• Aucun résultat trouvé

Mechanical Conditions of Snow Erosion

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanical Conditions of Snow Erosion"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1963

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331394

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Mechanical Conditions of Snow Erosion

Dyunin, A. K.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=d2bf7052-bcc2-4475-b4ab-64bf6030bd63 https://publications-cnrc.canada.ca/fra/voir/objet/?id=d2bf7052-bcc2-4475-b4ab-64bf6030bd63

(2)

PREFACE

S n o w d r i f t s can be a major s o u r c e of d i s r u p t i o n i n t h e o p e r a t i o n o f t r a n s p o r t a t i o n s e r v i c e s and a genera 1 n u i s a n c e i n t h e norma 1 w i n t e r t i m e a c t i v i t y of a col~imunity. Such d r i f t s a r e formed whenever a wind, s t r o n g enough t o t r a n s p o r t h o r i z o n t a l l y a s i g n i f i c a n t amount of snow, e n c o u n t e r s a n o b s t a c l e which f o r c e s i t t o d e p o s i t some of t h i s snow. The u s u a l a p p r o a c h t a k e n i n d e f e n d i n g a n a r e a o r s t r u c - t u r e a g a i n s t s n o w d r i f t i n g h a s becn t o l o c a t e t h e s t r u c t u r e p r o p e r l y s o t h a t t h e d r i f t problem w i l l be a n~inirnun and t o e r e c t o b s t a c l e s , s u c h a s snow f e n c e s , t o c o n t r o l where t h e snow w i l l be d e p o s i t e d . The approach t a k e n I n t h e d c v e l o p n ~ e n t o f t h e s e d e f e n c e s h a s been

l a r g e l y e m p i r i c a l . A t t e n t i o n h a s been d i r e c t e d p r l m a r i l y t o t h e c h a r a c t e r o f t h e

air

f l o w w i t h l i t . t l e a t t e n t l o n b e i n g g i v e n t o t h e m a t e r i a l t r a n s p o r t e d . I n some cir~cutr:stances, i t would b e a n advan- t a g e t o have a more complete d e f e n c e a g a i n s t s n o w d r i f t i n g t h a n i s now a v a i l a b l e . In t h e i r a t t e m p t s t o d e v e l o p t h i s d e f e n c e , e n g i n e e r s a r e g i v i n g more c o n s i d e r a t i o n t o t h e t h e o r e t i c a l a s p e c t s o f t h e problem and i n p a r t i c u l a r t o t h e r e l a t i o n s h i p s between t h e a i r f l o w and t h e snow b e i n g t r a n s p o r t e d .

It i s one o f t h e r e s p o n s i b i l i t i e s g f t h e Snow and I c e S e c t i o n of t h e D i v i s i o n of B u l l d i n g Research t o c o l l e c t and niake a v a i l a b l e i n f o r m a t i o n r e q u i r e d f o r t h e s o l u t i o n of' snow and i c e problems. The p r e s e n t p a p e r , t r a n s l a t e d from t h e R u s s l a n , i s a c o n t r i b u t i o n t o t h e Lheory of s n o t : d r i f t i n g . T h i s p a p e r w i l l g i v e t o t h e r e a d e r a n

a p p r e c i a t i o n of some of t h e f a c t o r s t o be c o n s i d e r e d i n t h e t h e o r e t - i c a l d e s c r i p t i o n o f blowing snow and I t s d e p o s i t i o n a s s n o w d r i f t s .

The p a p e r was t r a n s l a t e d by M r . D . A . S i n c l a i r o f t h e T r a n s l a t i o n s S e c t i o n of t h e N a t i o n a l Research Councll L i b r a r y , t o whom t h e D i v i s i o n of B u i l d i n g Research wishes t o r e c o r d i t s t h a n k s .

