• Aucun résultat trouvé

If i = 2, j = 4, l = 5, we get the permutation which is odd

N/A
N/A
Protected

Academic year: 2022

Partager "If i = 2, j = 4, l = 5, we get the permutation which is odd"

Copied!
2
0
0

Texte intégral

(1)

MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for October 12, 2018

1. (a) Even (12 inversions); (b) odd (17 inversions); (c) odd (17 inversions).

2. We should have k = 4 (to have all integers from 1 to 6 in the top row; also, the numbers i, j, l should be equal (in some order) to 2, 4, 5. If i = 2, j = 4, l = 5, we get the permutation

5 2 4 3 6 1 5 1 3 2 6 4

which is odd. Other permutations which occur correspond to i =4, j =2, l=5 (even, because we exchange one pair of numbers in an odd permutation),i=2,j=5,l=4 (even, because we exchange one pair of numbers in an odd permutation),i =5,j=4,l=2(even, because we exchange one pair of numbers in an odd permutation), i = 4, j = 5, l = 2 (odd, because we exchange two pairs of numbers in an odd permutation), i = 5, j = 2, l = 4 (odd, because we exchange two pairs of numbers in an odd permutation). Overall, the answer is (i, j, k, l) = (4, 2, 4, 5), (i, j, k, l) = (2, 5, 4, 4), or (i, j, k, l) = (5, 4, 4, 2).

3. (a) Performing elementary row operations, we get

det

1 0 −2 1 1 3 4 3 1

=det

1 0 −2 0 1 5 0 3 9

=det

1 0 −2 0 1 5 0 0 −6

= −6

(b) Performing elementary row operations, we get

det

1 1 −2 −1 2 0 3 −1 4 2 3 1 3 0 0 1

=det

1 1 −2 −1 0 −2 7 1 0 −2 11 5 0 −3 6 4

=det

1 1 −2 −1

0 −2 7 1

0 0 4 4

0 0 −9/2 5/2

=

=4/2det

1 1 −2 −1 0 −2 7 1

0 0 1 1

0 0 −9 5

=2det

1 1 −2 −1 0 −2 7 1

0 0 1 1

0 0 0 14

= −56.

4. (a) Performing elementary row operations, we get

det

1 1 1 1 2 2 1 2 3

=det

1 1 1 1 2 2 0 0 1

=det

1 1 1 0 1 1 0 0 1

=1.

(b) Performing elementary row operations, we get

det

1 1 1 1 1 2 2 2 1 2 3 3 1 2 3 4

=det

1 1 1 1 1 2 2 2 1 2 3 3 0 0 0 1

=det

1 1 1 1 1 2 2 2 0 0 1 1 0 0 0 1

=det

1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1

=1.

(2)

(c) Subtracting from each of the rows the previous row (from the row n up), we get the matrix

1 1 1 . . . 1 1 0 1 1 . . . 1 1 0 0 1 . . . 1 1 ... ... ... . .. 1 1 0 0 0 . . . 1 1 0 0 0 . . . 0 1

 ,

so the determinant of our matrix is equal to1.

5. (a) det(A) = (2−c)2−1 = c2 −4c+3 = (c−1)(c−3), so the matrix is not invertible forc=1and c=3.

(b) Performing elementary row operations, we get

det(A) = −det

1 c−1 2 3 2 1+c

−1 4c 3

= −det

1 c−1 2 0 5−3c c−5 0 5c−1 5

=

= −5det

1 c−1 2 0 5−3c c−5 0 c−1/5 1

= −5det

1 c−1 2

0 5−3c− (c−1/5)(c−5) 0

0 c−1/5 1

=

= −5(5−3c− (c−1/5)(c−5))det

1 c−1 2

0 1 0

0 c−1/5 1

=

= (5c2−11c−20)det

1 c−1 2

0 1 0

0 0 1

= (5c2−11c−20),

so Ais not invertible when c is a root of 5c2−11c−20=0, that is 11±

521 10 .

Références

Documents relatifs

[r]

The following proposition corrects the part of the proof of Proposition 5.7 of the

I1 faut d'abord recapituler certains faits sur les corps biquadratiques, ce qui aura lieu dans le paragraphe 3.. Dans le dernier paragraphe nous allons

all the q~k correspond to finite energy states, i.e.. Our theorem says that states with non-zero initial decay rate could be found among infinite energy states1). What

les parois laissées apparentes sont en béton blanc, dont la teinte a été tra- vaillée pour être en harmonie avec la cou- leur de la pierre de tuffeau, très présente

◊ remarque : l'inductance est plus grande avec le noyau de fer feuilleté (aimantation induite) ; elle est un peu plus faible avec un noyau de métal non feuilleté (champ magnétique

(a) The easiest thing to do is to apply the algorithm from the lecture: take the matrix (A | I) and bring it to the reduced row echelon form; for an invertible matrix A, the result

The last two rows are proportional, so subtracting from the third row three times the second row, we obtain a matrix with a zero row whose determinant is zero.. , n − 1, the row i