• Aucun résultat trouvé

First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT. New constaints on its origin

N/A
N/A
Protected

Academic year: 2021

Partager "First observation of CO at 345 GHz in the atmosphere of Saturn with the JCMT. New constaints on its origin"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: hal-00400419

https://hal.archives-ouvertes.fr/hal-00400419

Submitted on 30 Jun 2009

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

First observation of CO at 345 GHz in the atmosphere

of Saturn with the JCMT. New constaints on its origin

T. Cavalié, F. Billebaud, M. Dobrijevic, T. Fouchet, E. Lellouch, T. Encrenaz,

J. Brillet, P. Moriarty, J.P. Wouterloot, P. Hartogh

To cite this version:

T. Cavalié, F. Billebaud, M. Dobrijevic, T. Fouchet, E. Lellouch, et al.. First observation of CO at

345 GHz in the atmosphere of Saturn with the JCMT. New constaints on its origin. Icarus, Elsevier,

2009, 203 (2), pp.531-540. �10.1016/j.icarus.2009.05.024�. �hal-00400419�

(2)

atmosphere of Saturn with the JCMT. New onstraints on its origin.

T. Cavalie a; , F. Billebaud b; , M. Dobrijevi b; , T. Fou het d , E. Lellou h d , T. En renaz d , J. Brillet b; , G. H. Moriarty-S hieven e , J. G. A. Wouterloot f , P. Hartogh a a

Max Plan k Institutefor Solar System Resear h, 37191 Katlenburg-Lindau, Germany

b

Universite de Bordeaux, Laboratoire d'Astrophysique de Bordeaux (LAB), Fran e

CNRS/INSU, UMR 5804, 33271 Floira edex, Fran e d

LESIA,Observatoire deParis, 92195 Meudon, Fran e e

National Resear h Coun il, HerzbergInstitute of Astrophysi s, Vi toria, BC V9E 2E7,Canada

f

JointAstronomy Center, Hilo, 96720 Hawaii, USA

Abstra t

We have performed the rst observation of theCO(3-2) spe tral line inthe atmo-sphereofSaturnwiththeJamesClerkMaxwellTeles ope.Wehaveusedatransport modeloftheatmosphereofSaturnto onstraintheoriginof theobservedCO.The CO line is best tted when the CO is lo ated at pressures lower than 15 mbar implying an external origin. This favors an origin due to a omet impa t 200-300 yearsago ratherthanto ontinuousdepositionbyinterplanetarydust parti les (IDP) or lo al sour es (rings/satellites). This result tends to on rm that omet impa tsare periodi andeÆ ient providersof CO to theatmospheres of theouter planets. Finally, we have tentatively derived an upper limit of 0.510

9

on the tropospheri COmixingratio.

Key words: Saturn,atmosphere, spe tros opy



Tel:+49-5556-979-541; fax: +49-5556-979-240 Email address: avaliemps.mpg.de(T.Cavalie).

(3)

Infrared observations ondu ted with the Infrared Spa e Observatory and more re ently with Spitzer have led to the dete tion of water vapor and ar-bondioxide inthe atmospheresof the outer planetsand Titan (Feu htgruber etal., 1997, 1999; Coustenis et al.,1998; Burgdorfet al.,2006). These dete -tions have raisedthe question of the origin of the oxygen ompoundspresent above the tropospheri old trap in the redu ing atmospheres of the outer planets.Eligible external sour esare of three di erent kinds: lo al (ringsand satellites), di use (interplanetary dust parti les) and sporadi sour es (large omet impa ts). While the omet supply seems to prevail in the atmosphere of Jupiter as shown by infrared (ISO) and submillimeter (SWAS and Odin) observations (Lellou h etal., 2002; Cavalie et al.,2008a), lo al sour es ould be the majorexternal supplier of water tothe atmosphereof Saturn (Prange etal., 2006).

As for arbonmonoxide,it has been dete ted in the atmospheresof allgiant planetsby Beer(1975), Nollet al.(1986),En renaz et al.(2004) and Marten etal. (1993).Addressing the questionof the originof CO in the atmospheres of the outer planetsis more omplex than itis forH

2

O.Indeed, CO doesnot ondense atthe tropopauselevelinany of the atmospheres ofthe giant plan-ets.Thus,anadditionalsour eislikelytoprovideCOtotheupperatmosphere in a signi ant way by means of upwards onve tive mixingoriginatingfrom thedeephotatmosphere.Giantplanetformationmodels(Lissauer(1993)and Lissauer(2005),forexample)predi tthatoxygen ompoundsare abundantin theplanets'deephotinteriors.Conve tiontransportsthesespe iesupwardsof the atmosphere. Being inthermo hemi aldisequilibrium, CO is onverted to CH

4

andH 2

O.Thetropospheri mixingratioofCOis nally xedatthe alti-tudeatwhi hthe hemi alrea tiontimes aleequalsthe onve tive transport hara teristi time. Thus, measuring the tropospheri abundan e of CO on-strainstheinternalsour estrength.Uponanassumptionontheeddydi usion oeÆ ientvalueatthis so- alled\quen h"level, thismeasurementprovidesa onstraintonthe deepO/Hratiobygivingthedeepwaterabundan e(Bezard etal., 2002).

Re ent studies of infrared, millimeter and submillimeter spe tra of Jupiter and Neptunehave shownthat CO hasadual origin(internaland external)in both atmospheres (Bezard et al., 2002; Lellou h et al., 2005; Hesman et al., 2007). In Jupiter, a 1 ppb tropospheri CO mixing ratio (hereafter q

CO ) of internal origin has been observed, resulting ina O/H ratio of 0.6-9 times the solar value. On the other hand, a value of 0.5 ppm has been measured inthe troposphereof Neptune.Su hahighq

CO

valueimpliesanenhan ementofthe O/Hratioof440 timesthe solarvalue(Loddersand Fegley,1994)orthe inhi-bitionof the onversionrea tionbetween CO and CH

4

(4)

reasing mixingratio with altitude in the stratosphere. Measurements of the CO/H

2

O deposition rate by anexternal supply have led to values as large as 20 and possibly larger than 200 (Lellou h et al., 2005). Su h values seem to be in onsistent with an oxygen supply by interplanetary dust parti les, thus favoring a ometaryorigin.

Infrared observations of Saturn and Uranus have led to the dete tion of CO (Noll et al., 1986; En renaz et al., 2004). In the ase of Saturn, the spe tral resolution inthe latest publishedobservationsof CO (Nolland Larson, 1991) was not suÆ ient to distinguish between an internal and an external origin of CO. More re ently, millimeterobservations have only led to the derivalof upper limitson the CO mixing ratio (Rosenqvist et al., 1992; Cavalie et al., 2008b).Thisisthereasonwhywehave arriedoutnewobservationsofSaturn. We hose to perform them at a higher frequen y than the ones of our last attempt (Cavalie et al., 2008b) be ause models predi t that the CO lines shouldbestronger(Cavalieetal.,2007).Inthispaper,wepresentthedete tion of CO in the atmosphere of Saturn from submillimeter spe tros opy. The observation of the CO(3-2) line has been analysed in order to onstrain the internal and external sour esof CO.

