• Aucun résultat trouvé

High‐resolution wavelength‐dispersive spectroscopy of K‐shell transitions in hydrogen‐like gold

N/A
N/A
Protected

Academic year: 2021

Partager "High‐resolution wavelength‐dispersive spectroscopy of K‐shell transitions in hydrogen‐like gold"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02362557

https://hal.archives-ouvertes.fr/hal-02362557

Submitted on 13 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High-resolution wavelength-dispersive spectroscopy of K-shell transitions in hydrogen-like gold

T. Gassner, A. Gumberidze, M. Trassinelli, R. Heß, U. Spillmann, D. Banaś, K.-h. Blumenhagen, F. Bosch, C. Brandau, W. Chen, et al.

To cite this version:

T. Gassner, A. Gumberidze, M. Trassinelli, R. Heß, U. Spillmann, et al.. High-resolution wavelength- dispersive spectroscopy of K-shell transitions in hydrogen-like gold. X-Ray Spectrometry, Wiley, 2019,

�10.1002/xrs.3098�. �hal-02362557�

(2)

DOI:xxx/xxxx

ARTICLE TYPE

High-resolution Wavelength-dispersive Spetrosopy of

K-shell Transitions in Hydrogen-like Gold

T. Gassner 1,2

| A. Gumberidze*

2

| M. Trassinelli 3

| R.Heÿ 2

| U. Spillmann 1,2

| D.

Bana±

4

| K.-H. Blumenhagen 1

| F. Bosh2 | C. Brandau2,5 | W. Chen2 | Chr.

Dimopoulou 2

| E.Förster 1,6

| R.E. Grisenti 2,7

| S. Hagmann 2,7

| P.-M. Hillenbrand 2

| P.

Indeliato 8

| P.Jagodzinski 9

| T. Kämpfer 1

| M. Lestinsky 2

| D. Liesen 2,10

| Yu.A.

Litvinov 2

| R.Loetzsh 1,6

| B. Manil 11

| R. Märtin 1

| F. Nolden 2

| N. Petridis 2,7

| M. S.

Sanjari 2

| K.S. Shulze 1,6

| M. Shwemlein 1

| A.Simionovii 12

| M. Stek 2

| Th.

Stöhlker 1,2,6

| C. I. Szabo 8,13

| S.Trotsenko 1,2

| I. Ushmann 1,6

| G.Weber 1

| O.

Wehrhan 1

| N. Winkler 2

| D.F.A. Winters 2

| N. Winters 2

| E.Ziegler 14

| H.F. Beyer 2

1

Helmholtz-InstitutJena,Jena,

Germany

2

GSIHelmholtzzentrumfür

Shwerionenforshung,Darmstadt,

Germany

3

INSP,CNRSandSU,Paris,Frane

4

InstituteofPhysis,JanKohanowski

University,Kiele,Poland

5

PhysikalishesInstitut,

Justus-Liebig-Universität,Gieÿen,

Germany

6

IOQ,FSU,Jena,Germany

7

IKF,Goethe-Universität,Frankfurt

amMain,Germany

8

LKB,CNRS-UMR8552,Collègede

Frane,ENS-PSLResearh

University,SU,UPMC,Paris,Frane

9

DepartmentofMathematisand

Physis,KieleUniversityof

Tehnology,Kiele,Poland

10

FakultätfürPhysikundAstronomie,

Rupreht-Karls-Universität,

Heidelberg,Germany

11

LPL,UMR7538CNRS-Université

Paris13,Villetaneuse,Frane

12

ISTerre,UGA,CNRS,CS40700,

Grenoble,Frane

13

TheissResearh,LaJolla,CA

92037,UnitedStates

14

ESRF,Grenoble,Frane

Correspondene

Email:a.gumberidzegsi.de

Abstrat

We present a measurement of K-shell transitions in H-like gold (Au

78+

)

usingspeiallydevelopedtransmission typerystalspetrometersombined

with Ge(i) miro-strip detetors. The experiment has been arried out at

theExperimental Storage Ring (ESR) at GSI in Darmstadt.This isa rst

high-resolutionwavelength-dispersivemeasurementofaK-shelltransitionin

ahigh-Z H-like ion, thus representing an importantmilestone in this eld.