Ottawa

November

1963

R.F. Legget

(3)

NATIONAL RESEARCH COUNCIL OF CANADA Technical Translation 1101

Title : The mechanical conditions of snow erosion

(0 mekhanicheskikh ueloviiakh erozii snega)

Author: A.K. Dyunin

Reference: Trudy

Transportno-Energeticheskogo

Instltuta,

(4):

59-69, 1954

(4)

TIU PIUCIIAN I C A L CONDITIONS OF

SNOW

EROSION

Surnrnary

Formulae a r e developed f o r t h e c r i t i c a l wind speed f o r t h e s t a r t of snow e r o s i o n , u s i n g t h e t h e o r y o f dimensions.

One o f t h e most i m p o r t a n t q u e s t i o n s i n t h e t h e o r y o f snow d e p o s i t s i s t h e e x p l a n a t i o n o f t h e c o n d i t i o n s u n d e r l y i n g t h e s t a r t o f snow e r o s i o n . We e x p l a i n t h e s e c o n d i t i o n s u s i n g t h e methods of t h e t h e o r y o f dimensions. Let us c o n s t r u c t t h e d i f f e r e n t i a l e q u a t i o n f o r t h e motion o f a p a r t i c l e i n a l i q u i d , c o n s i d e r i n g t h e p a r t i c l e a s a m a t e r i a l p o i n t : where m

-

mass of t h e p a r t i c l e ; v

-

s c a l a r v a l u e o f i t s speed; f

-

f o r c e e x e r t e d on t h e p a r t i c l e by t h e l i q u i d ; R

-

r a d i u s o f c u r v a t u r e of t h e p a r t i c l e motion; T

-

u n i t v e c t o r s of t a n g e n t and normal f o r c e ; b

-

u n i t v e r t i c a l v e c t o r ; i

-

a r b i t r a r y u n i t v e c t o r ; g

-

a c c e l e r a t i o n due t o g r a v i t y ; p

-

mass d e n s i t y o f l i q u i d ; A

-

mass d e n s i t y o f p a r t i c l e s . C o n v e r t i n g t o t h e non-dimensional form ( r e f .

4,

e q u a t i o n l ) , we o b t a i n :

where 1

-

a g i v e n l i n e a r dimension o f t h e flow; d

-

l i n e a r dimension of t h e p a r t i c l e . D i v i d i n g t h e two s i d e s o f t h e e q u a t i o n by d 3 A g ( l

-

f),

we o b t a i n i n t h e r i g h t - h a n d p a r t o f t h e non-dimensional conibination: where t h e f o r c e f

i s

an unknown q u a n t i t y . F o r a p r e l i n ~ l n a r y e s t i m a t e o f t h e v a l u e f we make u s e o f

N.E.

( 3

1

Z h u k o v s k i i l s t h e o r y o f e l l i p t i c a l v o r t i c e s

.

C o n s i d e r i n g t h e p a r t o f t h e flow n e a r t h e ground, N.E. Zhulcovskii assumed t h e e x i s t e n c e i n t h i s s e c t i o n of e l l i p t i c a l v o r t i c e s p l a y i n g a

(5)

p r ' i n c i p a l r o l e i n t h e p ~ ~ o c c s s o f creation of t h c t u r b u l e n t p u l s a t i o n s r e s u l t - i n g i n t h e suspension of t h t : g r a n u l a r n i a t c l > i a l s . T h i s was confirmed I n t h e l a t e r cxperirr~erlts o f G . D z h i l l b e r t , L. P r a n d t l and o t h e r s ( r e f . 2, page

18).

O n t h e b a s i s of t h c s e expcrlnicnts t h e p a t t e r n of t h l s proctfss. is r e p r e s e n t e d

i n t h e followinp; form ( s e e F i g . I ) * .

An e l l i p t i c a l v o r t e x A i s forrr~ed i n t h e p a r t of' t h e t u r b u l e n t flow n e a r t h e ground and suclts i n p a r t l c l c s s i t u a t e d a l o n g t h e s u r f a c e 1

-

1. These v o r t e x f o r ~ ~ l a t i o n s a r e u n s t a b l e . They forni, i n c r e a s e i n s i z e and d i s i n t e g r a t e g i v i n g p l a c e t o new o n e s .

On disintegration t h e ground ("bottorn") v o r t i c e s e j e c t a mass of l i q u i d M s a t u r a t e d w i t h p a r t i c l e s from t h e i r hind p a r t .

