• Aucun résultat trouvé

Aztec pyramid

N/A
N/A
Protected

Academic year: 2021

Partager "Aztec pyramid"

Copied!
3
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Materials Today, 19, 5, pp. 292-293, 2016-05-04

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.mattod.2016.04.017

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Aztec pyramid

SpringThorpe, Tony; Caballero, Juan; Barrios, Pedro; Wasilewski, Zbigniew

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=38588c86-4e69-41cc-af5f-b0219d40174d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=38588c86-4e69-41cc-af5f-b0219d40174d

(2)

MaterialsTodayVolume19,Number5June2016 UNCOVERED

Uncovered

Aztec

pyramid

Electrochemical

etching

of

Te-doped

gallium

arsenide

structures

Tony

SpringThorpe

1

,

Juan

Caballero

1

,

Pedro

Barrios

1,

*

and

Zbigniew

Wasilewski

2

1NationalResearchCouncilofCanada,Canada

2UniversityofWaterloo,Canada

Thosewithvividimaginationsmightthinkthattheimageon thisissue’scoverisanaerialviewoftheSpanishconquistadors,on horseback, preparing to assault the palace of the Aztec leader Montezuma-IIin1520CE.Inrealityitistheresultofthe electro-chemical etching (ECE) [1] of a tellurium (Te) doped gallium arsenide (GaAs) molecular beam epitaxy (MBE) structure. Te is ann-typedopantinGaAs,andisincorporatedontheAssitesinthe crystal lattice.This dopantcanbeusedcontrollably toproduce

electricalcarrierconcentrationsintherange1E16to>1E19/cm3. Thecompletestructurewasaseriesoffive350nmthickTe-GaAs layers,inwhichtheTeconcentrationwasdecreasedstepwisefrom 1E19/cm3 nearthe initial substrateto 1E17/cm3at the final growthsurface.Thiswasachievedbyreducingthetemperatureof thesourceoftheTeatomsforeachlayer.Bysubsequentanalysis thetemperatureoftheTesourcecanthenberelatedtotheamount ofTeincorporatedineachlayer.Oncethiscalibrationis complet-ed complex structures can then be grown with the accurately controlledcarrierconcentrationsthatarenecessaryfor ‘state-of-the-art’deviceperformance.

ECEwasused,togetherwithcapacitancevs.voltage(CV) anal-ysis,tomeasurethecarrierconcentrationvariationofthe struc-ture. This was carried out from the surface of the layer, as a functionofdepthin 10nmincrements,to the underlying sub-strate.TheetchingwasperformedusingaWEPCVP21ECVprofiler

[2],witha3mmdiametersealingringtodefinetheetchedarea. Theelectrolyteusedwasthetraditionalammonium tartrate/am-moniasolution[3].Opticalilluminationwasusedduringetching togenerateelectron/hole pairs,andthe dissolutioncurrentwas controlledat1mA/cm2(70.7mA).UsingFaraday’slawsof elec-trolysis, the time to remove 10nm of GaAs was automatically calculated,andtheetchprocesswasthenstoppedtoenableaCV measurementtobecarried out,anda calculationofthe carrier concentrationtobemade. Thiswasrepeatedone hundredand seventyfivetimes,untiltheetchdepthwas1.75mm,togenerate agraphicaldepthprofileoftheTe-dopingvariation.

Normally,ifthefinalepitaxialsurfaceisdefectfree,theetching proceedsinaplanarmanner.However,thisparticularsamplehad a large number of optically visible defects (700/cm2), which

servedasthenucleationsitesforthefeaturesthatwereobserved atthetermination oftheECVmeasurementsequence.The fea-turesareetchpits,withoveralldimensions500mm500mm. Thattheyarepitscanbeseenincleavedsection,althoughtheycan appeartotheeyetoberaisedpyramid-likestructures.Sincethe GaAssubstratehada[100]crystalsurface,thesidesofthepyramid aretheslowetching{111}planesoftheGaAscubiccrystallattice, alignedtothetwomutuallyperpendicular(110)directions.

The formation ofpits duringetching isdue to the presence of crystalline defects, such as dislocations and/or stacking

*Correspondingauthor:Barrios,P.(Pedro.Barrios@nrc-cnrc.gc.ca)

292

1369-7021/CrownCopyrightß2016PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).http://dx.doi.org/10.1016/

(3)

faults. Strain fields associated with the defective crystal lattice acceleratethe etchprocessrelativetothe initial planarsurface. InthecaseofECE,thestrainfieldsactaslowresistancecurrent paths,whichresultinenhancedmaterialremoval.Howeveritis notclearastowhytheseparticularpitsformedwiththewire-like featuresregularly arranged aroundthe centralinverted stepped pyramid.

Profiles at other locations on the wafer produced the same features.Soitisa reproducible,butinexplicable,phenomenon. However,etchingusinganalternativeelectrolytewasmoreplanar, butdidnotproducesimilarfeatures.Soitwouldappearthatthese pitsareapeculiarityoftheammoniumtartrate/ammonia electro-lyteECEprocess.

Furtherreading

[1]T.Ambridge,M.M.Faktor,J.Appl.Electrochem.5(1975)319–328.

[2]http://wepcontrol.com/cv-profiler/index.htm.

[3]PN4200Polaron’sSemiconductorprofiler,Instructionmanual,Bio-Rad,

Rich-mond,CA.

MaterialsTodayVolume19,Number5June2016 UNCOVERED

This year’scover competitionis brought to youin associationwithZEISS.Astheworld’sonly manufac-tureroflight,X-rayandelectronmicroscopes,ZEISS offerstailor-made microscopesystems formaterials research,academiaandindustry.

Visitwww.zeiss.com/microscopytolearnmore. Visithttp://www.materialstoday.com/cover-competition-2015toseethe allthewinningimages.

293

UNC

O

VE

Références

Documents relatifs

This is liable to produce localised variations of nematic parameters (such as order parameter, density, etc.) in the interfacial region from their bulk

Finally, about 3 200 rotation-torsion lines were assigned from which, using the method extensively described in [9], a large set of precise experimental

The most obvious choice is the ground state of the Coulomb term for the insulating phase (corresponding to the classical Wigner superlattice) compared to the ground state of the

We think that the results in those papers may be very useful to study the control of a channel flow coupled with a beam equation, with periodic boundary conditions at the

The transition am- plitudes containing light/heavy mesons in the initial and final states as well as the couplings of the heavy mesons to hadronic currents can be calculated via

investigation of the ordering kinetics, some reference measurements performed at the zone center (r point) pointed out that aging also induced an apparent broadening of the Bragg

Echelle: Brevet professionnel "

The above results can be used to generate integer vertices of the feasible set X, adjacent to a given integer vertex x 1.. The efficiency of a procedure based on these results will