Ideasonpossiblefuture improvementsaredisussedaswell.

KEYWORDS:

Storagerings,X-rayspetrosopy,Highly-hargedions,QED

(3)

1 INTRODUCTION

Preise measurementsofatomi strutureand transitionshaveprovidedthroughout manyyearsadrivingfore for

developingthefundamentaltheoriesinphysis.Inpartiular,thedisoveryoftheLambshiftinhydrogenhasplayed

amajorroleinthedevelopmentofthequantumeletrodynamis(QED).Nowadays,themeasurementsonhydrogen

and lightatoms ahieveanextraordinarypreisionof upto 10

−15

whih isoftenmathedby theQEDalulations

emphasizingitsimpressivepreditingpower[13,28,18,24,12,23℄.

Thesituationisquitedierentintherealmofheavyhydrogen-likesystems,i.e.heavyionswithonlyoneeletron.

Here,bothexperimental andtheoretial preisionare still orders ofmagnitude lowerthan thoseavailable forlight

atoms. On thetheoretial side, themain hallenge isrelated to thefat that sinetheparameter αZ 1 one an

not use perturbative methods (as for light atoms) and one has to perform all-order numerialalulations in the

relativistiframework.Ontheexperimentside,thehallengesare:rstly,theprodutionoftheheavyH-likeionsin

suientquantities andthen storingthemwith properqualityfor preisemeasurements. Furthermore,thebinding

energies of suh heavyH-like ions are of the order of several 10s of keV up to 100keV. Therefore, instead of the

laserspetrosopytehniquesusedforthelightsystems,herex-rayspetrosopyhasbeenusedthroughouttheyears

[11,10, 9,25,4,6℄,exeptforhypernetransitions [20,21,27℄.

Heavy-ion aelerators and storage rings as well asnew generation ion traps have been the failities where H-,

He- andLi-likeions withhighestnulear hargesupto Z=92 havebeenmadeavailable forpreisionexperiments

[8,22,2,7,26,16, 1℄.

For the ase of the ground state Lamb shift in high-Z H-like systems, where the strongest Coulomb elds an

be obtained and thus QED eets are strongest, the spetrosopy was until reently onduted with solid state

Ge(i) detetorsensuringahighdetetioneieny.Therst-orderQED ontributions(the selfenergyandvauum

polarization) havebeentested at the level of 1%. However,theurrentexperimental preision is still notenough

to testthehigher-orderQEDeets, whoseevaluationshavebeenreentlyompletedafter manyyearsofextensive

theoretialwork(see[29℄andreferenestherein).Inordertogainthesensitivitytothehigher-orderQEDeets,the

experimentalunertaintyofthe1sLambshifthastobereduedbelow1eV.Oneofthemainlimitationshereisdue

to theenergyresolution oftheonventional semiondutordetetorsused in theseexperiments.Toirumventthis

problem, dediated rystalspetrometers togetherwithmiro-stripGe(i) detetorshavebeendeveloped, optimized

forhardx-rayspetrosopyatstoragerings.Inthiswork,wepresentthersthigh-statistismeasurementusingthis

instrument at the Experimental Storage Ring (ESR) at GSI in Darmstadt. The measurement was arried out for

H-likegold(Au

78+

).

