; m

xy

'

however, a t t a i n s c o n s i d e r a b l y g r e a t e r v a l u e s t h a n i n I . The main

d i r e c t i o n s , however, do not c o i n c i d e w i t h t h e x and y d i r e c t i o n s . The skew s l a b t e n d s t o t r a n s m i t t h e load a t r i g h t a n g l e s t o t h e s u p p o r t s . I n I11 mx

and m i n t h e r e g i o n of t h e l o a d i n g p o i n t a r e s i m i l a r t o t h o s e i n 11, b u t t h e

Y

t o r s i o n a l moment i s s t i l l g r e a t e r . N e v e r t h e l e s s t h e d i r e c t i o n s of t h e p r i n - c i p a l m o m e n t s of I11 do not depend any more s t r o n g l y on t h e load t h a n t h o s e of 11, because t h e d i f f e r e n c e s mx

-

m have i n c r e a s e d a l o n g w i t h m

Y XY I n t h e

c a s e of 11, f o r example, l i n e a r load a l o n g one of t h e open edges, r e s u l t s i n a change of

l o 0

i n t h e p r i n c i p a l moment d i r e c t i o n s a t p o i n t 1, b u t o n l y of 5 O

i n t h e c a s e of s l a b 111. It i s found, however, t h a t t h e d i r e c t i o n s of t h e p r i n c i p a l moments of t h e skew s l a b , e s p e c i a l l y a l o n g t h e open edge, depend more on t h e load t h a n do t h o s e of t h e s t r a i g h t s l a b .

The d i f f e r e n c e s i n c o n t i n u i t y e f f e c t a r e expressed most c l e a r l y i n t h e zones of i n f l u e n c e , f o r which t h e s i g n s a r e r e v e r s e d . S l a b I (mx f o r 1)

p o s s e s s e s marked n e g a t i v e c o l l e c t i n g zones which, a s i n t h e c a s e of t h e con- t i n u o u s beam, extend over t h e e n t i r e a r e a of t h e neighbouring s p a n s . I n t h e c a s e o f s l a b I1 we f i n d t h e corresponding spans d i v i d e d by l i n e s of equal

( z e r o ) l o a d . Only t h e zones a l o n g t h e e x t e n s i o n s of t h e normals from t h e l o a d i n g p o i n t t o t h e row of columns make any a p p r e c i a b l e n e g a t i v e moment

c o n t r i b u t i o n . These zones, however, a r e much s m a l l e r t h a n f o r I . V a r i a t i o n s of load from span t o span, a s may be expected from beam s t a t i c s , d e c r e a s e i n importance f o r continuous s l a b s of l a r g e skew a n g l e . I f we determine t h e p r i n c i p a l moments r e s u l t i n g from t h e uniform l o a d i n g of t h e o u t s i d e spans a l o n e , o r t h e i n s i d e span a l o n e , and r e l a t e them t o t h e p r i n c i p a l moments f o r f u l l l o a d i n g , we f i n d

(8)

f o r I 1 -1.8/1 (end spans l o a d e d / f u l l l o a d ) +2.8/1 ( i n s i d e apan l o a d e d / f u l l l o a d ) f o r I1 1 -0.9/1 (end spans l o a d e d / f u l l l o a d )

+ l . g / l ( i n s i d e span l o a d e d / f u l l l o a d ) . 4.2 Loading p o i n t 2, edge c e n t r e , i n s i d e span ( ~ i g .