2 Observations and data redu tion

Weusedthe15-mJamesClerkMaxwellTeles ope(MaunaKea,Hawaii,USA) to observe the CO(3-2) line at 345.796 GHz. We used this teles ope to ob-serve Saturnon14-15January 2008(UT). The angularsize ofthe planet was 19.4 ar se 17.6 ar se with aring in linationangle of 7

Æ .

Observations have been arriedout at the frequen y of the CO(3-2)linewith HARP,a16-re eptorheterodynearrayre eiver(Smithetal.,2008).Two on-tiguous re eptors beeing separated by 30 ar se , we hose to observe Saturn in a balan ed position-swit hing mode with the ON position entered onthe H10 re eiver and the OFF position entered onthe H08re eiver at60 ar se from the ON position. Su h a hoi e enabled us to use both H10 and H08 re eiversof thearraysimultaneously.The zenithopa ityofthe atmosphereat 225 GHz was 0.08 and 0.06 the rst and se ond night respe tively, resulting insystem temperatures rangingfrom320 to 450 K(H10, 1

st night),from390 to 440 K (H08, 1 st night), from 260 to 340 K (H10, 2 nd

night) and from 310 to340 K(H08, 2

nd

night).

At345 GHz,the atmospheri levelssounded arelo atedbetween10mbarand 1 bar. CO lines an be very broad when formed at su h pressures. This is the reason why we have re orded the spe trum of Saturn over a wide range

(5)

-70

-69

-68

-67

-66

-65

-64

-63

344

345

346

347

348

T

a

*

[K]

ν

[GHz]

H08 (eliminated)

53

53.5

54

54.5

55

55.5

56

56.5

57

57.5

58

344

345

346

347

348

T

a

*

[K]

ν

[GHz]

H10

Fig.1.Observedspe trumofSaturnat345GHzwiththeH08re eptorandtheH10 re eptor.The COlineisdete ted inthetwo entralsub-bandsoftheH10 re eptor observations (in absorption) and in one of those of the H08 re eptor observations (inemission). TheH08 spe trumappearswith negative T

 a

valuesbe ause theH08 pixel was our OFF position pixel. This spe trum has not been used in the data redu tion be ause of theirregularshapeof theripple.The deepabsorptionfeature whi h isseen at 343.2 GHzis theO

3

terrestrial line.

of frequen ies. Be ause the ACSIS spe trometer enables observations in sev-eralbandwidth/spe tralresolutionmodes,we hose toobservesimultaneously 2 sub-bands of 1 GHz with a spe tral resolution of 1 MHz in a single-side band mode. The bandwidth of ea h observed sub-band being 1 GHz, we have observed 10 ontiguous bands with 50% overlaps between 2 ontiguous bands. The entral frequen ies of the tunings whi h have been sele ted start at 343.545 GHz and end at 348.045GHz, thus overing 5.5 GHz. The obser-vations on H10 and H08 are shown in Fig. 1. The di erent ontinuum level seen with the H08 and H10 re eptors annot be explainedby pointing errors and we regard this di eren e asbeing due toan instrumentale e t. Besides, observations of Marshave been arried out simultaneously in order toobtain anabsolutemeasurementof Saturn's brightness temperatureat345 GHz.So, this di eren e, whi h is also seen on the Mars observations, has no e e t on our results.

(6)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

345.1

345.2

345.3

345.4

345.5

345.6

345.7

345.8

345.9

346

T

a

*

[K]

ν

[GHz]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

345.6

345.7

345.8

345.9

346

346.1

346.2

346.3

346.4

T

a

*

[K]

ν

[GHz]

Fig. 2. Central sub-bands showing the CO line as well as the strongest ripple. Be ause this ripple is observed in ea h sub-band and has a regular shape, it has beenremoved fromea h sub-bandbefore onne ting and averaging them.

We note that the CO line was independently dete ted in three out of the four entral sub-bands (two with the H10 re eptor and one with the H08 re eptor). As we targeted a faint CO line, we redu ed ea h sub-band before onne tingand averagingthem.The rststep of thedata redu tion onsisted inremovingapolynomialbaseline.Wethenremoved aripple,whi hperiodis about 100 MHz (see Fig. 2 for example), with a FFT pro edure sin e it was presentinea hsub-band.Be ause the ripplehas aperiodwhi hhas the same orderofmagnitudeasthelinewidth,therippleremovaladdssomeun ertainty in the nal width of the observed line. This ripple had an irregular shape in the H08spe tra, sothe data fromthis re eptor were not in luded inour nal analysis.The laststage ofthedata redu tion onsisted in onne tingthe sub-bands by res aling them one to another. The fa t that we had 50% overlap between 2 ontiguous sub-bands resulted in doublingthe integration time at all frequen ies and hen e in lowering the noise level when averaging them. To in rease the signal-to-noise ratio, the nal spe trum was smoothed to a resolution of 16MHz.

(7)

Observationalparametersusedinthe omputationofSaturn's brightness tempera-tureat 345 GHz. (T  a ) FF Mars 635K 2.02 Saturn 545K 1.45

Notes.The parameterFF isthebeam lling fa torof theantenna. 3 The brightness temperature of Saturn at 345 GHz

Observations of Mars have been performed at 345 GHz in order to mea-sure Saturn's brightness temperature(T

b )

Saturn

. The angularsize of Marswas 14.2 ar se .The values we have used to ompute Saturn's brightness temper-ature at 345 GHz are given in Table 2. Following GriÆn et al. (1986), the brightness temperature of Mars at the time of the observations an be ob-tained by interpolating logarithmi ally the brightness temperature of Mars at 350 m and 3.3 mm. Observations at 350 m yield a brightness tem-perature of (T

b )

Mars

=(2107) K (Wright, 1976). At 3.3 mm, the brightness temperature given by Uli h (1981) is (T

b ) Mars =(2026) K. Thus, we obtain (T b ) Mars

=(2067)Kat345GHz.Finally,thebrightnesstemperatureofSaturn at345 GHzis: (T b ) Saturn =(12726) K: (1)

We have also used the Lellou h and Amri model 1

as a se ond way of om-puting the brightness temperature of Mars. This model uses the surfa e and sub-surfa etemperatures takenfromtheMarsClimateDatabase(Lewisetal., 1999;Forgetetal.,2006)andthe ephemeridesfromthe IMCCE

2

to ompute thethermalemissionofMars.This modelyields(T

b )

Mars

=213.2Kat345GHz atthe timeof the observations. Sothe value for Saturnis inthat ase:

(T b

) Saturn

=(13123) K: (2)

We haveused the radiativetransfer model des ribed inCavalie etal.(2008b) to ompute the spe trum of Saturn in the frequen y range of the CO(3-2) line. The primary beam size at 345 GHz is 14.3 ar se , so we have used a disk-averaged temperature pro le (Ollivier et al., 2000). The opa ity of the ontinuum at millimeter wavelengths is mainly due to H

2

-He-CH 4

ollision-indu ed absorption (Borysow et al., 1985; Borysow and Frommhold, 1986; Borysow et al., 1988). We have also in luded the opa ity due to NH

3 and 1 http://www.lesia.obspm.fr/lellou h/m ars 2 http://www.im e.fr

(8)

3

tros opi parameters whi h have been used in our omputationsare given in Table 2 of Cavalie et al. (2008b). Our omputations lead to a disk-averaged brightness temperatureof135 K.At thetime ofthe observations,the ring in- linationwas7

Æ

,sothe ringshadowingand theringemissionhavetobetaken intoa ount.Following(andextrapolatingtheresultsof)dePaterand Di kel (1991),Dunnetal.(2005)andMelni k etal.(1983),weassumearing bright-ness temperature of 4015 K at 345 GHz and an opti al depth of 0.80.4 for the A and B rings. By using the formalism of Melni k et al. (1983), we nd that the rings absorb more than they emit at 345 GHz. The brightness temperature of the Saturn+rings system we model isthus 1234 K.