2 THE EXPERIMENT

Thedetaileddesriptionoftheexperimentanbefoundin[5,14℄.Briey,upto10

8

offullyionizedgoldions(Au

79+

)

with aninitial kinetienergyof about300MeV/uwereinjeted into theESR. Here,theywerestored, ooled, and

deeleratedto nalveloityofβ =vion/c= 0.47136(10).Theooledionbeamwasthenollidingwithasupersoni

gasjetofKrypton atomshavinganarealdensityof1012atoms/m2.Someoftheollisionsleadto theapture of

thetargeteletronintoanexitedstateoftheprojetileion,thusformingtheH-likegold.Theseexitedstatesthen

deay to theground-stateleading (amongothers) to theemission of the Lyman-αradiation whih is measuredby

ourspetrometers.

Forthe measurementofthe Ly-α1 transition wavelength, twotwin spetrometersoperatedinthe foussingom- pensated Laue(FOCAL)geometry havebeenused [5℄. Theshematisof theFOCAL setupat thegasjettarget of

theESRisshowninFig.1.

One of the main hallenges for preision spetrosopy of relativisti ions is the Doppler eet. In the urrent

experiment, thetwoidential rystalspetrometer armsarealignedperpendiular withrespet to theionbeamat

Deeased16.12.2016

(4)

Motivation

Lamb shift in H-like Gold

FIGURE 1ShemativiewoftheFOCALsetupatthegasjettargetoftheESR. Thetwospetrometerarmswith

leadshieldingareshowninblueaswellasthereetedx-raypathinredimpingingontheGe(i)miro-stripdetetor.

both sides of the interation hamberon one ommon line of sight. In this speial geometry rest-frame transition

wavelengthλ0 anbederivedvia

λ1+λ2= 2γ λ0, (1)

where λ1,2 arethe wavelengths measuredbythe tworystalspetrometerarms andγ isLorentz fator. In this

way,theunertaintyduetotheobservationanglestemmingfromthepossiblemisalignmentofthebeamisanelled.

The wavelengths λ1,2 are measured with respet to a well known 63120.44(4) eV γ transition from an isotope

enrihed

169

Ybsoure.Theion-beamveloityhasbeenhosensuh(β= 0.47136(10)),thattheDoppler-shiftedlab- frame energyoftheLy-α1 transition approximatelyoinideswith this alibrationenergythusavoidingsystemati unertaintiesduetolargeextrapolations.

3 RESULTS

Our experimental value for the Lyman-α1 transition energy in H-like gold is ELyexpα1 = 71531.5(15.0)eV [14℄. The

unertaintyof15eVinludesallthestatistialandsystematiunertainties(addedquadratially).Theexperimental

value for the 1s Lamb shift is obtained by subtrating our value for the Lyman-α1 transition energy from the

theoretialvalueforthe2p3/2bindingenergy,whihissuientlywellknown[29℄.InTable1,ourexperimentalresult for the ground-state Lamb shift in H-like gold is presented together with the experimental value obtained with a

Ge(i)detetorinanearlyexperimentattheESReletronooler[3℄andtheresultobtainedwithamiroalorimeter

detetorinthesamebeamtime[19℄.Inthelastentryofthetable,thetheoretialvalueofYerokhinandShabaev[29℄

isgiven.OurpresentvalueoftheLambshiftishigherthanthetheoretialvalueandtheotherexperimentalresults

(5)

TABLE 1The1sLambshiftofAu78+ ineV.

Ourresult 244.1(15.0)

Beyeretal.1995[3℄ 202.3(7.9)

Kraft-Bermuthetal.2017[19℄ 211(42)

Theory,YerokhinandShabaev2015[29℄ 205.2(2)

TABLE 2DierentontributionstothetotaluertaintyoftheLyman-α1transitionenergy.

Soure Value(eV)

Statistis 2.2

TemporalDrift 2.8

Gas-TargetPosition 13.0

Ion-BeamVeloity 4.3

Detetor-CrystalPosition 5.1

Total 15.0

4 EXPERIMENTALUNCERTAINTIESAND POSSIBLE FUTUREIMPROVEMENTS

Intable2,varioussouresofunertaintiesforourmeasuredvalueofthetransitionenergyarepresented.Theahieved

statistialunertaintyof2.2eVisalreadyquiteimpressive,espeiallyforarystalspetrometeroperatedintheregion

of hard xraysof H-likehigh-Z ions. However,it is still at leastfator of 2higher thanwhat is needed to test the

higher-orderQEDeets.Furthermore,thesystematiunertaintiesduetothetargetanddetetorrystalpositions

aswellasthosedue tobeamveloityandthetemporaldriftofthewholesetupareunaeptablyhigh.