In I t s g e n e r a l f o r n ~ t h e Slow f u n c t i o n o f t h e e l l i p t i c a l v o r t e x f i e l d , a c c o r d i n g t o V.N. Goncharov ( r e f . 2 , page 2 0 ) , i s :

where a , b

-

maximum semiaxes of t h e v o r t e x c o r e ( ~ l g . 1 ) ;

v,

-

v e l o c i t y a t t h e p o i n t B.

n

-

a f a c t o r which a c c o r d i n g t o N.E. Zhukovskil i s e q u a l t o one and a c c o r d i n g t o V.N. Goncharov e q u a l t o two.

We d e t e r m i n e t h e p r e s s u r e of t h e i n t e r n a l c o n t o u r

AIBAB1

due t o t h e s u c t i o n of p a r t i c l e s e n t e r i n g t h e zone of i n f l u e n c e of t h e v o r t e x .

Let u s t a k e t h e Navier-Stokes e q u a t i o n :

where i , k

-

1 , 2 , 3

...

a r e i n d i c e s o v e r which sunmations a r e c a r r i e d o u t ; Sl

-

co~nponents of t h e e x t e r n a l f o r c e s ; p

-

mass d e n s i t y of l i q u i d ; P

-

p r e s s u r e ; % i k

-

v i s c o u s s t r e s s t e n s o r . F o r t h e s a k e of s i n l p l i c i t y we assume t h a t i n t h e g i v e n i n t e r v a l of time 0

-

t t h e f i e l d i s s t a t i o n a r y . For t h e two-dln!ensional s t a t i o n a r y v o r t e x e q u a t i o n

( 5 )

h a s t h e form: where v

-

k i n e m a t i c c o e f f i c i e n t o f v i 6 ~ 0 S i t : r .

*

T h i s schernc must be regarded a s o n l y a n approximate n ~ e c h a n i c a l model. A

n o r e a c c u r a t e r e p r e s e n t a t i o n of t h c p r o c e s s i s g i v e n by t h e methods of s t a t i s t i c a l p h y s i c s .

(6)

According t o e q u a t i o n ( 1 1 ) we have: d ~ k

4

vx = - - = - - v 3 - - dx, an @ Ivx -n (n - I ) x,"-

'

s,; d" S u b s t i t u t i n g t h e s e e x p r e s s i o n s i n ( 6 ) , m u l t i p l y i n g t h e f i r s t e q u a t i o n ( 6 ) by d x , , and t h e second e q u a t i o n

( 6 )

by dx, and combining then] we g e t :

1 n (n- 1) x:-' sn (n

-

1) xy -

'

- -

d P + v V ,

[-dh-

d x , - --

P ',n

+

I

A f t e r i n t e g r a t i o n w e have:

A t t h e p o i n t A ( a , 0 ) ( ~ i g . 1) l e t t h e p r e s s u r e be P o . The p r e s s u r e d i f f e r e n c e ( s u c t i o n ) w i t h i n t h e contour ABA'B i s then w r i t t e n :

Hence t h e s u c t i o n i s equal t o t h e sum of t h r e e terms, one of which

depends on t h e square of t h e forward v e l o c i t y , t h e second i s proportioned t o t h e same v e l o c i t y and t h e t h i r d ( p i e z o m e t r i c term) i s n o t dependent on t h e v e l o c i t y .

The r e s u l t obtained s e r v e s a s a b a s i s f o r t h e adoption of t h e f o l l o w i n g working h y p o t h e s i s :

Force f

i n

e x p r e s s i o n

( 3 )

i s e q u a l t o t h e sum of t h r e e terms, one of which i s p r o p o r t i o n a l t o t h e square of t h e forward v e l o c i t y of t h e flow n e a r t h e around, t h e second d i r e c t l y p r o p o r t i o n a l t o t h e same v e l o c i t y and t h e t h i r d i s independent of t h e v e l o c i t y .