This result ts well thebrightness temperaturederived from theobservations and from the use of Mars brightness temperatures at 3.3 mm and 350 m (see eq. 1). It is also within the error bars of the brightness temperature derivedfromtheobservationsandfromtheuseofLellou handAmri'sthermal model of Mars (see eq. 2), but there is a greater di eren e with the nominal value (di eren e of 8 K). The thermal emission of Mars is ertainly better modelled by Lellou h and Amri's model than from the interpolation of the brightness temperature of Mars at 3.3 mm and 350 m. So, we believe that the di eren e between the observations and our modellingis due toour poor knowledgeof thebrightness temperatureand ofthe opti aldepthof therings at345GHz.Inthatsense,interferometri observationswouldbeveryvaluable in order toobtain these values for the Saturn+rings system atsubmillimeter wavelengths. Inwhatfollows,thespe tra generatedby ourmodel areres aled to the Lellou h and Amri ontinuum value and are interpreted in terms of line-to- ontinuumratio.

4 New onstraintson theoriginof COinthe atmosphereofSaturn

Themain resultoftheseobservationsisthe rst observationof aCO millime-ter/submillimeterline.In thespe trumof Saturn,theCO(3-2)rotationalline isdete ted with apeak-to- ontinuumsignal-to-noiseratio of7.Be ause the dete ted lineprobesthe high troposphere/lowstratosphere, we an onstrain the CO mixing ratio verti al pro le in the 10 mbar-1 bar pressure levels. In a rst step, this se tion presents ts obtained with simple verti al pro les. Thesepro lesare eitheruniformwithaltitude(internaloriginonlyforCO)or onstant above a given pressure level whi h is lo ated above the tropopause (externaloriginonlyforCO). Inase ondstep, wehave onstrainedthe value of the CO ontinuous external ux whi h is required to reprodu e the ob-served spe tralfeature fromverti altransport modelling.Finally,we onsider the hypothesis of a supply of oxygen materialbeing due toa (sub-)kilometer sized omet impa t.

(9)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

Pressure [mbar]

Mixing ratio

Fig.3.Originalandmodi edCOmixingratioverti alpro lesusedinthemodelling presentedinSe tion4.1.Solidline:q

CO =10

9

,uniformwithaltitude(Nolland Lar-son, 1991); Long-dashed lines: q

CO

=1.610 9

(Bezard et al., 1989); Short-dashed lines: q CO =110 10 if p >80 mbar and q CO =2.510 8

if p 80 mbar (Noll and Larson, 1991); Dotted lines: q

CO =110 10 if p >80 mbar and q CO =310 9 if p80mbar;Dashed-dottedlines:q

CO =110 10 ifp>15mbarandq CO =2.510 8 ifp15mbar(best t model).

4.1 Initial guesses on the CO verti al pro le

In a rst approa h, we have modelled the observed CO line with simpli ed CO mixingratio verti alpro les. The pro les are shown in Fig.3.

In the ase of an internal origin hypothesis, the CO originatesfrom the deep hot layers of the troposphere. Its observable mixing ratio is xed at an alti-tude where the onve tive transport hara teristi time equals the hemi al times aleofthe onversionofCOtoCH

4

.Abovethisso- alled\quen h"level, the onversionofCOisinhibitedbyverti altransportsothatthemolefra tion ofCOremains onstantwithaltitude.Past observationsofCO inthe infrared haveledtoitsdete tion(NollandLarson,1991).But,frommodellingthe ob-served spe tra,the author ouldnotdistinguishamodelforwhi htheCOhas an internal origin only, with q

CO =10

9

uniformly mixed with altitude, from a model in whi h CO has an external origin only, with q

CO

set to 2.510 8 above the tropopause. Modelling the observed CO(3-2) line with a onstant verti al pro lewith 1 ppb of CO leads to the spe trum shown in Fig. 4.The obtained syntheti spe trum obviously underestimates the CO line strength. The best t of the line depth is obtained by taking the CO mixing ratio

(10)

130.7

130.75

130.8

130.85

130.9

130.95

131

131.05

131.1

131.15

131.2

343.5

344

344.5

345

345.5

346

346.5

347

347.5

348

T

B

[K]

ν

[GHz]

Fig.4.Spe trumofSaturnat345GHzmodelledwithinternalsour eonly.Thesolid line orresponds to 1 ppbof CO uniformlymixed with altitude(Noll and Larson, 1991)andthedashedlinesto1.6ppbofCOuniformlymixedwithaltitude(Bezard etal.,1989).Thepeakabsorptionpixel(rightto345.8GHz)isduetotheterrestrial mesospheri CO. Thispixel ofthespe trumisnotreliable.

ferred from the infrared observations led by Bezard et al. (1989), whi h is q

CO

=1.610 9

. However, the width of the syntheti line is 5 times greater than the observed linewidth. So the syntheti spe trum does not lie within the 3- un ertainty error bars of the observed spe trum. With regard tothis result,amodelforwhi hCOhas aninternaloriginonly anbedis arded,but it does not mean that a dual origin is ruled out. This spe i point will be dis ussed in Se tion4.3.

When onsidering only an external origin, Noll and Larson (1991) retrieved a mixing ratio of 2.510

8

above the tropopause (lo ated at the 80 mbar pressure level). Fig.5 shows theline omputedfromsu ha verti al pro le.In this ase,the omputed absorptionismu h toodeep.This implieseitherthat theCOmixingratioislowerabove80mbar orthattheCO ut-o levelliesat ahigheraltitudeinthestratosphere.Fig.6showsthebest tmodelsobtained by either adjusting the CO mixingratio abovethe ut-o levelof 80 mbar or adjustingthe ut-o levelandkeepingtheCOmixingratio xedat2.510

8 . Keeping the ut-o level at80 mbar implies lowering the CO mixingratio to avalue of 310

9

above this level. The resultingline istoo broad,whereas a mu hbetter tisobtained whentranslatingthe ut-o levelat15 mbarand keepingthe CO mixingratio atitsinitialvalue of 2.510

8

.Soamodel with a CO mixingratio of 2.510

8

at pressures lowerthan 15 mbar and a CO mixing ratio between 10

10

and 10 9

at higher pressures ould model both the infrared observations and this observation (see Se t. 4.3 for a dis ussion onthe internalsour e of CO in the atmosphere of Saturn).

The rstout omes of thiswork are thatmodellingthe observations with sim-pli edverti alpro lesrulesoutthosemodelsinwhi hCOonlyhasaninternal

(11)

129.4

129.6

129.8

130

130.2

130.4

130.6

130.8

131

131.2

343.5

344

344.5

345

345.5

346

346.5

347

347.5

348

T

B

[K]

ν

[GHz]

Fig. 5.Spe trum of Saturn at 345 GHz modelled witha CO verti alpro le where 25 ppbof COarerestri ted to the stratosphere(p<80mbar).