Inthefollowing,webrieypresentfewideasonhowto reduetheseunertainties.

Statistis: here, a further inrease of the stored beam intensity in the ESR ould be possible. In addition, four

detetors, instead of the two used in the present measurement and with bigger areas overing fully all the

reexesoftheFOCALspetrometerwouldleadtosigniantinreaseinthestatistis.

Temporal drift: here,by using arigidsupport struture (withsteel and granite)mounted severalmonths before

themeasurementalongwithtemperatureontrols, weouldexpetasigniantimprovement.

Beam veloity: theion-beamveloityanalreadybedeterminedwithamuhhigheraurayusingahigh-voltage

dividerfromthePhysikalish-TehnisheBundesanstalt(PTB)intheeletron-oolerterminal,whihwillestab-

lishanabsolutelyalibratedveloitystandard[17℄.Here,weexpetarelativeunertaintyinthemeasurement

oftheoolervoltagewellbelow10

−4

andthustheresultingontributiontotheerrorbudgetoflessthan1eV.

Targetand rystal positions: theserepresenturrentlythebiggestontributiontothesystematiunertaintyand

probablymosthallengingtoredue totheneededlevel.Intheurrentexperiment,thosepositionshavebeen

measuredseparately withatelesopeandspeialalignmentdevies [15,14℄. Here,oneof theideasis tousea

modiedassemblymakingitpossibletomeasurethegastargetpositionrelativetothedetetorrystalinsitu,

whihwouldeliminatetheneedof usingthetelesopeandthuswould reduetheunertaintytoloseto1eV.

Anotherpossibilitywouldbetousethetwospetrometerstiltedby90degreeswithrespettoeahother,thus

resultingintheperpendiulardispersionplanesofthetwospetrometerarms.Thisarrangementtogetherwith

usingfour detetorsinsteadof twohasapotentialof reduingthissystematiunertaintyto thelevelof 0.1

eV.However,heremorestudiesandsimulationsareneededwhihareurrentlyongoing.Here,wewouldliketo

addthat thistopihasalsobeenintensivelydisussedreentlybyinternationalexpertsattheso-alledEMMI

RapidReationTask Forewhih took plae in September2018(https://indio.gsi.de/event/7662/overview).

(6)

ACKNOWLEDGEMENTS

Laboratoire Kastler Brossel (LKB) is Unité Mixte de Reherhe de Sorbonne University-UPMC, de ENS-PSL

ResearhUniversity,duColl¨gedeFraneetduCNRSn

8552.InstitutdesNanoSienesdeParis(INSP)isUnité

Mixte deReherhedeSorbonneUniversity-UPMCet duCNRS n

7588. This work hasbeen partiallysupported

by:theEuropeanCommunityFP7- Capaities,ontratENSARn

262010,theAllianzProgramoftheHelmholtz

Assoiationontratn

EMMIHA-216ExtremesofDensityandTemperature:CosmiMatterintheLaboratory,the

Helmholtz-CASJointResearhGroupHCJRG-108andbytheGermanMinistryofEduationandResearh(BMBF)

under ontrat05P15RGFAA.

Referenes

[1℄ Beiersdorfer,P.,H.Chen,D.B.Thorn,etal.,2005:Measurementofthetwo-looplambshiftinlithiumlikeu

89+

.

Phys. Rev. Lett.,95,no.23,2330034.

