• Aucun résultat trouvé

Simulation de chaines de Markov: briser le mur de la convergence en n−

N/A
N/A
Protected

Academic year: 2022

Partager "Simulation de chaines de Markov: briser le mur de la convergence en n−"

Copied!
106
0
0

Texte intégral

(1)1. Simulation de chaines de Markov:. aft. briser le mur de la convergence en n−1/2. Dr. Pierre L’Ecuyer. En collaboration avec: Amal Ben Abdellah, Christian Lécot, David Munger, Art B. Owen, et Bruno Tuffin. DIRO, Université de Montréal, Mars 2017.

(2) 2. Markov chain setting. X0 = x0 ,. aft. A Markov chain with state space X evolves as. Xj = ϕj (Xj−1 , Uj ), j ≥ 1,. where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Payoff (or cost) at step j = τ :. Dr. Y = g (Xτ ).. for some fixed time step τ ..

(3) 2. Markov chain setting. X0 = x0 ,. aft. A Markov chain with state space X evolves as. Xj = ϕj (Xj−1 , Uj ), j ≥ 1,. where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Payoff (or cost) at step j = τ :. Dr. Y = g (Xτ ).. for some fixed time step τ . We may want to estimate. µ = E[Y ],. or some other functional of Y , or perhaps the entire distribution of Y ..

(4) 3. Baby example: a small finite Markov chain. Dr. aft. State space X = {0, 1, . . . , k − 1}, X0 = 0, transition probability matrix P = (px,y ), px,y = P[Xj = y | Xj−1 = x] for 0 ≤ x, y < k..

(5) 3. Baby example: a small finite Markov chain. Dr. aft. State space X = {0, 1, . . . , k − 1}, X0 = 0, transition probability matrix P = (px,y ), px,y = P[Xj = y | Xj−1 = x] for 0 ≤ x, y < k.  0.1 0.2 0.4 0.1 0.2 0.1 0.2 0.3  0.0 0.0 0.1 0.2 Exemple: k = 6 and P =  0.2 0.3 0.1 0.1  0.0 0.2 0.4 0.2 0.0 0.2 0.1 0.1. 0.2 0.0 0.4 0.2 0.2 0.2.  0.0 0.2  0.3 . 0.1  0.0 0.4. To simulate, e.g., if Xj−1 = 2, generate U ∼ U(0, 1) and find Xj : Xj = 2. 0. 0.1. Xj = 3. Xj = 4. 0.3. 0.7. Xj = 5. 1.

(6) 3. Baby example: a small finite Markov chain. Dr. aft. State space X = {0, 1, . . . , k − 1}, X0 = 0, transition probability matrix P = (px,y ), px,y = P[Xj = y | Xj−1 = x] for 0 ≤ x, y < k.  0.1 0.2 0.4 0.1 0.2 0.1 0.2 0.3  0.0 0.0 0.1 0.2 Exemple: k = 6 and P =  0.2 0.3 0.1 0.1  0.0 0.2 0.4 0.2 0.0 0.2 0.1 0.1. 0.2 0.0 0.4 0.2 0.2 0.2.  0.0 0.2  0.3 . 0.1  0.0 0.4. To simulate, e.g., if Xj−1 = 2, generate U ∼ U(0, 1) and find Xj : Xj = 2. 0. 0.1. Xj = 3. Xj = 4. 0.3. Xj = 5. 0.7. We can simulate the chain for τ steps, repeat n times, and estimate πx = P[Xτ = x] by π̂x , the proportion of times where Xτ = x.. 1.

(7) 4. Ordinary Monte Carlo simulation. aft. For i = 0, . . . , n − 1, generate Xi,j = ϕj (Xi,j−1 , Ui,j ), j = 1, . . . , τ , where the Ui,j ’s are i.i.d. U(0, 1)d . Estimate µ by n−1. 1X Yi µ̂n = n. where Yi = g (Xi,τ ).. i=0. E[µ̂n ] = µ and Var[µ̂n ] = n1 Var[Yi ] = O(n−1 ) .. Dr. The width of a confidence interval on µ converges as O(n−1/2 ) . That is, for each additional digit of accuracy, one must multiply n by 100..