130.7

130.75

130.8

130.85

130.9

130.95

131

131.05

131.1

131.15

131.2

343.5

344

344.5

345

345.5

346

346.5

347

347.5

348

T

B

[K]

ν

[GHz]

Fig.6.Spe trumofSaturnat345GHzmodelledwithverti alpro leswhere25ppb ofCOarerestri tedto levelswherep<15mbar(solidline)orwhere3ppbofCO areuniformlymixedabove thetropopause(p<80 mbar) (dashedlines).

originandindi atesthatCOseemstoberestri tedtothestratosphereat pres-sures lower than 15 mbar witha mixingratio of 2.510

8 .

4.2 External sour e of CO

Be ause the signal-to-noiseratio of our observation islow, we hose tomodel the CO verti al pro le with no more than two variables. The variables an be either a CO permanent ux or a CO deposit and its deposition time due toa ometimpa t.So, we hose not totake photo hemistryintoa ountbut only transport. Doing this way, we negle t the oxygen ompound hemistry. However, CO is a stable mole ule and H

2

O photo hemistry only adds small amounts of CO. We used a 1D time-dependent transport model of the

(12)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

Pressure [mbar]

K(z) [cm

2

s

-1

]

CO Mixing ratio

Fig. 7. Eddy di usion oeÆ ient verti al pro le adopted in the verti al transport model(solid line).TheCOmixingratioverti alpro lewhi hgivesthebest agree-ment to the observations is obtained with a permanent and uniform CO ux of 1.510 6 m 2 s 1 (dashedlines).

mosphere of Saturn to test the external sour e hypothesis by generating CO mixingratio verti al pro les.This model is des ribed inthe next subse tion. Then, wewill present the results obtained using this transport model.

4.2.1 Transport model

Our transport model is taken from the photo hemi al model of Saturn's at-mosphere developed by Ollivieretal. (2000).The di usion equation

dy CO dt = 1 n div ( CO :e~ z ) (3)

is solved with a semi-expli it Crank-Ni holson s heme. In this equation, y CO isthe molar fra tion ofCO, n the atmospheri on entration,

CO

the uxof CO ande~

z

isaunit ve tor inthedire tion z.This uxa ountsfor mole ular andeddy di usion.Theeddy di usion oeÆ ientpro leK(z)(in m

2 s

1 )we have adopted is shown in Fig. 7. It omes from Moses et al. (2000a) for the stratosphere and fromEdgington et al.(1997) for the troposphere.

The lower and upper boundaries of the model are lo ated respe tively at 250km(16.610

3

mbar)and2500km(7.710 8

mbar).Atthelower bound-ary,the internalsour eofCO an be ontrolledviathevalue oftheCO molar fra tion, whi h is here xed at 0 be ause we aim at deriving the strength of an external sour e of CO. At the upper boundary, the external sour e is represented by ainfalling ux of CO.

(13)

the atmosphere of Saturn using both this transport model and our radiative transfer model. First, we willretrieve the CO ux orresponding to the ase of a ontinuous supply (IDP, rings,satellites). And then,we will onsider the possibilityof asporadi supply (large omet).

4.2.2 The di use and/or lo al sour e hypothesis

Inthisse tion,wehavesupposedthatalltheCOisdepositedintheupperpart ofthe atmosphereof Saturnby apermanentand uniformexternalsour eand that the CO mole ules are subsequently transported to higherpressure levels by eddy mixing. This model en ompasses the hypotheses of a lo al (rings, satellites)and of a di use sour e (IDP). Indeed, the planet was not spatially resolvedduringourobservations.So,we annotdistinguishalo alsupplyfrom auniform supply.

The best t is obtained with a ux of CO of  CO =1.510 6 m 2 s 1 . The resultingverti alpro leisshowninFig.7andtheresultingspe trumisplotted in Fig. 8. The width of the line, as omputed from this model, is 3 times larger than the width of the observed line. Su h a broadening omes from the fa t that, due to transport, CO rea hes levels whi h are too deep in the atmosphere of Saturn. Besides, Moses et al. (2000b) derived a H

2 O external ux of 0.5-210 6 m 2 s 1

from the ISO dataset analysis. In their nominal model, their H 2 O ux is 1.510 6 m 2 s 1

. Ollivier et al. (2000) derived a similarresult( H 2 O =1.010 6 m 2 s 1

).Ifwe omparethesevaluestotheCO ux we obtain from our modelling,then the H

2

O:COratio is 1. This value seemstobein ompatiblewiththe relative ompositionof oxygen ompounds ofinterstellarand ometaryi easinferredbyDespois(1997);Bo kelee-Morvan etal.(2000).Indeed,the H

2

O:COratio ininterstellarand ometaryi eis5. On the other hand,su h a low H

2

O:CO ratio is ompatible with adepositof oxygen ompounds during a omet impa t, as H

2

O is mostly onverted into CO during omet impa ts. Finally, from the width of the modelled line and from the value of the CO ux we derive, a ontinuous sour e for CO seems tobe unlikely, ontrarytothe ase of H

2

O(Ollivier etal.,2000; Moses etal., 2000b;Prangeet al.,2006).

4.2.3 The (sub-)kilometer-sized omet impa t hypothesis

Re entresultsobtainedfromCOobservationsatinfraredand(sub-)millimeter wavelengths have shown that signi ant amounts of oxygen ompounds an be arried into outer planet atmospheres at the submillibar level by omet impa ts. From their infrared high spe tral resolution observations, Bezard et al. (2002) have shown that CO is regularly supplied to the atmosphere

(14)

130.7

130.75

130.8

130.85

130.9

130.95

131

131.05

131.1

131.15

344.5

345

345.5

346

346.5

347

T

B

[K]

ν

[GHz]

Fig. 8. The best t model in the ase of a di use and/or lo al sour e is provided witha COexternal ontinuous uxof 1.510

6 m 2 s 1 .

of Jupiter by large omet impa ts, the last example being the Shoemaker-Levy 9 (SL9) impa ts in July 1994. During the SL9 impa ts, a total mass of 6.04.010

14

gofCO wasdeposited (Morenoetal.,2003).Theperiodi ityof SL9-likeimpa tsatJupiterhasbeenestimatedinseveralworks.Generally,this periodi ityrangesfrom200to5000years(Roulstonand Ahrens,1997;Bezard etal.,2002;Zahnleetal.,2003).IntheatmosphereofNeptune, Lellou hetal. (2005)andHesmanetal.(2007)havefoundthattheCOmixingratioin reases with the altitude. The ux derived from their (sub-)millimeter observations impliesthat the ratio ofthe CO and H

2

O deposition ratesis aslarge as10to 500. From this result, the authors on lude that the CO has been delivered to the atmosphere of Neptune by a omet impa t 200 years ago. However, Lellou h et al. (2005) and Hesman et al. (2007) give dis repant value of the omet size (2km and 10 km,respe tively).