5 )

Here a t f i r s t we a r e s t r u c k by t h e b e t t e r load d i s t r i b u t i o n o v e r t h e width of s l a b I . A u n i t load on t h e c e n t r e of t h e s l a b ( l o a d i n g p o i n t 1)

produces p r i n c i p a l moments a t t h e edge of t h e o r d e r m , = +0.14 and

m , = f 0.00 m/m. S l a b 11, under t h e same c o n d i t i o n s , g e t s o n l y m , = 0.02,

m , = -0.01 tm/m. D e s p i t e t h e g r e a t width p a r t i c i p a t i n g i n t h e l o a d , however, t h e loading-point moments a r e g r e a t e r f o r I . The r e s t r a i n t of t h e edge s t r i p a t t h e o b t u s e c o r n e r (11, 111) exceeds t h e r e s t r a i n t on both s i d e s due t o c o n t i n u i t y ( I ) . Consequently t h e p o s i t i v e moment under a s i n g l e load becomes s m a l l e r f o r t h e skew s l a b t h a n f o r t h e s t r a i g h t o n e . The c o n t i n u i t y e f f e c t f o r t h e boundary zones i s a l s o found t o be small f o r t h e c a s e of s l a b 11.

Again t h e c o l l e c t i n g r e g i o n i s s i t u a t e d e s s e n t i a l l y on t h e e x t e n s i o n s t o t h e support normals. The r a t i o of p r i n c i p a l moments a t p o i n t 2 ( g i v e n s e p a r a t e l y f o r end-span and centre-span l o a d i n g ) t o f u l l load moment i s a s f o l l o w s f o r t h e two s l a b s :

f o r I 2 -2.5/1 (end spans l o a d e d / f u l l l o a d ) +3.4/1 ( i n s i d e span l o a d e d / f u l l l o a d ) f o r I1 2

-1.5/1

(end spans l o a d e d / f u l l l o a d )

+2.3/l ( l n s i d e span l o a d e d / f u l l l o a d ) . Space p o i n t s

3

and

4,

i n t e r m e d i a t e columns ( ~ i g .

6

and

7 )

The b e a r i n g d i r e c t i o n s of t h e s l a b s a r e a g a i n e v i d e n t from t h e l i n e s of c o n t o u r f o r p o i n t 3. The c e n t r e s of g r a v i t y of t h e moment p a t t e r n s a r e d i s -

placed i n t h e skew s l a b s away from t h e normal d i r e c t i o n t o t h e s u p p o r t s , f o r

mx towards t h e x a x i s , f o r m towards t h e y a x i s and f o r m towards t h e 45*

Y XY

a x e s . The moment p a t t e r n s of I1 a r e even s m a l l e r t h a n t h o s e of I . The con- t i n u i t y t o t h e end span i s of no importance f o r p o i n t 3 . However, s i n c e t h e deformations of t h e end span can a c t on t h e end column p o i n t 4 a t r i g h t a n g l e s t o t h e l i n e of s u p p o r t , t h e r e i s a p o s i t i v e moment p a t t e r n (mx and m of 11).

Y

The shape of t h e z e r o l i n e s i n t h e b e a r i n g d i r e c t i o n which d i v i d e t h e i n d i v i d - u a l spans of t h e skew s l a b i n t o p o s i t i v e and n e g a t i v e zones i s a g a i n s t r i k i n g . The f a c t t h a t no i n d i v i d u a l columns a r e s i t u a t e d on t h e z e r o l i n e s of t h e a r e a s of i n f l u e n c e i s due t o t h e e l a s t i c i t y of t h e columns.

(9)

5 . Conclusions and R e s e r v a t i o n s

The t e s t s have shown t h a t t h e c o n t i n u i t y e f f e c t h a s l e s s e f f e c t on t h e d i s t r i b u t i o n of moments i n skew s l a b s than i n s t r a i g h t o n e s . The m u l t i p l e span skew s l a b b e a r s a c l o s e r resemblance, a s f a r a s i t s s t r u c t u r a l behaviour i s concerned, t o t h e simple span skew s l a b t h a n t o t h e continuous s t r a i g h t s l a b . The main moment-resisting d i r e c t i o n of t h e skew s l a b , a s known from t h e simple span s l a b , namely a t r i g h t a n g l e s t o t h e s u p p o r t l i n e s o r , i n t h e c a s e of s l a b s comparatively elongated i n t h e x - d i r e c t i o n , t r a n s v e r s e t o t h e l i n e j o i n i n g t h e o b t u s e c o r n e r s , i s l a r g e l y r e t a i n e d i n t h e continuous s l a b .