(8) 4. Ordinary Monte Carlo simulation. aft. For i = 0, . . . , n − 1, generate Xi,j = ϕj (Xi,j−1 , Ui,j ), j = 1, . . . , τ , where the Ui,j ’s are i.i.d. U(0, 1)d . Estimate µ by n−1. 1X Yi µ̂n = n. where Yi = g (Xi,τ ).. i=0. E[µ̂n ] = µ and Var[µ̂n ] = n1 Var[Yi ] = O(n−1 ) .. Dr. The width of a confidence interval on µ converges as O(n−1/2 ) . That is, for each additional digit of accuracy, one must multiply n by 100. Can also estimate the distribution (density) of Y by the empirical distribution of Y0 , . . . , Yn−1 , or by an histogram (perhaps smoothed), or by a kernel density estimator. The mean integrated square error (MISE) for the density typically converges as O(n−2/3 ) for an histogram and O(n−4/5 ) for the best density estimators (e.g., ASH, KDE, ...)..

(9) 4. Ordinary Monte Carlo simulation. aft. For i = 0, . . . , n − 1, generate Xi,j = ϕj (Xi,j−1 , Ui,j ), j = 1, . . . , τ , where the Ui,j ’s are i.i.d. U(0, 1)d . Estimate µ by n−1. 1X Yi µ̂n = n. where Yi = g (Xi,τ ).. i=0. E[µ̂n ] = µ and Var[µ̂n ] = n1 Var[Yi ] = O(n−1 ) .. Dr. The width of a confidence interval on µ converges as O(n−1/2 ) . That is, for each additional digit of accuracy, one must multiply n by 100. Can also estimate the distribution (density) of Y by the empirical distribution of Y0 , . . . , Yn−1 , or by an histogram (perhaps smoothed), or by a kernel density estimator. The mean integrated square error (MISE) for the density typically converges as O(n−2/3 ) for an histogram and O(n−4/5 ) for the best density estimators (e.g., ASH, KDE, ...). Can we do better than those rates?.

(10) 5. Finance Queueing systems. aft. Plenty of applications fit this setting:. Inventory, distribution, logistic systems Reliability models. Dr. MCMC in Bayesian statistics Many many more....

(11) 6. Baby example: a small finite Markov chain . 0.2 0.1 0.0 0.3 0.2 0.2. 0.4 0.2 0.1 0.1 0.4 0.1. 0.1 0.3 0.2 0.1 0.2 0.1. 0.2 0.0 0.4 0.2 0.2 0.2. aft. 0.1 0.2  0.0 Take k = 6, X0 = 0, and P =  0.2  0.0 0.0.  0.0 0.2  0.3  0.1  0.0 0.4. Dr. Suppose we want to estimate π = (π0 , . . . , π5 )t where πx = P[Xτ = x]. We know π = Pτ e1 , but let us pretend we do not know. We simulate the chain for τ steps, repeat n times, and estimate πx by π̂x , the proportion of times where Xτ = x. For τ = 25 steps, π = (0.0742, 0.1610, 0.2008, 0.1731, 0.2079, 0.1829)..

(12) 7. 0.40. 0.20. 0.1610. 0.2008. 0.1731. Dr. 0.0742. aft. Monte Carlo simulation with n = 16, state after τ = 25 steps:. 0 estimate π̂s. 1. 2. exact πs. 3. 0.2079. 4. 0.1829. 5.

(13) 8. 0.40 0.30. 0.2008. 0.20. 0.1610 0.0742. 0.2079. 0.1731. Dr. 0.10. aft. Monte Carlo simulation with n = 16, state after τ = 25 steps:. 0 1 estimate exact. 2. 3. 4. 0.1829. 5.

(14) 9. 0.40. 0.2008. 0.20. 0.1610. 0.1731. Dr. 0.0742 0.00. aft. Monte Carlo simulation with n = 16, state after τ = 25 steps:. 0 1 estimate exact. 2. 3. 0.2079. 4. 0.1829. 5.

(15) 10. 0.2079. 0.2008. 0.20 0.1610. 0.1731. Dr. 0.15 0.10. aft. Monte Carlo simulation with n = 32, state after τ = 25 steps:. 0.1829. 0.0742. 0 1 estimate exact. 2. 3. 4. 5.

(16) 11. 0.25. 0.2079. 0.2008. 0.20 0.1610. 0.1731. Dr. 0.15 0.10. aft. Monte Carlo simulation with n = 64, state after τ = 25 steps:. 0.1829. 0.0742. 0 1 estimate exact. 2. 3. 4. 5.

(17) 12. 0.25. 0.1610 0.15. 0.0742. 0.1731. Dr. 0.05. 0.2079. 0.2008. 0.20. 0.10. aft. Monte Carlo simulation with n = 128, state after τ = 25 steps:. 0 1 estimate exact. 2. 3. 4. 0.1829. 5.