(7)

The b a s i c f a c t o r s ir1S7uer1cin~; t h c val-uc-1 o f f' a r e ( t h e dimensional

forrnulae a r e shown i n t h e squarbc b r a c k e t s : P

-

f o r c e , L - l e n g t h , T - t i r n e ) : Mass d e n s i t y of l i q u i d p [ ~ ~ - 4 ~ 2 ]

V i s c o s i t y of l i q u i d ~ [ F I , - ~ T ]

Plean forlward v e l o c i t y o f flow V[LT-

'

]

A c c e l e r a t i o n due t o g r a v i t y i n t h e l i q u i d ~ [ L T - ~ ] S i z e o f p a r t i c l e d [ L ] According t o t h e t h e o r y of dirnenslons: where a ,

-

non-dimensional c o n s t a n c e . We now c o n s t r u c t t h e dirr~ensiona 1 e q u a t l o n : 4 7'

L

1'

L

T-ZJZILFL-~T]' ( [ F ) ' = [ F L -

I t [

1

[ * LT-IJZI z , +r,= 1 -.It, + % 2 + ~ a - 2 Z ~ + ~ g = 0 whence : Hence : 1

Assuming z , =

H ( 3

-

I ) and z , = 2

-

1, w e o b t a i n t h e f i r s t t h r e e terms of t h e sum i n f u l l c o n f o r m i t y w i t h t h e working h y p o t h e s i s formulated above:

S u b s t i t u t i n g

( 7 )

I n

( 3 ) ,

we have:

K,

O r , a f t e r introduction o f t h e c o n s t a n t s K , =

0

Let v ' b e t h e mean v e l o c i t y f o r t h e l a y e r of t h e flow a t a h e i g h t e q u a l t o u n i t y (1

m).

Taking t h e d i s t r i b u t i o n of v e l o c i t i e s n e a r t h e ground

(8)

( 6 ) .

a c c o r d i n g t o S.A. Sapozhnlkov

.

where vy

-

wind speed a t t h e h e i g h t y v,

-

wind speed a t a h e i & t of 1 m

6

-

l i n e a r c h a r a c t e r i s t i c o f roughness.

We d e t e r m i n e t h e niean v e l o c i t y i n t h e l a y e r from 0 t o y:

Because of t h e sniall v a l u e of 6, y 1" y

-

6 . The r e f o r e :

( e

-

b a s i c N a p i e r l o g a r i t h m ( e = 2.718 . . . ) ) .

Employing formula ( 1 0 ) we determine, a f t e r a simple t r a n s f o r m a t i o n , Vl mean9 e x p r e s s i n g t h i s value i n terms o f v, and vy:

The i n i t i a l p e r i o d of motion o f heavy m a c r o p a r t i c l e s i n l i q u i d o r gaseous medium i s c h a r a c t e r i z e d by t h r e e v e l o c i t i e s :

( 1 ) v t

-

c r i t i c a l o r "non-moving" v e l o c i t y a t which complete absence o f p a r t i c l e motion

i s

a s s u r e d ;

( 2 ) v"

-

t h r e s h o l d v e l o c i t y , 1 . e . v e l o c i t y a t which s e p a r a t e p a r t i c l e s b e g i n t o b r e a k away from t h e s u r f a c e and t o be d i s p l a c e d ;

( 3 )

v"'

-

upper c r i t i c a l v e l o c i t y , 1 . e . v e l o c i t y a t which mass motion of p a r t i c l e s b e g i n s .

For t h e c a s e of sand i n w a t e r ("sand

+

w a t e r " ) t h e f o l l o w i n g r e l a t i o n s between t h e s e v e l o c i t i e s have been e s t a b l i s h e d ( r e f .

7,

page

443):

If

K,,

Po

and f3, have been determined from t h e c o n d i t i o n s o f non-motion o f s u r f a c e p a r t i c l e s , t h e n i n formula

( 8 )

we s h a l l have v = v l .

Let u s assume t h a t t h e p a r a m e t e r s

K,,

Po and f3, determined i n t h i s

manner a r e c o n s t a n t , i n d e p e n d e n t l y o f t h e c h a r a c t e r o f t h e medium i n which t h e p a r t i c l e s a r e moving. To v e r i f y t h i s s u p p o s i t i o n we may t a k e two v e r y

(9)

d i f f e r e n t media s u c h a3 w a t c r and a l r .