The g e n e r a l a p p l i c a b i l i t y of t h e o b s e r v a t i o n s and c o n c l u s i o n s can be e s t a b l i s h e d o n l y by f u r t h e r t e s t s . (some of t h e o b s e r v a t i o n s a g r e e w i t h t h e r e s u l t s d e s c r i b e d i n r e f . 2 and

3.)

The r e s u l t s do n o t s u f f i c e f o r t h e d e v i a t i o n of conversion f a c t o r s f o r t h e p r i n c i p a l moments. It i s c l e a r , however, t h a t t h e moments o f continuous skew s l a b s cannot be determined i n advance by a p p l y i n g t h e conversion f a c t o r s f o r simple bay r e c t a n g u l a r t o skew s l a b s . Such a c a l c u l a t i o n would r e s u l t i n o v e r - e s t i m a t i o n of t h e con- t i n u i t y e f f e c t and t o over-dimensioning e s p e c i a l l y a l o n g t h e i n t e r m e d i a t e s u p p o r t s

.

6 .

Models and Model Procedures

A l l t h r e e s l a b s were prepared from 5 rnm c r y s t a l l i n e p l a t e g l a s s . T h i s m a t e r i a l , because of i t s high e l a s t i c i t y and low t r a n s v e r s e c o e f f i c i e n t of expansion ( 0 . 2 2 ) , i s p a r t i c u l a r l y w e l l s u i t e d f o r t h e model t e s t i n g o f r e i n - f o r c e d c o n c r e t e s l a b s . The s c a l e was 1 : 50, making t h e l e n g t h of t h e simple span 32 cm and t h e width 28 cm. The models were mounted on socketed s u p p o r t s

I n each c a s e one r i g i d and one hinge-type s u p p o r t a s s u r e d t h e s t a b i l i t y of t h e s t r u c t u r e . Aluminium p l a t e s

6

rnm wide and 2 mrn t h i c k between t h e s l a b and t h e b a l l - b e a r i n g mounted hinge a s s u r e d adequate load d i s t r i b u t i o n without a p p r e c i a b l y s t i f f e n i n g t h e s l a b . A p r e l i m i n a r y load of about 70 kg p r e s s e d t h e model o n t o i t s s u p p o r t ( ~ i g .

8 ) .

The i n s t r u m e n t s used f o r measuring t h e bending and t o r s i o n a l moments, based on t h e p r i n c i p l e of mechanical c u r v a t u r e t r a n s m i s s i o n through c r o s s b r i d g e s , have a l r e a d y been d e s c r i b e d i n d e t a i l ( 1 3 ) . The t e s t base was 30 nun

f o r t h e bending and 40 mm f o r t h e t o r s i o n a l moments. The pick-up o p e r a t e d i n d u c t i v e l y . The moments were obtained i n t h e form of i n f l u e n c e s u r f a c e , and t h e s u r f a c e s of s t a t e ( ~ i g . 3 ) were determined s u b s e q u e n t l y by i n t e g r a t i o n

( ~ i m p s o n ~ s r u l e , modified f o r unequal s t e p w i d t h s ) . I n r e c o r d i n g t h e span moments a s u i t a b l e a p p a r a t u s p r e s s e d t h e measuring i n s t r u m e n t from below a g a i n s t t h e s l a b , and s i m i l a r l y f o r t h e r e c o r d i n g of t h e t o r s i o n a l moment