At Saturn, omet impa t rates are lower than at Jupiter only by a fa tor of 3 (Levison et al., 2000). So, the probability for the observed stratospheri CO to be originating from a omet impa t is still not negligible. Moreover, the verti al pro leshapewehaveobtained ina rst attempt(see Se t.4.1) is very similar tothe rst guess verti al pro le inLellou h etal. (2005). In the atmosphere of Neptune, they nd p

0

=20 mbar and we obtain p 0

15 mbar in the atmosphere of Saturn. If the observed CO was deposited by a omet impa tat 0.1 mbar asin the ase of Jupiter and SL9, then the di usion time t down to 15mbar is given by:

t= z 00 Z z 0 H(z)dz K(z)+D CO (z) '350 years (4) where z 0 and z 00

are the altitudes at whi h the pressure are 0.1 mbar and 15 mbar respe tively, H the atmospheri s ale height, K the eddy di usion oeÆ ient and D

CO

(15)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

Pressure [mbar]

CO Mixing ratio

input

5 years

50 years

350 years

500 years

1000 years

Fig. 9. Evolution in time of the CO mixing ratioverti al pro le after a ometary inputofq

CO

=210 6

above0.1mbar.Di erent urvesshowthepro leatthetime of theimpa tand then5, 50,350,500 and 1000 yearslater.

needed to model the observations, whi h is given by our transport omputa-tions,is 1.510 6 m 2 s 1

.Ifintegrated over350 years andover thesurfa e of the planet, su h a ux yields 7.510

36

CO mole ules. This orresponds to 3.310

14

g of CO. If the density of the omet is 0.5 g. m 3

(Asphaug and Benz, 1996)and if CO represents50% of the delivered mass (Crovisier, 1996), then the size of the omet is 1.1 km. This is approximatelythe size of anSL9-like omet(Moreno et al.,2003).

With regard to the values (di usion time, omet mass) determined above, a ometaryoriginforCO anbe onsidered.Inordertotestthe ometarysour e hypothesis, we have omputed CO mixing ratio verti al pro les in the same manner as in Cavalie et al. (2008a) with the transport model des ribed pre-viously. In our modelling,the CO is uniformlydeposited

3

inthe atmosphere above0.1mbarbya ometimpa tatatimet

0

andthepermanentCOexternal ux is set to0 m

2 s

1

. Then, we use our time-dependent transport model to ompute the verti al pro les at t > t

0

. Examples of CO verti al pro les obtained 5, 50, 350, 500 and 1000 years after an impa t, hara terized by an initialinputof q

CO

=210 6

above0.1 mbar, are shown inFig. 9.

There are two parameters that an be adjusted (impa t date and initialCO mixingratio) by ttingthe observation.Ifwe takethe resultof Eq.(4) asthe time elapsed after the omet impa t, then the best mat h is obtained with aninitialmixingratio of 210

6

. The CO verti al pro le350 years afterthe 3

RefertoCavalieetal.(2008a)forajusti ationofthevalidityofsu han hypoth-esis(uniformdepositionoftheoxygen material)in the aseof spatiallyunresolved observationsof theplanet.

(16)

130.7

130.75

130.8

130.85

130.9

130.95

131

131.05

131.1

131.15

344.5

345

345.5

346

346.5

347

T

B

[K]

ν

[GHz]

Fig.10.Thebest t modelinthe aseofa ometarysupplyofCO350years ago is obtainedwithq

CO

=210 6

above 0.1mbar(solidline).Anothergoodagreement is obtained inthe ase of a ometary supply of CO200 years ago with q

CO

=410 6 above 0.1 mbar(dashedlines).

impa tisshown inFig.9 andthe ttothe observationsinFig. 10.The value of q

CO

is onsistent with the value inferred in the ase of the SL9 CO supply toJupiter (Bezard etal.,2002). In reasing the time elapsed after the impa t implies in reasing the value of q

CO

. It results in a broader line whi h is not satisfa tory. On the other hand, de reasing the time elapsedafter the impa t and in reasing the initially deposited mixing ratio of CO is a way of having a slightly narrower line. It also results in a stronger emission line ore. The example with t

0

=200 years and an initialmixingratio of 410 6

is shown in Fig.10. Ifwetakeashortertime, thenweget alineinemissionwith toofaint anabsorptionfeature.Sothe rangeofvaluesfort

0 andq CO are approximately 200-350years and 2-410 6 respe tively.

As impa t hemistry favors the onversion of H 2

O into CO, 90% of the suppliedoxygenwould omeinthe formofCO andonly10% inthe formof H

2

O(Zahnle,1996).Be ause asporadi supply of H 2

Oisqui kly (14 years) removed by ondensation in the atmosphere of Saturn (Moses et al., 2000b), CO would qui kly remain the only signature (in terms of the presen e of oxygen material)of a ometary impa tin the atmosphere of Saturn. So, it is not in onsistent to model the oxygen input of a omet with CO only. In the end, we regard the impa t of an SL9-like omet200-300 years ago asbeing the most likely sour eof CO inthe atmosphere of Saturn.ForH

2

O,however, the aseisdi erentasitisprobablysuppliedby a ontinuoussour e(likeIDP orrings) (Prange etal.,2006).

(17)

132.65

132.7

132.75

132.8

132.85

132.9

132.95

133

133.05

133.1

133.15

344.5

345

345.5

346

346.5

347

T

B

[K]

ν

[GHz]

Fig.11.Cometimpa tmodel(witht 0 =200yearsandq CO =410 6 )withaninternal sour e of 510 10

(dashedlines) and without no internal sour e (solid line).The value of 510

10

orresponds to the upper limit xed on a possible CO internal omponent lteredoutbyourdataredu tion pro edure.

4.3 Internal sour e of CO

4.3.1 Upper limit on the internal sour e

Aninternalsour eisnotin luded inour best tmodels,but itdoesnot mean that aninternal omponent isnot present. Indeed, the rippleremovalpro ess leads to an un ertainty on the width and strength of the line (see Se t. 2). It ouldhave resulted in lteringout the signature of aninternal omponent. Su ha omponentwould be hara terisedby averybroad absorptionfeature, as shown in Fig. 4 (models with a CO internal sour e only). The real line would then be slightlystronger and slightly broader. Be ause it ishazardous to try to estimate the un ertainty on the internal omponent strength from the line after the removal of the ripple, we tentatively put an upper limitof 510

10 on q

CO

in the troposphere, orresponding to the 3- noise level of our spe trum. The omparison between the omet impa t model (with t 0 =200 years and q CO =410 6

) and the same model with the addition of an internal omponent of 510

10

an be seen in Fig. 11. This upper limit remainsun ertainandrequires on rmationbynewobservations,eitherinthe (sub)millimeterrange orinthe infraredrange(with highspe tral resolution).

4.3.2 Impli ations on the O/H ratio in Saturn's deep atmosphere

The CO mixingratio inthe troposphere of the giant planetsis proportionnal tothe deep H

2

Omixingratio and thusto the internalO/H ratio(Fegleyand Prinn, 1988; Lodders and Fegley, 1994) and is xed at the \quen h" level. The \quen h" level orresponds to the level where the hemi al lifetime of

(18)

hem mix

thus depends on the CO destru tion hemi al s heme. In these s hemes, the hemi al times ale is governed by the rate-limiting rea tion where the C=O bondisbroken.PrinnandBarshay(1977)initiallyproposedthisrea tiontobe H 2 CO+H 2 !CH 3

+OH.Later,Yungetal.(1988)proposedatwo-steprea tion s heme inwhi hthe rate-limitingrea tion isH+H

2

CO+M!CH 3

O+M. Viss- her and Fegley (2005) have omputed the temperatureat the CO \quen h" levelintheatmosphereofSaturninboth ases.Thevaluestheyhaveretrieved are 1036 K for the hemi al s heme of Prinn and Barshay (1977) and 922 K for the one of Yung et al. (1988). In both ases, the eddy mixing oeÆ ient has been set to 10

9 m 2 s 1 .

