• Aucun résultat trouvé

Iterates of a convolution on a non abelian group

N/A
N/A
Protected

Academic year: 2022

Partager "Iterates of a convolution on a non abelian group"

Copied!
5
0
0

Texte intégral

(1)

A NNALES DE L ’I. H. P., SECTION B

S. R. F OGUEL

Iterates of a convolution on a non abelian group

Annales de l’I. H. P., section B, tome 11, n

o

2 (1975), p. 199-202

<http://www.numdam.org/item?id=AIHPB_1975__11_2_199_0>

© Gauthier-Villars, 1975, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi- tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti- lisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Iterates of

a

convolution

on a non

abelian group

S. R. FOGUEL Hebrew University of Jerusalem

Ann. Inst. Henri Poincaré, Section B :

Calcul des Probabilités et Statistique.

ABSTRACT. - Sufficient conditions are studied

for v

*

[[ --~

0

when Il

is a

probability

measure and v is

absolutely

continuous with

respect

to the left Haar measure.

RESUME. On etudie des conditions suflisantes pour que

~~

v *

~u" ~~

-~ 0

lorsque

est une

probabilité

et

lorsque

v est une mesure absolument conti-

nue par

rapport

à la mesure de Haar à

gauche.

NOTATION. - We shall use the notation of

[2] :

let G be a

locally compact

group, which is not

necessarily

Abelian. Let ~, be its left Haar measure and

Ma

the two sided ideal of bounded measures which are

absolutely

conti-

nuous with

respect

to ~, : see

[2],

Theorem 19.18. Note that

Ma

is identified

with

by

the Radon

Nikodym

Theorem.

The convolution of two measures, i and

0,

is

given by

and

if f is

a bounded measurable function then

Let ,u be a fixed

probability

measure. If

vEMa

then v * ~c E

Ma

and

Annales de l’Institut Henri Poincaré - Section B - Vol. XI, 2 - 1975.

Vol. XI, 2, 1975, p. 199-202.

(3)

200 S. R. FOGUEL

~c *

vEMa. Thus ~

acts as an

operator

on

Ma

and on =

Ma .

Note

that if 03C4 is a non

negative

measure then

~

i

~ -

03C4,

1 >.

Put

n

= * ... *

(n times), ,u°

- b the

identity.

THEOREM 1. Let

and ~

be

probability

measures with ,u * ~ = ~ * . Assume there is an

integer

h and a non

negative

measure v,

v(G)

>

0,

such that >- v and

,uh

>_ v * r~, then

Proof

- Put

where v

and 03B81

are non

negative.

Thus

Continue the same

computation

to obtain

Now

Let us use

(1)

now to obtain

and

by

an induction

argument

Annales de l’Institut Henri Poincaré - Section B

(4)

ITERATES OF A CONVOLUTION ON A NON ABELIAN GROUP 201

Thus

Now the first sum is smaller then

ý;;

see

[3], p. 1632,

and

1 )j~0j~~.

The

following Corollary

is included in

[I],

Theorem V.I. We

present

it here since the

proof

is very different. Let H be the center of G :

if y

E

H,

x E G then xy = yx. Denote

by bx

the Dirac measure at x. Thus ~

= ~e

where ex = xe = x for all x E G. Let

Ho

be the set of

points

in H such that

~cn

and

~cn

*

bx

are not

mutually singular

for all n.

If x E Ho

then

eHo

too.

COROLLARY 1. - Let the closed group

generated by Ho

be H. Let v be a

measure on H which is

absolutely

continuous with

respect

to the

left

Haar

measure on H. Then

~~

v *

~cn ~~

--~ 0

provided v(H)

= 0.

Proof By

the Hahn Banach Theorem it is

enough

to show that

if f

is

a bounded measurable function on H such

that (

v,

f ~ - 0

whenever

~~

v *

~~

- 0 then

f

= Const. a. e. with

respect

to the left Haar measure

on H.

Now if 0 is a measure on H and is

absolutely

continuous with

respect

to the left Haar measure on H

then, by

Theorem

1,

if x E

Ho

then

Thus

Now,

this

equality

remains true for the closed

subgroup generated by Ho namely

all of H.

Thus f

= Const. a. e. with

respect

to the left Haar measure on H.

Throughout

the rest of the paper we shall assume.

ASSUMPTION 1. - The measures

,un

are not

pairwise mutually singular.

Thus there exists two

integers n and k

and a non

negative

measure v

with

v(G)

> 0 such that

,u" > v,

v.

Therefore

and we may use Theorem 1 with r~ =

COROLLARY 2.

If

and are not

mutually singular

then

Vol. XI, 2 - 1975.

(5)

202 S. R. FOGUEL

Remark. If k = 1 it follows that either

~~ I~

= 2 for all n or

(~

--~ p. This « zero-two »

law,

was

proved

in

[3],

Theorem

3.1,

for

general

Markov

operators

that are

ergodic

and conservative. In our case

the measure ~ induces a random walk which need not be neither

ergodic

nor conservative.

Now if

~)

2014~ 0 then the

spectrum of J1

intersects the circum- ference of the unit circle

only

at the

point

1: Let qJ be a

homomorphism

of the commutative Banach

Algebra generated by

p. Then

I

1 -

]

- 0 hence either

I ]

1 or = 1.

By

Gelfand’s

Theory

the

spectrum of Jl,

even in the smaller

algebra,

touches

the circumference of the unit circle

only

at 1. In

particular : a f where a ~ ]

= 1 then a = 1.

Let us conclude with :

Thus

if v

* 0

and Ilk * , f

=

f then (

v,

f ) =

0.

Conversely, put

A =

{

v :

v E Ma

and

~i

v *

0 ~. If (

v,

f ) =

0

for all v E A then

by Corollary 2 (

0 *

(~ - J1k), f) =

0 for all 0 E

Ma.

Thus f = J1k * f a.

e. ~, and our result follows from the Hahn Banach Theo-

rem.

Remark. - If k = 1 and the

Choquet-Deny

Theorem holds

namely :

J1

* f

=

f a.

e. ~,

implies f

= Const. a. e. A then v E A if and

only

if

v(G) =

0.

BIBLIOGRAPHY

[1] Y. GUIVARC’H, Croissance polynomiale et périodes des fonctions harmoniques.

Bull. Soc. Math. France, vol. 101, 1973, p. 333-379.

[2] E. HEWITT and K. A. Ross, Abstract harmonic analysis, Springer-Verlag, Berlin, 1963.

[3] D. ORNSTEIN and L. SUCHESTON, An operator theorem on L1 convergence to zero with applications to Markov kernels. Annals Math. Stat., vol. 41, 1970, p. 1631- 1639.

(Manuscrit t reçu le 7 février 1975).

Annales de l’Institut Henri Poincaré - Section B

Références

Documents relatifs

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ). Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ).. Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ).. Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ). Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ). Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ).. Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ).. Toute uti-

P., section B » ( http://www.elsevier.com/locate/anihpb ) implique l’accord avec les condi- tions générales d’utilisation ( http://www.numdam.org/conditions ).. Toute uti-