(10)

over t h e s ~ l p y o i ~ t . I n t h c 1nt;tci7 c a s e t h e Instrument p i e r c e d t h e support a t t h e c e t l t r c ( F i g . 9 ) . T h i s solut.lon was n o t p o s s i b l e f o r t h e bending moment instrument because of t h e c e n t r e f o o t . The support i n q u e s t i o n t h u s had t o be forked (prongs 1 cm a p a r t ) , 30 t h a t i t supported t h e s l a b a t two neigh-

bouring p o i n t s . Owing t o t h i s d i s a d v a n t a g e t h e i n f l u e n c e a r e a s of t h e support moments were recorded w i t h t h e inotrument on t o p and t h e l o a d i n g p o i n t zone of about 4 x

6

cm was superimposed a f t e r w a r d s w i t h t h e i n s t r u m e n t underneath.

F i n a l l y , we s h a l l a l s o d e s c r i b e a semi-automatic scanning i n s t r u m e n t which q u i c k l y r e c o r d s and reduces c o n t o u r l i n e p l a n s ( ~ i g . 1 0 ) . T h i s com- p r i s e s a system of r o d s s i m i l a r t o t h e c a r t o g r a p h e r l s pantograph w i t h a

w r i t i n g magnet a t one end and a f r e e l y d i s p l a c e a b l e moving load a t t h e o t h e r . During t h e scanning t h e l o a d i n g r o l l r o t a t e s about i t s v e r t i c a l a x i s , but can b e stopped i f d e s i r e d and removed by r e v e r s i n g t h e e l e c t r i c motor. When t h e load i s removed ( P = 0 ) t h e d e f l e c t i o n of t h e g i v e n contour l i n e i s shown on t h e i n d i c a t o r w i t h s i g n r e v e r s e d . When loaded ( P = 1) t h e p o i n t e r o s c i l l a t e s about z e r o a s soon a s t h e load h a s reached t h e d e s i r e d l i n e . The o b s e r v e r

s i t s a t t h e desk w i t h t h e reduced p l a n p r o j e c t i o n o f t h e model i n f r o n t of him and a t t e m p t s t o f o l l o w l i n e s of c o n s t a n t p o i n t e r p o s i t i o n ( l i n e s of con- t o u r o f t h e p l a n e s of i n f l u e n c e ) . I n doing s o he does n o t have t o watch t h e p o i n t e r , because a s p e c i a l z e r o p o i n t s w i t c h and a supplementary a m p l i f i e r which c l o s e s a c i r c u i t whenever t h e p o i n t e r i s a t z e r o p e r m i t s t h e magnet t o w r i t e o n l y when t h e c o n t o u r l i n e i s c r o o s e d . The a l r e a d y smoothed image of t h e c o n t o u r l i n e t h u s a p p e a r s on t h e p l a n a s a d o t t e d l i n e . A low-pass f i l t e r p r e v e n t s t h e o s c i l l a t i o n s of t h e system from i n t e r f e r i n g w i t h t h e p r e s s u r e p r o c e s s d u r i n g t h e scanning.

References

111 S e h ~ i l x . E . : Spmnnbelr,mbriirkc ilber dl. Eiaenbmhn i m 7.~6. drr Rundrm.trnO. 4 l s r i Uarlleohsittrl. Ilntnterlrnik 1955. 11e11 3. S. 7 3 .

( 2 ) Sehm.rl,er. I,.. nraodca. G . . Sclaembrek. 11.: A u d ( L h r u n 8 m r h i ~ : l w i n k l i ~ e r k n m t i n n i r r - l i c h r r 1'l.ttrnl~rilcksn. n a u i n g r n i e u r 1 9 i l l . H r l i 5. 5. 1711.

1 1 1 V o ~ t . 11.: Dar ~ t a t i n e h s B r h a n d l u a p von n r h i r l r m I ' l a t t r n h r l i r k r a t i h r m e h r v r r 1:a:ldrr. 11. 1 8 . St. 1958. H e l l 8. 9. 209.