[2℄ Beiersdorfer,P., A.L.Osterheld,J.H.Soeld,et al.,1998:Measurementofqedandhypernesplitting inthe

2s1/22p3/2x-raytransitioninli-like209bi80+.Phys. Rev.Lett.,80, 3022.

[3℄ Beyer,H.,G.Menzel,D.Liesen,etal.,1995:Measurementoftheground-statelambshiftofhydrogenlikeuranium

attheeletronooleroftheesr.Z.Phys. D,35, no.3,169175.

[4℄ Beyer,H.F.,R.D.Deslattes,F.Folkmann,etal.,1985:Determinationofthe1slambshiftinone-eletronargon

reoilions.J. Phys. B,18,no.2,207215.

[5℄ Beyer,H. F.,T.Gassner,M.Transsinelli,et al.,2015:Crystaloptisforpreisionx-rayspetrosopyonhighly

hargedionsoneptionandproof.J. Phys. B,48, 144010.

[6℄ Beyer,H.F.,P.Indeliato,K.D.Finlayson,etal.,1991:Measurementofthe1slambshiftinhydrogenlikenikel.

Phys. Rev. A,43,no.1,223.

[7℄ Bosselmann,P., U. Staude,D. Horn,et al.,1999:Measurementsof2s2S1/22p2P1/2,3/2 transitionenergiesin

lithiumlikeheavyions.ii.experimentalresultsforag44+anddisussionalongtheisoeletroniseries.Phys.Rev.

A,59, no.3,18741883.

[8℄ Briand,J.P.,P.Chevallier,P.Indeliato,etal.,1990:Observationandmeasurementofn =2n =1transitions ofhydrogenlikeandheliumlikeuranium.Phys. Rev.Lett.,65,27612764.

[9℄ Briand, J. P., P. Indeliato, M. Tavernier, et al., 1984: Observation of hydrogenlike and heliumlike krypton

spetra.Z.Physik A,318,no.1,15.

[10℄ Briand,J.P.,J.P.Mossé,P.Indeliato,etal.,1983: Spetrosopyofhydrogenlikeand heliumlikeargon.Phys.

Rev. A,28,no.3,14131417.

[11℄ Briand,J.P., M.Tavernier,P.Indeliato,et al.,1983: High-preisionspetrosopistudiesof lymanαlines of

hydrogenlikeiron:Ameasurementofthe1slambshift.Phys. Rev. Lett.,50,no.11,832.

[12℄ CanioPastor,P.,L.Consolino,G.Giusfredi,etal.,2012:Frequenymetrologyofheliumaround1083nmand

determinationofthenulearhargeradius.Phys. Rev. Lett.,108,no.14,143001.

[13℄ Fee, M.S.,S.Chu,A.P.Mills,etal.,1993:Measurementofthepositronium1

3s12

3s1 intervalbyontinuous-

wavetwo-photonexitation.Phys. Rev. A,48,no.1,192219.

[14℄ Gassner, T., A.Gumberidze, M.Trassinelli, et al., 2018: Wavelength-dispersivespetrosopy in thehard x-ray

regimeofaheavyhighly-hargedion:the1slambshiftinhydrogen-likegold.NewJournalofPhysis,20,073033.

[15℄ Gassner, T. and H. F. Beyer,2015: Spatial haraterization of the internal gas target at the esrfor the foal

(7)

[16℄ Gumberidze, A., T. Stöhlker, D. Bana±, et al., 2005: Quantum eletrodynamis in strong eletri elds: The

ground-statelambshiftinhydrogenlikeuranium.Phys. Rev.Lett.,94, 223001.

[17℄ Hällström,J.,A.Bergman,S. Dedeoglu,et al.,2014:Performaneofawideband 200-kvhvdreferenedivider

module.IEEETrans.Instrum.Meas.,63,no.9,22642270.

[18℄ Karshenboim, S. G., 2005: Preision physis of simple atoms: Qed tests, nulear struture and fundamental

onstants.Phys. Rep.,422,no.1-2, 163.