We ert~ploycd t h e c x i s t i n g experillrental v a l u e v ' f o r - t h e c a o c o f "sand

+

w a t e r " . C a l c u l a t i o n o showed t h a t t h c f o l l o w i n g riurner.lcal v a l u e s for. t h e p a r a ~ i l e t e r s of fornrllula

( 8 )

corr.c:.sponded c l o s e l y t o t h i s v a l u e : The l i n e a r c h a r a c t e r i s t i c of t h e r o u g h n e s s 6 was c a l c u l a t e d a c c o r d i n g t o V . N . G o n c h a r o v f s d a t a ( r e f . 2, p a g e s

46-48)

f o r t h e v e l o c i t y d i s t r i b u t i o n i n d e p t h a s i n d i c a t e d i n F i g . 2 . On t h e a v e r a g e l o g 6 =

-11.75"

( b r o k e n l i n e i n F i g . 2 ) . F o r sand w e have t a k e n A = 276

-

l o 3

e.

F o r w a t e r a t a t e m p e r a t u r e

.

.., A .

1 5 " C ,

p = 102 l 0 3 s c c 2

,

v = 1. 114

-

rn2/sec. A c c e l e r a t i o n due t o n14 g r a v i t y g =

9 . 8

nJsec2. I n F i g .

3

we g i v e t h e c u r v e v,,

,

= f ( d ) , c o n s t r u c t e d a c c o r l d i n g t o forniulae

( 8 )

and ( 1 2 ) . T h i s f i g u r e r e v e a l s t h e meaning o f t h e c r i t i c a l

v e l o c i t y d e t e r m i n e d by V . N . Goncharov ( r e f . 2 , page

158)

f o r q u a r t z p a r t i c l e s of a n a v e r a g e s i z e o f 0 . 3 5

-

39.3

and reduced t o a f l o w d e p t h o f 0 . 1 n . I n a d d i t i o n , we have p l o t t e d t h e d a t a o f D z h a l s t r o m ( r e f .

9,

page 1 6 0 ) on q u a r t z p a r t i c l e s o f v e r y s m a l l s i z e .

The v a l u e vo

.

,

mean f o r srnall p a r t i c l e s i s due t o t h e i n c r e a s e d

i n f l u e n c e o f t h e v i s c o s i t y o f t h e medium and a l s o t o t h e i n c r e a s e i n t h e i r s p e c i f i c a r e a s , which i n c r e a s e s t h e c o h e s i o n between minute p a r t i c l e s , i n h i b i t i n g t h e i r removal from t h e s u r f a c e o f t h e ground o r snow c o v e r .

S u b s t i t u t i n g t h e above c i t e d v a l u e s K,,

P,

and

Po

In f o r m u l a

( 8 )

we f lnd : where E, = 3,5g

($-I

)

D i f f e r e n t i a t i n g t h e r i g h t - h a n d p a r t of ( 1 4 ) w i t h r e s p e c t t o d and p u t t i n g t h e r e s u l t e q u a l t o z e r o , we o b t a i n t h e c o n d i t i o n o f minimum vfmean. A t t h i s v a l u e o f d t h e c r i t i c a l v e l o c i t y i s a minimum. F o r v e l o c i t y s m a l l e r t h a n vfmin t h e r e w i l l be no removal of p a r t i c l e s ( e r o s i o n ) , a s though

*

S t r i c t l y s p e a k i n g t h e r o u g h n e s s 6 depends on t h e s i z e s d o f t h e p a r t i c l e s f o r m i n g t h e bed o f t h e f l o w and on l o g 6 , a s c a n be d e t e r m i n e d from t h e

(10)

t h c r e were no p a r t i c l e s of srnall dirncnsions.

Thc v a l u c s of E, and E, ( f o l b d e x p l ~ s s c d i n m l n ) a r e d c r i v c d f o r v a r i o u s

media and p a r t i c l e s and a r e g i v e n i n T a b l e I.

