• Aucun résultat trouvé

On a theorem of M. Itô

N/A
N/A
Protected

Academic year: 2022

Partager "On a theorem of M. Itô"

Copied!
4
0
0

Texte intégral

(1)

A NNALES DE L ’ INSTITUT F OURIER

G UNNAR F ORST On a theorem of M. Itô

Annales de l’institut Fourier, tome 28, no2 (1978), p. 157-159

<http://www.numdam.org/item?id=AIF_1978__28_2_157_0>

© Annales de l’institut Fourier, 1978, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Ann. Inst. Fourier, Grenoble 28, 2 (1978), 157-159.

ON A THEOREM OF M. ITO (

slt

)

by Gunnar FORST

Let G be a locally compact abelian group and let No be a convolution kernel on G (i.e. a positive measure on G) satisfying the principle of unicity of mass. A convolution kernel N on G is said to be a divisor of No if there exists a convolution kernel N' on G such that No ==N * N'.

If such an N' exists and is uniquely determined, it is denoted No/N ; this is the case if N' exists and is a Hunt kernel on G . The set of divisors of No is denoted D(No).

The following result (1) was recently proved by M. Ito, cf. Theoreme 1 in [1].

THEOREM. — The set

C(No) = { N e D(No) | No/N is a Hunt kernel on G}

is a convex cone.

The proof in [1] of this result is somewhat complicated, and it is the purpose of this note to give a simpler proof, mainly using the ideas from [1].

LEMMA 1 ([I], p. 292-293). — Let N be a non-zero convo- lution kernel. In order that there exist a Hunt kernel N' and an N7-invariant convolution kernel T) such that No == N * N' + ^5 it is necessary and sufficient that N + pNo e D(No) for all p > 0 . In the affirmative case N' and T) are uniquely deter-

(*) This work was done while visiting McGill University, Montreal, in October 1976, supported by NRC-grant A-3108.

(1) The statement of Theoreme 1 in [1] is not true; the argument uses Corollaire 2 of [1] which is false. What the proof actually shows is what is formulated in the Theorem.

(3)

158 G. FORST

mined as the vague limits

N' = lim (No/(N + pNo)) and T] = lim No ^ a; ,

P-^O (^30

where (a^^o 15 (Ae vaguely continuous convolution semigroup (vccs) on G associated with N'.

LEMMA 2 (cf. [I], p. 295-299). - Let N, for i = 1 , 2

fee a Hunt kernel with associated vccs (aJ)^o . Suppose that the convolution N1 * N3 exists. Then (a} ^ a2)^ defines a vccs and

N ^ J ^ a ^ a2^ , defines a Hunt kernel satisfying

N i * N , = N * ( N , + N , ) . (*) Proof. — For s , ( ^ 0 we have a^ N1 ^ N1 and a2 ^ N3 ^ N2 which implies that the convolution o^ * a2

exists. By the convergence Lemma in [1] p. 295, it is rather easy to see that the mapping (s,t) i—>- v.} * a2 is vaguely continuous on [0, oo [ X [0, oo [, and in particular (a} -x- a?)^o is a vccs. For n > 0 we have (vaguely)

(f; ^ . a? dt) * (Ni + N,) = (f; «.} . a? dt) * (f; (^ + a?) rfs)

= Jo" (/o" a^ a^ a2 ^) rfs + Jo00 (/o" a^ * ^ * a? ^) Js

< J^ (J^00 ai * a2 du) dt + ^°° (^°° a^ * a^ rfu) ^

= jp°° jg" a^ * a2 <fo A = NI * N2 .

This shows that I a.} * a2 dt converges vaguely, and equa- tion (*) follows by a monotone convergence argument. |,

Proof of the theorem. — We shall see that C(No) is convex.

Let NI , N2 e C(No) and let (a^o , i = 1, 2 , be the vccs associated with the Hunt kernel N,' == N(,/N, , i = 1 , 2 . Let (N.'^)p>o » i '= 1 ? 2 , be the resolvent for N,' ,

N;,p = f^ e-P^i dt for p > 0 and i = 1 , 2 . For p > 0 and i = i , 2 we have N,'^p * (N, + pNo) = No which shows that for p > 0

Ni.p * N2,,, * No < N,., * A. No ^ ("iY N o .

(4)

ON A T H E O R E M OF M. ITO 159

It follows that the convolution N ^ p ^ N ^ p exists, and by Lemma 2 the convolution kernel

N^J^V^a^a2^ is well-defined and satisfies

N I , P ^ N ^ = N , * ( N ^ + N ^ ) . Moreover we have

(Ni + N3 + 2pNo) ^ Np = No . (**) In fact,

(Ni + N3 + 2pNo) ^ N^ N1.^ N,,p

= (Ni+pNo) ^ N^p ^ N2., * N,+(N2+pNo) ^ N^ * N,,, ^ Np

= No ^ N,,^ Np + No ^ N,,^ Np = No ^ N,,^ N^p ,

where all the convolutions exist, and this implies (**) because Ni,p ^ N3 p satisfies the principle of unicity of mass.

By Lemma 1 the Hunt kernel

N = lim Np = F00 a}* a2 dt

p->o J o

satisfies N * (N1 + N3) + f} = No for some N-invariant convolution kernel T] , and since No = N1 * N^ = N3 * N^

we have (as in [I], p. 302)

T) == lim No ^ a}^ a2 ^ lim No ^ a2 = 0 ,

t->ao Ooo

which shows that ^ * (N1 + N3) = No , i.e.

Ni + N3 e C(No). | . BIBLIOGRAPHY

[1] M. ITO, Sur Ie cone convexe niaximuin forme par des diviseurs d'un noyau de convolution et son application. Ann. Inst. Fourier, 25, 3-4

(1975), 289-308.

Manuscrit re^u Ie 17 fevrier 1977 Propose par G. Choquet.

Gunnar FORST, Matematisk Institut Universitetsparken 5 DK-2100 Kobenhavn ^

Denmark.

Références

Documents relatifs

A compact G-space is called a G-boundary in the sense of Furstenberg ([F1, F2]) if X is minimal and strongly proximal, or equivalently if X is the unique minimal G-invariant

The bouquet bch(E , A ) will be called the bouquet of Chern characters of the bundle E with connection A (in fact, we will have to modify the notion of G-equivariant vector bundle

It is very easy to compute the image measure; the reduced fibers are points, and the image measure is the characteristic function of the interval [−λ, λ]... Then exactly the

Let us denote by RG perm p the category of all p {permutation RG {modules. The following proposition generalizes to p {permutation modules a result which is well known for

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ).. Toute uti-

The measure r[q+(q—p) r[pirNq is TV-invariant because both r\p and r\q are so {cf. The measure v need not be uniquely determined. In fact, N has a compact periodicity group K,

Let G be a locally compact abelian group and let No be a convolution kernel on G (i.e. a positive measure on G) satisfying the principle of unicity of mass.. A convolution kernel N on

Chen, Wang and Zhang generalise and improve the results of Yu [16], by con- sidering the problem of uniqueness of f and (f n ) (k) , when they share a small function and proved