1.11 Andra. W.. L r o n h n r d t . F.. K r i q r r . R.: V r r e i n l n e h t r r V r r l s h r r n rur M c m u n g -,on MomenlenlluOll.rhca h r i I ' l a t t r n . Ha~rinertnnrur 19Sfl. l l r l i 11. S. 407.

151 I l c i n i * r h , K . : F : i n l l u O l l i r h r n l o r cine a ~ h i r l w i n k l i ~ r . g e k r h m l e D r ~ i l r l d ~ l m l t r m i l vcrdnslcrlichrr I l a t l r n d i c k r . 0. u. St. 10611, l l e l t 3. S . 58.

161 Schmniz. 11.: Kon.irtaktisn und Avzrlill~rung d r r Autnhsl~nbrliekr. b r i \\rmtholcmn. R.ainpmirllr 1961. l l r l l 111. S. 3 6 5 .

1,') l l o ~ n l ~ c r g , 11.. Mar'. W. TI.: S r l > i r l r S l l h r u u r l P l a t t m . P r r n r r - V r r l a y 1.rnbll. UU.""l,l".f I l S f l .

[RI I l ~ , m b ~ r g . 11.. Ma-. U . n.: H m u p l m o r n r u t . u n d deren U i r h t u a g e n e i n r r 111.. s r l u r l - u YImttr i t n V c r p l ~ i r h m i l d c n r n c i n r r q u a d r a l i r r l ~ e n I ' l a t l r . n. 8 , . St. 19x8. ll r l t 2. 5. 1.1.

(91 nnlna. J . . Ilsn!alkm, A , : Drr F:n#tlluO rlrr Q ~ n r r t l r h a ~ r n p r a h l .\#I r l c . ~ ~ 9 1 , a n n u n p ~ - 7,~umtand e i m r 15- a c l t i e l ~ n l ' l m t t ~ , L l a ~ f i i ~ ~ ~ e n i ~ ~ ~ r 1'461. l l e f l 3 , l<ItB.

[ l o ] Andre, UJ.. I,.~nllnr,lt. Y.: R l n l l w l l dcs I,nrrr.b.t.ndr. a u l I l b r ~ r n m l , m r n t r vnrl AIII. I ~ ~ c r k r a l t c m r l ~ i r l v i n k l i ~ c r b i n l s l d p l o l ~ m . I t . u. St. l'lhtl, H r l t 7. S. 151.

111) Unniel. I[., I \ i c l ~ t ? r , U'.: M ~ ~ l ~ l l v ~ c ~ ~ ~ ~ l ~ ~ m i l ~ l m ~ l t w h g e l q e r l e m w l t < c l e n I 1 l a t t ? n . U m u i n p r ~ ~ i c ~ u r 105'1. l l r l t 10. 5. I l l b .

(1.71 l l n ~ n l ~ ~ r ~ . 11.. J i i r k l r . 11.. hlarx, U'. n . . l i n l l u f l clcr cla.lisrltrn I.ngrrunl mul Dirge. mnrnrol, ~ l n d h n l l l ~ l ( r r h r r ~ l t r .r l ~ ~ ? l v ~ n k l i p r r I:.inlrl~ll,l.tttrn 13mllingmlr8rr I q b l . I l ? I l I, s. l<l,

1131 \Vri#ler. If.. U'rirr. I f . : Y n ~ l ~ ~ l l . t a t i ~ e l ~ r ~ V e r l n h r r n zur Atalmnhnnr ,,,n E i n l l u O - II~<.I,F~ v,Dm ~*IUIIF,,. n. ,,. 51. I ~ I ~ V , ~I~.II 5 , s. 1z.1.

(11)

Table

I

P r i n c i p a l moments under uniform load l/p12

Angle

a

between m, and i n t e r s e c t i o n of

x

and

y

axes, load

transmission according t o Fig. 3.

Slab

I:

Continuous rectangular s l a b over 3 equal spans,

l/b =

1/0.875#

p =

0.22.