In their Eq. (8), Viss her and Fegley (2005) have written the dire t link be-tween theCO mixingratioand theO/Helementalratioenri hmentofSaturn overthe solar value asa fun tionof the \quen h"level temperature. One has to note that this equation does not depend on the CO destru tion hemi al s heme. Thus, we have used this equation to ompute the possible ranges of O/Hratioenri hmentfa torsasafun tionof theobservable COtropospheri mixingratio,bysettingthe\quen h"temperatureatthe valuesgiven byboth hemi al s hemes and setting the CH

4

enri hment to 7.4 (Flasar etal., 2005; Flet her et al.,2009). The results are shown in Fig. 12.

Ourupperlimitonthetropospheri valueofq CO

resultsinupperlimitsonthe O/Hratioenri hmentfa tor.Indeed,if theone-step hemi als hemeof Prinn and Barshay (1977)re e ts the way CO isdestroyed, then the O/Hratio en-ri hment fa tor is lower than 1.2. This upper limit is low when ompared to N/H and C/H ratios in Jupiter and Saturn. Indeed, arbonand nitrogenare enri hed by a fa tor of 2.90.5 and 3.60.8 respe tively in Jupiter (Atreya et al.,1999). In Saturn, the enri hements of arbon and nitrogen are respe -tively7.41.7and2.750.75(Flasaretal.,2005;Flet heretal.,2009;Hersant et al.,2008). On the other hand, if the orre tCO destru tion s heme is the two-step pro ess of Yung etal. (1988),then the O/Hratio enri hment fa tor is lower than 13. This upper limit is in agreement with the range of values derived by Bezard et al. (2002) in the ase of Jupiter (0.2-9). It is fully on-sistent with giant planetformationmodels whereheavy elements are trapped in the amorphous i e of planetesimals (Owen et al., 1999; Owen and En re-naz,2006).Itisalso onsistentwiththehydrate lathrationof heavy elements s enario proposed by Gautier and Hersant (2005) and Hersant et al. (2008), whi h requires a large O/Hratio enri hment (>10).

The large un ertainty on the hemi al s heme whi h is responsible for the destru tion of CO as well as the large error bars on the \quen h" level tem-perature

4

(100 K), as shown in Bezard et al. (2002), result in large error

4

(19)

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

0

5

10

15

20

25

q

CO

E

H

2

O

T

q

=1036 K

T

q

=922 K

Fig. 12. Observabletropospheri CO mixingratio (q CO

) as a fun tion of theO/H ratio enri hment (E

H2O

) in the deep atmosphere of Saturn. Di erent urves or-respond to di erent \quen h" level temperatures. Ea h di erent \quen h" level temperature orresponds to a di erent hemi al s heme: 1036 K for the one-step pro ess of Prinn and Barshay (1977) and 922 K forthe two-step pro ess of Yung et al. (1988).

bars onthe O/H ratio enri hment. Moreover, the result alsodepends linearly onthe a ura yofthe CH

4

enri hmentfa tor. Thus, itisnot possibleto on- lude on the deep water abundan e of Saturn and on its formation s enario. Itwould be very valuabletosendaGalileo-likeprobe inthe deep atmosphere ofSaturntodire tlymeasure thedeepwaterabundan e.Su hameasurement would add a strong onstraint on giant planet formations enarios.

5 Summary and perspe tives

We have performedobservations ofSaturnat submillimeterwavelengths with the James Clerk Maxwell Teles ope. Our observations have led to the rst observation of CO in the atmosphere of Saturn in the submillimeter range. rea tion.

(20)

method. Our subsequent modelling of the observed CO linewith a transport model of the atmosphere of Saturn an be summarizedas follows:

 Thepresen e ofCO atthelevelswhi hare probedbyour observations (10-1000 mbar) annot be attributed to an internal sour e. The observed CO lineisdue to anexternal supply of CO tothe atmosphere of Saturn.  The signature of an internal omponent may have been ltered out during

the data redu tion pro edure (ripple subtra tion). We tentatively put an upper limiton the tropospheri CO mixingratio of 510

10

, based onthe noiselevelinthe ontinuumof the spe trum(seeFig. 11).This upperlimit needsto be on rmed by new observations.

 Assuminga permanent and uniform external ux of CO, we retrievea CO external ux of 1.510 6 m 2 s 1

(IDP or ring sour e) by modelling the transport in the atmosphere of Saturn. However, su h a permanent ux doesnot givethe best agreement with the data.

 The most likely sour e of CO to Saturnwould bean SL9-like ometwhi h impa ted the planet 200-300 years ago. This tends to on rm that large omet impa ts are important and regular providers of oxygen ompounds intothe atmospheres of the outer planets.

Even if the quality of our dete tion of CO is not suÆ ient to quantify a pos-sible internal sour e of CO and to determine a urately the external sour e of CO in the atmosphere of Saturn, the modelling pro edure we have de-veloped will enable the derival of both quantities from future observations. The internal sour e ould be onstrained from new observations at submil-limeter wavelengths when heterodyne broad-band spe trometers will be ome available. Besides, sending a probe in the atmosphere of Saturn to measure the deep water abundan e as part of or in the end of the Titan Saturn Sys-tem Mission (Coustenisetal.,2008) shouldbe onsidered.It would providea strong onstraint to the pro esses whi h lead to the formation of the planet. In parallel, Hers hel observations willenable the dire t observation of CO at highstratospheri levelsandthuspermitthedeterminationoftheCOexternal sour e. More generally, observations of CO and H

2

O with Hers hel would be very valuable with respe t to addressing the question of the origin of oxygen ompounds.

A knowledgements

T. Cavaliewouldliketo thank F. Hersant for helpful dis ussions and J.Hoge for su essfully operating the observations. This work has been supported by the Programme National de Planetologie (PNP) and has bene ted from resear hfunding fromthe European Community's Sixth FrameworkProgram

(21)

Referen es

Asphaug, E., Benz, W., 1996. Size, Density, and Stru ture of Comet Shoemaker-Levy 9 Inferred from the Physi s of Tidal Breakup. I arus 121, 225{248.

Atreya,S.K., Wong, M.H.,Owen, T. C., Maha y,P.R.,Niemann,H. B.,de Pater,I.,Drossart,P.,En renaz,T.,1999.A omparisonoftheatmospheres ofJupiter and Saturn:deep atmospheri omposition, loudstru ture, ver-ti almixing, and origin.Planetary and Spa e S ien e 47, 1243{1262. Beer, R., 1975. Dete tion of arbon monoxide in Jupiter. The Astrophysi al

Journal200, L167{L169.

Bezard, B., Drossart, P.,Lellou h,E., Tarrago, G.,Maillard, J. P., 1989. De-te tionof arsine inSaturn. The Astrophysi al Journal346, 509{513. Bezard, B., Lellou h, E.,Strobel,D., Maillard,J.-P., Drossart, P., 2002.

Car-bonMonoxideonJupiter:Eviden eforBothInternalandExternalSour es. I arus 159, 95{111.