[19℄ Kraft-Bermuth,S.,V.Andrianov,A.Bleile,etal.,2017:Preisedeterminationofthe1slambshiftinhydrogen-

likeleadandgoldionsusingmiroalorimeters.J. Phys. B,50, 055603.

[20℄ López-Urrutia,J.R.C.,P.Beiersdorfer,D.W.Savin,etal.,1996:Diretobservationofthespontaneousemission

ofthehypernetransitionf=4tof=3ingroundstatehydrogenlike

165ho66+ inaneletronbeamiontrap.Phys.

Rev. Lett.,77,826.

[21℄ López-Urrutia, J. R. C., P. Beiersdorfer, K. Widmann, et al., 1998: Nulear magnetization distribution radii

determinedbyhypernetransitionsin the1slevelofh-likeions

185ho74+and187ho74+.Phys. Rev. A,57,879.

[22℄ Lupton, J. H., D. D. Dietrih, C. J. Hailey, et al., 1994: Measurements of the ground-state lamb shift and

eletron-orrelationeetsin hydrogenlikeandheliumlikeuranium.Phys. Rev.A, 50,21502154.

[23℄ Notermans, R.P. M.J. W. andW. Vassen,2014: High-preisionspetrosopyofthe forbidden2 3S12 1P1

transitionin quantum degeneratemetastablehelium.Phys. Rev. Lett.,112,no.25,253002.

[24℄ Parthey, C. G., A. Matveev, J. Alnis, et al., 2011: Improved measurement of the hydrogen 1s˘2s transition

frequeny.Phys. Rev.Lett.,107,no.20,203001.

[25℄ Rihard, P., M. Stokli, R. Deslattes, et al., 1984: Measurementof the 1slamb shift in hydrogenlikehlorine.

Phys. Rev. A,29,no.5,29392942.

[26℄ Stöhlker, T., P. H. Mokler,F. Bosh, et al., 2000: 1slambshift in hydrogenlikeuranium measuredonooled,

deeleratedionbeams.Phys. Rev.Lett.,85, 31093112.

[27℄ Ullmann,J.,Z.Andelkovi,C.Brandau,etal.,2017:Highpreisionhypernemeasurementsinbismuthhallenge

bound-statestrong-eldqed.Nat.Commun.,8,15484.

[28℄ van Wijngaarden, A., F. Holuj, and G. W. F. Drake, 2000: Lamb shift in he+ : resolution of a disrepany

betweentheoryandexperiment.Phys. Rev.A, 63,no.1,012505.

[29℄ Yerokhin,V.A. andV.M.Shabaev,2015:Lambshiftofn=1andn=2statesofhydrogen-likeatoms, 1z

110.J. Phys. Chem.Ref.Data, 44,no.3,033103.

Références

Documents relatifs

Two main sites excavated by the French team, conducted by Bérangère Redon and Thomas Faucher, are a fortress and a mining district.. They date back to the beginning of the

The impact parameter dependence of I< - hole production in projectile and target for collisions with Li - like Kr ions show the same behavior reported before

to mention yet another novel experimental technique which is well adapted to both synchrotron radiation and laser spectroscopy, namely the study of high resolution Faraday

In conclusion we performed a first measurement of the ground-state Lamb shift in a heavy H-like ion (Au 78+ ) using a high resolution crystal spectrometer in combina- tion with a

For F > F r t however the secondary wave field along the channel axis becomes very similar to Favre waves (rectangular channels), while long wave lengths are still observed along

But it appears that the rise time of acoustic is not correlated with the parameters of the mouth pressure observed in this study.. This parameters, which is the only one specific of

The difference of the squared charge radii of the proton and the deuteron, r 2 d − r p 2 = 3.82007(65) fm 2 , is accu- rately determined from the precise measurement of the isotope

Revealing the Chemical Form of “Invisible” Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X-ray Absorption Spectroscopy... Lorraine, CNRS,