Slab

11:

Continuous s l a b skewed 37.8' over

3

equal spans,

l/b =

1/0.875,

=

0.22.

I11

(

IV

Simple span

Slab

111:

Simple span s l a b skewed 37.8",

l/b =

1/0.875,

p =

0.22.

1 I

Outside

span

+0.072

+0.008

0"

+0.069

+0.008

l o

-0.005

-0.021

24.6"

s l a b s

+O .045

-0 -008

39.3"

+0.051

+0.001

21.5'

+0.003

-0.024

15.2'

4 . 0 2 7

-0.075

38.5"

I

Inside

span

Slab

IV:

Square s l a b

f r m Ref.

7,

l/b = 1/1, y =

0.31.

I n s i d e

span

+0.019

+0.001

43'

+0.014

+0.001

2.5'

-0.034

-0.055

39.6"

-0.037

-0.059

15.4'

+O

.I22

+O ,028

0"

+ 0 . 1 3

+0.003

0"

Centre of span

m, (1) in, a

Edge centre

m,

(2

m, a

Centre column

m ,

(3)

m 2 a

End column

m ,

( 4 )

m, a

+0.026

+0.004

0"

+0.021

+0.006

0

O

-0.034

-0.104

o

O

-0.035

-0.111

1 "

L I Out

s i d e

span

+0.032

-0.003

42.5"

+0.023

+0.008

3.2"

+0.050

+0.000

24.6"

t

Contin. o v e r t

obtuse

sharp

1

corner

1

-0.014

-0.043

38.2'

-0.054

-0.087

10.8"

(12)

Table I1

Support r e a c t i o n s under uniform load ( r e l a t i v e v a l u e s )

The v a l u e s g i v e n a r e t o be m u l t i p l i e d by t h e t o t a l load of a span, i n c l u d i n g edge overhang.

S l a b 11: Continuous s l a b skewed 37.8', w i t h

3

e q u a l spans, l/b = 1/0.875, p, = 0.22. I11 0 .219 0 .007 0.110 0.088 0.076 0.500

S l a b 111: Simple span s l a b skewed 37.8O, l/b = 1/0.875,

p, = 0 . 2 2 . Column I F i g . 1 L o n g i t u d i n a l s e c t i o n through t h e Messerich b r i d g e , E i f e l I1 Outside span g f j j & c 6 - c & 0

2"

rl Q) Q m

B B

O D U 0 I n s i d e row 0 .296 0.144 0.216 0.186 0.198 1. 2 .

3.

4.

5 . 2 Outside row 0.142 0.054 0.112 0.083 0.069 1.500

(13)

Fig. 2

(a) Cross-section of superstructure (section parallel to the line of columns, viewed from the direction

parallel to the bridge axis)

(b) Model cross-section (section parallel to the line

of supports, viewed from the direction parallel to the bridge axis)

(14)
(15)

n, fir t

my fui. r

mr# fur f

Fig.

4

Influence surfaces of the moments at point 1 (centre of slab):

x and y axes parallel to

and normal to longitudinal slab axis respectively

Influence surfaces of the moments

at point 2 (edge centre, lnalde

span): x and y axes parallel

to and normal to longitudinal slab axis respectively

(16)

m,, ld- 3

Fig.

6

Influence surfaces of the moments at point

3

(centre column):

x and y axes parallel to

and normal to longitudinal slab axis respectively

Influence surfaces of the moments at point 4 (boundary column):

x and y axes parallel to

and normal to longitudinal slab axis respectively

(17)

Fig.

3

(18)

Apparatus f o r measuring t o r s i o n a l m o m e n t s , s e t up t o determine t h e i n f l u e n c e s u r f a c e s of a

column m o m e n t m

XY

F i g . 10

Scanning a p p a r a t u s f o r r e c o r d i n g and reducing l i n e s of contour ( i n f l u e n c e s u r f a c e s )

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including