The v a l u c s of d and v ~ , c a l c u l a t e d a c c o r d i n g t o forlnul a e , ~ ~ ~ (111) and ( 1 5 ) a r e g i v e n i n T a b l e 11.

The c u r v c s of v t , = f ( d ) f o r t h o c a s e s " a i r

+

sand" and " a i r .

+

s o i l p a r t i c l e s " ( s e e F i g . 4 ) a r e d e r i v e d fro111 t h e d a t a of Table I and I1 and

forr,iulae (11) and ( 1 1 1 ) . They aC;ree w e l l w i t h t h e e x p e r i r r ~ e n t a l Cata of

M.A.

Sol<olov ( I . 1, page 20'1) and C h e p i l and ~ a l l n ( ' ~ ) , c o n f i r m i n g o u r assump- t i o n a b o u t t h e c o n s t a n c y o f t h e p a r a ~ ~ e t c r s

K 2

and

B , .

S i l n i l a r cul-ves have been c o n s t r u c t e d a l s o f o r " a i r

+

snow".

According: t o G . D . R i k h t e r l s d a t a ( r e f .

5,

page 29) snow i s n o t blown away a t wind s p e e d s of l e s s t h a n 2 nJsec, r e g a r d l e s s of t h e s t a t e o f t h e snow c o v e r o r t h e s i z e o f t h e snow p a r t i c l e s . T h i s c o r r e s p o n d s t o t h e v a l u e of

V: n i n =

1.93

nJsec i n T a b l e 11.

According t o t h e d a t a of A . A . Komarov, a c o l l a b o r a t o l - of TEI ZSFAN*, a t a mean snow p a r t i c l e s i z e of a p p r o x i m a t e l y 0 . 5 nun snow i s n o t t r a n s p o r t e d a t s p e e d s v of l e s s t h a n

3

rifsec, c o r r e s p o n d i n g t o t h e broken l i n e c u r v e s I n F i g . 4 .

The mass t r a n s p o r t of d r i f t i n g snow p a r t i c l e s of a p p r o x i m a t e l y

0.5

mm

i n d i a m e t e r i n t h e absence of p r e v i o u s thawing b e g i n s , a c c o r d i n g t o

formulae ( 1 7 , ) and ( 1 4 ) ) a t u p p e r wind s p e e d s v"' = 2 . 6 8

.

1 . 5 6

=

4 . 2 n / s e c , assuming t h a t e q u a t i o n ( 1 7 ) a p l i e s t o t h e snow and t h e wind f l o w . According t o t h e d a t a o f A.W. Khrgian(8B, TsNII PIPS** and T G I ZSFAN, t h e t r a n s p o r t of snow r e a l l y b e i n g s a t wind s p e e d s o f v , = LC

-

4 . 5 n / s e c .

A f t e r thawing and r e f r e e z i n g o f t h e s u r f a c e c r y s t a l s ( " r e g e l a t i o n " ) and wind p a c k i n g of t h e s u r f a c e of t h e snow c o v e r , t h e l a t t e r becomes covered by a s o - c a l l e d " c r u s t " which p o s s e s s e s g r e a t e r r e s i s t a n c e t o e r o s i o n . The v a l u e

( 5 ) v, I t ' u n d e r t h e s e c o n d i t i o n s i n c r e a s e s t o 1 0 nJsec and more

.

The d e g r e e of r e s i s t a n c e t o e r o s i o n depends on t h e v a l u e of t h e snow c o h e s i o n .

I f t h e snow i s somewhat b r i t t l e , t h e n t h e v a l u e of t h e a d h e s i o n depends, a s was i n d i c a t e d above, on t h e s i z e o f t h e snow p a r t i c l e s . T h i s can be

d e t e r m i n e d b y r e p r e s e n t i n g t h e pheno~nenon a s f o l l o w s ( s e e F i g . 5 ) . L e t u s c o n s i d e r t h r e e c u b i c p a r t i c l e s a , , a , and a , o f s i d e d .

+ Thermal Power I n s t i t u t e of West S i b e r i a n Branch, Academy of S c i e n c e s

USSR.