Bo kelee-Morvan, D., Lis, D. C., Wink, J. E., Despois, D., Crovisier, J., Ba hiller,R.,Benford,D.J.,Biver,N.,Colom,P.,Davies,J.K.,Gerard,E., Germain,B., Houde, M.,Mehringer, D., Moreno,R., Paubert, G.,Phillips, T. G., Rauer, H., 2000. New mole ules found in omet C/1995 O1 (Hale-Bopp). Investigating the link between ometary and interstellar material. Astronomy and Astrophysi s 353, 1101{1114.

Borysow, A., Frommhold, L.,1986. Theoreti al ollision-indu ed rototransla-tionalabsorption spe tra for the outerplanets - H2-CH4 pairs. The Astro-physi al Journal 304, 849{865.

Borysow, J., Trafton, L., Frommhold, L., Birnbaum, G., 1985. Modeling of pressure-indu edfar-infrared absorption spe tra Mole ularhydrogen pairs. The Astrophysi alJournal 296, 644{654.

Borysow, J.,Frommhold,L.,Birnbaum,G.,1988.Collison-indu ed rototrans-lationalabsorptionspe tra ofH2-Hepairs attemperaturesfrom 40to3000 K.The Astrophysi al Journal 326, 509{515.

Burgdorf, M.,Orton,G., vanCleve,J.,Meadows, V., Hou k,J., 2006. Dete -tion of new hydro arbons in Uranus' atmosphere by infrared spe tros opy. I arus 184, 634{637.

Cavalie,T.,Billebaud,F.,Lellou h,E.,Fou het,T.,Dobrijevi ,M.,En renaz, T., Brillet,J.,Herpin, F., 2007. CO in the stratospheres of Saturn,Uranus and Neptune seen with Hers hel-HIFI. Hers hel Open time Key Program Workshop, 20-21 Feb. 2007, ESTEC, Noordwi k, The Netherlands.

Cavalie, T., Billebaud, F., Biver, N., Dobrijevi , M., Lellou h, E., Brillet, J., Le a heux, A., Hjalmarson, A., Sandqvist, A., Frisk, U., Olberg, M., The Odin Team, Bergin, E. A., 2008a. Observation of water vapor in the

(22)

S ien e 56, 1573{1584.

Cavalie,T.,Billebaud,F.,Fou het,T.,Lellou h,E.,Brillet,J.,Dobrijevi ,M., 2008b.ObservationsofCOonSaturnandUranusatmillimeterwavelengths: newupperlimitdeterminations.AstronomyandAstrophysi s484,555{561. Coustenis,A.,Salama,A.,Lellou h,E.,En renaz,T.,Bjoraker,G.L., Samuel-son,R.E.,de Graauw, T.,Feu htgruber, H.,Kessler,M.F., 1998.Eviden e forwatervaporinTitan'satmospherefromISO/SWSdata.Astronomyand Astrophysi s 336, L85{L89.

Coustenis, A., and 155 olleagues, 2008. TandEM: Titan and En eladus mis-sion. ExperimentalAstronomy 23, 893{946.

Crovisier,J., 1996. Observational onstraints on the omposition and nature of Comet D/Shoemaker-Levy 9. In: Noll, K. S., Weaver, H. A., Feldman, P. D. (Eds.), IAU Colloq. 156: The Collision of Comet Shoemaker-Levy 9 and Jupiter.pp. 31{54.

de Pater, I., Di kel, J. R., 1991. Multifrequen y radio observations of Saturn atring in linationangles between 5 and 26 degrees. I arus 94, 474{492. Despois,D.,1997.RadioLineObservationsOfMole ularAndIsotopi Spe ies

InComet C/1995O1 (Hale-Bopp).Earth Moonand Planets 79, 103{124. Dunn, D. E., de Pater, I., Wright, M., Hogerheijde, M. R., Molnar, L. A.,

2005. High-Quality BIMA-OVRO Images of Saturn and its Rings at 1.3 and 3Millimeters.The Astronomi al Journal 129, 1109{1116.

Edgington, S.G.,Atreya, S.K., Trafton, L.M., Caldwell,J.J., Beebe,R.F., Simon, A. A., West, R. A., Barnet, C., 1997. Phosphine Mixing Ratios and Eddy Mixing CoeÆ ients in the Troposphere of Saturn. In: Bulletin of the Ameri an Astronomi al So iety. Vol.29 of Bulletin of the Ameri an Astronomi alSo iety. p.992.

En renaz, T., Lellou h, E., Drossart, P., Feu htgruber, H., Orton, G. S., Atreya, S. K., 2004. First dete tion of CO in Uranus. Astronomy and As-trophysi s413, L5{L9.

Fegley, B., Prinn, R. G., 1988. Chemi al onstraints on the water and total oxygen abundan es in the deep atmosphere of Jupiter. The Astrophysi al Journal324, 621{625.

Feu htgruber, H.,Lellou h,E.,deGraauw, T.,Bezard,B.,En renaz,T., Grif- n,M.,1997.Externalsupplyofoxygentotheatmospheresofgiantplanets. Nature389, 159{162.

Feu htgruber, H., Lellou h, E., En renaz, T., Bezard, B., Coustenis, A., Drossart, P., Salama, A., de Graauw, T., Davis, G. R., 1999. Oxygen in the stratospheres of the giant planets and Titan. In: Cox, P., Kessler, M. (Eds.),The Universe as Seenby ISO.Vol.427 of ESA Spe ial Publi ation. p.133.

Flasar,F.M.,and45 olleagues,2005.Temperatures,Winds,andComposition inthe Saturnian System. S ien e 307, 1247{1251.

Flet her, L. N., Orton,G. S., Teanby, N. A., Irwin, P. G. J.,Bjoraker, G.L., 2009. Methane and its isotopologues on Saturn from Cassini/CIRS

(23)

obser-Forget,F.,Millour,E.,Lebonnois,S.,Montabone,L.,Dassas,K.,Lewis,S.R., Read, P. L., Lopez-Valverde, M. A., Gonzalez-Galindo, F., Montmessin, F., Lefevre, F., Desjean, M.-C., Huot, J.-P., 2006. The new Mars limate database.In:Forget,F.,Lopez-Valverde,M.A.,Desjean,M.C.,Huot,J.P., Lefevre, F., Lebonnois, S., Lewis, S. R., Millour, E., Read, P. L., Wilson, R.J. (Eds.), MarsAtmosphere Modelling and Observations. p.128.

Gautier,D., Hersant, F., 2005. Formationand Compositionof Planetesimals. Spa eS ien e Reviews 116, 25{52.

GriÆn, M. J.,Ade, P. A. R., Orton,G. S., Robson, E. I., Gear, W. K., Nolt, I. G., Radostitz, J. V., 1986. Submillimeterand millimeterobservations of Jupiter.I arus 65, 244{256.

Hersant, F., Gautier, D., Tobie, G.,Lunine, J. I., 2008. Interpretation of the arbon abundan e in Saturn measured by Cassini. Planetary and Spa e S ien e 56, 1103{1111.

Hesman,B. E.,Davis,G.R.,Matthews, H.E.,Orton,G.S., 2007.The abun-dan epro le of CO in Neptune's atmosphere. I arus 186, 342{353.