(11)

P a r t i c l e s a , and a , a r e on a g i v e n p l a n e while a, i s r a i s e d t o a p l a n e a t t h e h e i g h t

$.

Thc d i s t a n c e between t-he p a r 8 t i c l e s i s d .

'-

I f t h e r c were no r e s i s t a n c e t o t h e f a l l of p a r t i c l e a, i t would f a l l towards t h e s u r f a c e a t a r a t e vil =

4 3 .

Ilowever, s u r f a c e v i s c o u s f o r c e s

oppose t h i s motion.

S u b s t i t u t i n g vH = we o b t a i n

The t h i r d term of formula

( 8 )

i n t h e numerator of t h e r i g h t - h a n d s i d e can e a s i l y be expressed i n terms of .co

T h i s i s t h e p h y s i c a l i n t e r p r e t a t i o n of t h e t h i r d term of e q u a t i o n

8.

P,

I n t h e g e n e r a l c a s e t h i s term i s e q u a l t o

-

T , where T > -co f o r a packed o r P

f r o z e n snow c o v e r .

Comparisons of t h e c o n d i t i o n s a t t h e s t a r t of e r o s i o n of v a r i o u s g r a n u l a r m a t e r i a l s i n v a r i o u s media g i v e t h e b a s i s f o r d e r i v i n g a f i r s t approximation t o t h e c o r r e c t formula f c r d e t e r m i n i n g t h e c r i t i c a l speed v l ,

.

It w i l l have t h e form

From what has been s a i d t h e f o l l o w i n g c o n c l u s i o n s may be drawn:

( 1 ) The phenonienon of e r o s i o n of l o o s e snow i s a p a r t i c u l a r c a s e of t h e e r o s i o n of v a r i o u s g r a n u l a r m a t e r i a l s i n w a t e r and i n a i r and depends on t h e same p a r a m e t e r s .

( 2 ) The l a r g e r t h e v a l u e s of 6 , d and T t h e p;reater w i l l be t h e c r i t i c a l v e l o c i t y of t h e a i r flow r e q u i r e d t o i n i t i a t e snow e r o s i o n a t ground l e v e l . T h e r e f o r e t h e measures t o be t a k e n t o p r e v e n t e r o s i o n rnust c o n s i d e r t h e

follovring: ( a ) t h e roughness of t h e snow s u r f a c e , ( b ) t h e d i a m e t e r of t h e s u r f a c e p a r t i c l e s , ( c ) t h e a d h e s i o n between t h e s u r f a c e p a r t i c l e s .

In pursuance of t h e c o n s i d e r a t l o l l s p r c s c n t e d i i l t h i s p a p e r a d d i t i o n a l

e x p e r i m e n t a l m a t e r i a l i s r e q u i r e d f o r f u r t h e r developr,ient of t h e theoretical

(12)

Bodrov, V. I \ . I ~ > o t l a y a n~c 1 iol-a t s i y n ( ~ o r e o t iniprovcmcnta )

, 1952.

Goncharov, V.N

.

Dvizhcrllc nanosov (Thc I~love~iicnt o f a l . l u v i u ~ ~ l ) ,

1938.

Z h u k o v s k i l ,

N.K.

0 oneztlnylth zarlosakh i z a i l e n n i rclc ( o n snow d r i f t s and t h e s i l t i n g o f r i v e r s ) . S o b r . Soch. 111,

13!~3.

K i r p i c h e v , M.B. and Mlkhecv,

M.A.

M o d e l ~ r o v a n l e te p l o v y k h u s t r o i s t v ( ~ h c c o n s t r u c t i o n of therrrlal a p p a r a t u s ), C h a p t e r 1, 1936.

R i l d ~ t e r , G . D

.

Snezhnyi pokrov, ego f ormirbovanie i s v o i s t v a (The snow c o v e r , i t s f o r r ~ i a t i o n and p r o p e r t i c s ), 1945.

Sapozhniltova, S . A . M i ~ r o c l i n i a t i m e s t n y i k l i m a t ( ~ i c r o c l l m a t e and l o c a l c l i m a t e ) , 1950.

S o k o l o v s k i i , D . L . Techno1 s t o k

h he

flow o f r i v e r s ) , 1952.

Khgian,

A.m.

F i z i c h e s k i e osnovaniya b o r ' b y s o snegorn na z h e l e z n y k h dorogakh

h he

p h y s i c a l b a s i s f o r c o m b a t t i n g snow on r a i l r o a d s ), I s s u e 1, T r . M G M I ,

1933.

Krumbeln, W.C. and S l o s s , L . L . " S t r a t i g r a p h y and s e d i m e n t a t i o n " , San F r a n c i s c o , 1951.

C h e p i l , M.S. and Milne, R . A . Cornparatlve s t u d y o f s o i l d r i f t i n g I n t h e f i e l d and i n a wind t u n n e l . S c i e n t i f i c A g r i c u l t u r a l , Ottawa,

(13)

Average and l a r g e p a r t l c l e s

....

Water

+

sand t o = 15O.

...

A i r

+

sand A i r

+

s o i l p a r t i c l e s , t o =

...

20°, p r e s s u r e 760 m i . . A i r

+

snovr, t o =

- l o 0 ,

...

p r e s s u r e 760 I I I I ~ . _I.I: s e c s e c 2 m

1

t114 Table

I1

I) D e n s i t y of f l a k e s r e l a t e d t o mean a c c o r d i n g t o Nakaiya ( g r a n u l a r and

d e n d r i t i c ) and a c c o r d i n g t o t h e d a t a of P r o f . A . D . Zamorskil. Medium and l a r g e p a r t i c l e s K a t e r

+

s a n d . .

...

...

A i r

+

s a n d . . A i r

+

s o i l p a r t i c l e s .

...

A i r

+

snow..

2)According t o Bagnold

.

See F i g . 2 and r e f . 1 0 . 3)According t o Chepll and Milne. F i g . 2 and r e f . 10.

4 S e e a u t h o r ' s p a p e r on

"Vertical

d i s t r i b u t i o n of s o l i d f l u x i n a snow-wind flow" i n t h i s c o l l e c t i o n . ( N R C TT-999). v

'

n i n v,., mean = 0.24 r d s e c trlln v' = 2.92 d s e c

'

min v 1 = 2.88 d s e c

'

min v I =

1.93

d s e c

'

min l o g 6

-4.75

-4

.682'

-3.12 ') -4.854) d t r n l 1 0.56 0.035 0.03 0 . 1

(14)

Y L 8 11 C' a .fo< o./n at2 a 1 a06 aofl P O I 0006 aoot5 mot F i g . 1 Diagrati~ o f a n a l y t i c a l v o r t e x a t t h e ground A. W d t ~ l .

Data o f V.P(

onc char-ov

A - - B e d o f 5-7 mm yrd! hS u

-

,2.,8 ,r D e p t h s o f f o /II ~cm. + . 8, " 3 3 1 " #, / - I 1 < : / L.' R - A i r . o-Data of Bsgnold f o r t h e s f a r f o f r n o t ~ o r ,

OF

sand. a n t h e sur/&ces o f s a n d d u n e s - -

I J S - ~ / D O I ) - ~ I P ( O M ~

-46d /.JS - 0.74 d r 15 Fig. 2 V e l o c i t y p r o f i l e of

a

f l o w o f w a t e r and wind

(15)

Graph o f t h e f u n ~ t i o n

v r

= f ( d ) for t h e c a s e of sand

+

water" ysec Graph v; =

f

(d) /I 0 10.0 .

- - -

- - - air

+

sand

---

a i r + S o 1 1 pattlcles a i r + s h o w $0

o -Data OF N-A . Soko lov

7J A - Data o f A A ( 0 l 8 f4 7J 10 -7I -1 I 0.0 I o. I a ~ r 05 ;.o Is dm Fig. 4 Fig.

5

Graph of t h e f u n c t i o n v; = f ( d ) f o r Diagram f o r t h e d e r i v a t i o n

t h e c a s e o f motion of heavy o f forinula ( 1 6 )

p a r t i c l e s i n a flow of a i r

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including