Lellou h,E.,Bezard,B.,Moses,J.I.,Davis,G.R.,Drossart,P.,Feu htgruber, H., Bergin, E. A., Moreno, R., En renaz, T., 2002. The Origin of Water Vapor and Carbon DioxideinJupiter's Stratosphere. I arus 159, 112{131. Lellou h, E.,Moreno, R.,Paubert, G.,2005. A dual originfor Neptune's

ar-bonmonoxide?Astronomy and Astrophysi s 430, L37{L40.

Levison, H. F., Dun an, M. J., Zahnle, K., Holman, M., Dones, L., 2000. NOTE:PlanetaryImpa tRatesfromE lipti Comets. I arus143,415{420. Lewis, S. R., Collins, M., Read, P. L., Forget, F., Hourdin, F., Fournier, R., Hourdin,C., Talagrand,O.,Huot, J.-P.,1999.A limatedatabaseforMars. Journalof Geophysi al Resear h 104, 24177{24194.

Lissauer, J. J., 1993. Planet formation. Annual Review of Astronomy and Astrophysi s 31, 129{174.

Lissauer,J. J., 2005. Formationof the OuterPlanets. Spa e S ien e Reviews 116, 11{24.

Lodders,K.,Fegley,Jr.,B.,1994.Theoriginof arbonmonoxideinNeptunes's atmosphere.I arus 112, 368{375.

Marten, A.,Gautier,D., Owen, T., Sanders, D. B., Matthews, H. E.,Atreya, S. K., Tilanus, R. P. J., Deane, J. R., 1993. First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and the impli a-tions foratmospheri hemistry.The Astrophysi alJournal 406, 285{297. Melni k, G., Russell, R. W., Gosnell, T. R., Harwit, M., 1983.

Spe tropho-tometryofSaturnand itsrings from60to180mi rons.I arus 53,310{318. Moreno,R.,Marten,A.,Matthews,H.E.,Biraud,Y.,2003.Long-term evolu-tionof CO,CS and HCNinJupiter afterthe impa tsof omet Shoemaker-Levy 9.Planetary and Spa e S ien e 51, 591{611.

Moses, J. I., Bezard, B., Lellou h, E., Gladstone, G. R., Feu htgruber, H., Allen,M.,2000a. Photo hemistry of Saturn's Atmosphere. I. Hydro arbon Chemistryand Comparisons with ISOObservations. I arus 143, 244{298.

(24)

Allen,M., 2000b.Photo hemistry ofSaturn's Atmosphere. II. E e ts of an In uxof External Oxygen. I arus 145, 166{202.

Noll, K.S., Kna ke, R. F., Geballe, T. R., Tokunaga, A. T., 1986. Dete tion of arbonmonoxideinSaturn.TheAstrophysi alJournalLetters309,L91{ L94.

Noll,K.S.,Larson,H.P.,1991.Thespe trumofSaturnfrom1990to2230/ m -Abundan es of AsH3, CH3D, CO, GeH4, NH3, and PH3. I arus 89, 168{ 189.

Ollivier, J.L.,Dobrijevi ,M.,Parisot, J. P., 2000.New photo hemi almodel ofSaturn's atmosphere.Planetary and Spa e S ien e 48, 699{716.

Owen, T., En renaz, T., 2006. Compositional onstraints ongiantplanet for-mation.Planetary and Spa eS ien e 54, 1188{1196.

Owen, T., Maha y, P., Niemann, H. B., Atreya, S., Donahue, T., Bar-Nun, A.,de Pater, I., 1999. A low-temperature origin for the planetesimalsthat formedJupiter. Nature 402, 269{270.

Prange, R., Fou het, T., Courtin, R., Connerney, J. E. P., M Connell, J. C., 2006. Latitudinal variation of Saturn photo hemistry dedu ed from spatially-resolved ultraviolet spe tra.I arus 180, 379{392.

Prinn, R.G., Barshay, S.S., 1977. CarbonmonoxideonJupiter and impli a-tions foratmospheri onve tion. S ien e 198, 1031{1034.

Rosenqvist, J.,Lellou h,E., Romani,P. N., Paubert, G.,En renaz, T., 1992. Millimeter-wave observations of Saturn, Uranus, and Neptune - CO and HCNon Neptune. The Astrophysi alJournal Letters 392, L99{L102. Roulston, M. S., Ahrens, T. J., 1997. Impa t Me hani s and Frequen y of

SL9-Type Events onJupiter. I arus 126, 138{147.

Smith,H.,Bu kle,J.,Hills,R.,Bell,G.,Ri her,J.,Curtis,E.,Withington,S., Lee h, J., Williamson, R., Dent, W., Hastings, P., Redman, R.,Woo , B., Yeung, K., Friberg, P., Walther, C., Ka kley, R., Jenness, T., Tilanus, R., Dempsey,J., Kroug,M.,Zijlstra, T., Klapwijk, T. M.,2008. HARP:a sub-millimetreheterodynearrayre eiveroperatingontheJamesClerk Maxwell Teles ope. In: So iety of Photo-Opti al Instrumentation Engineers (SPIE) Conferen e Series. Vol. 7020 of So iety of Photo-Opti al Instrumentation Engineers (SPIE) Conferen e Series.

Uli h,B. L., 1981. Millimeter-wavelength ontinuum alibration sour es. The Astronomi alJournal 86, 1619{1626.

Viss her,C.,Fegley,B.J.,2005.Chemi alConstraintsontheWaterandTotal OxygenAbundan es inthe DeepAtmosphere ofSaturn.TheAstrophysi al Journal623, 1221{1227.

Wright,E. L.,1976.Re alibration ofthe far-infraredbrightness temperatures ofthe planets.The Astrophysi alJournal 210, 250{253.

Yung,Y. L.,Drew,W. A.,Pinto,J.P.,Friedl, R.R.,1988. Estimationofthe rea tionrate forthe formationof CH3OfromH +H2CO -Impli ationsfor hemistry inthe solar system. I arus 73, 516{526.

(25)

CometShoemaker-Levy 9and Jupiter. pp. 183{212.

Zahnle, K., S henk, P., Levison, H., Dones, L., 2003. Cratering rates in the outerSolar System. I arus 163, 263{289.

Figure

Fig. 1. Observed spetrum of Saturn at 345 GHz with the H08 reeptor and the H10
Fig. 2. Central sub-bands showing the CO line as well as the strongest ripple.
Fig. 3. Original and modied CO mixing ratio vertial proles used in the modelling
Fig. 4. Spetrum of Saturn at 345 GHz modelled with internal soure only . The solid
+7

Références

Documents relatifs

These latitudinal cuts, per 5° of latitude, show logically the same variability as that of the column-averaged VMRs, with very low values of the VMR at all altitudes in the

sider gradient flows on both sides of a curved frontal trace in the f -plane, separating two in- compressible fluids with different densities. We will implicitly assume

Also, we cannot firmly constrain the origin of the detected carbon monoxide on Uranus as a cometary impact, ice grain ablation, or a combined source due to both processes can give

Indeed in the case of a 10 nm diameter sphere, the electrostatic interaction is mostly covered by Brownian motion noise and makes it difficult to perform a precise force

With all these processes going on simultaneously, a de- finite mean temperature distribution is established at the surface of the earth and throughout the atmosphere;

Hardy Hendren of the Children's Hospital, using using a human esophagus in the test stand and our modified spring force compression gage bougie. Once the