(18) 13. 0.25. 0.1610 0.15 0.0742. 0.1731. Dr. 0.05. 0.2079. 0.2008. 0.20. 0.10. aft. Monte Carlo simulation with n = 256, state after τ = 25 steps:. 0 1 estimate exact. 2. 3. 4. 0.1829. 5.

(19) 14. aft. Monte Carlo simulation with n = 4096, state after τ = 25 steps: 0.2079. 0.2008. 0.20 0.1610 0.15. Dr. 0.10. 0.1731. 0.1829. 0.0742. 0 1 estimate exact. 2. 3. 4. 5.

(20) 15. aft. Monte Carlo simulation with n = 16384, state after τ = 25 steps: 0.2079. 0.2008. 0.20 0.1610 0.15. Dr. 0.10. 0.1731. 0.1829. 0.0742. 0 1 estimate exact. 2. 3. 4. 5.

(21) 16. Monte Carlo simulation with n = 16384, state after τ = 25 steps: 0.2079. 0.1610 0.15. 0.10. 0.1731. Dr. 0.0742. aft. 0.2008. 0.20. 0 estimate π̂s. 1. 2. 3. 4. exact πs. P Mean integrated square error (MISE): 61 5s=0 (π̂s − πs )2 . With Monte Carlo, E[MISE] = O(1/n). With Array-RQMC, E[MISE] ≈ O(1/n2 ).. 0.1829. 5.

(22) 17. Example: An Asian Call Option (two-dim state). aft. Given s0 > 0, B(0) = 0, and observation times tj = jh for j = 1, . . . , τ , let B(tj ) = B(tj−1 ) + (r − σ 2 /2)h + σh1/2 Zj , S(tj ) = s0 exp[B(tj )],. (geometric Brownian motion). Dr. where Uj ∼ U[0, 1) and Zj = Φ−1 (Uj ) ∼ N(0, 1). P Running average: S̄j = 1j ji=1 S(ti ).   Payoff at step j = τ is Y = g (Xτ ) = max 0, S̄τ − K . MC State: Xj = (S(tj ), S̄j ) . Transition:. . Xj = (S(tj ), S̄j ) = ϕj (S(tj−1 ), S̄j−1 , Uj ) =. S(tj ),. Want to estimate E[Y ], or distribution of Y , etc.. (j − 1)S̄j−1 + S(tj ) j.  ..

(23) 18. Take τ = 12, T = 1 (one year), tj = j/12 for j = 0, . . . , 12, K = 100, s0 = 100, r = 0.05, σ = 0.5.. Dr. aft. We make n = 106 independent runs. Mean: 13.1. Max = 390.8 In 53.47% of cases, the payoff is 0..

(24) 18. Take τ = 12, T = 1 (one year), tj = j/12 for j = 0, . . . , 12, K = 100, s0 = 100, r = 0.05, σ = 0.5.. Frequency (×103 ). aft. We make n = 106 independent runs. Mean: 13.1. Max = 390.8 In 53.47% of cases, the payoff is 0. Histogram of positive values:. 20 10 0 0. Dr. average = 13.1. 30. 50. Payoff 100. 150. Confidence interval on E[Y ] converges as O(n−1/2 ). Can we do better?.

(25) 19. Another histogram, with n = 4096 runs.. aft. Frequency 150. 100. 0 0. Dr. 50. 25. 50. 75. 100. Payoff 125. 150. For histogram: MISE = O(n−2/3 ) .. For polygonal interpolation, ASH, KDE: MISE = O(n−4/5 ) . // Same with KDE. Can we do better?.

(26) 20. Randomized quasi-Monte Carlo (RQMC) R. (0,1)s. f (u)du, RQMC Estimator:. aft. To estimate µ =. n−1. µ̂n,rqmc. 1X f (Ui ), = n i=0. with Pn = {U0 , . . . , Un−1 } ⊂ (0, 1)s an RQMC point set:. (i) each point Ui has the uniform distribution over (0, 1)s ;. Dr. (ii) Pn as a whole is a low-discrepancy point set. E[µ̂n,rqmc ] Var[µ̂n,rqmc ]. = µ. =. (unbiased),. Var[f (Ui )] 2 X + 2 Cov[f (Ui ), f (Uj )]. n n i<j. We want to make the last sum as negative as possible..

(27) 20. Randomized quasi-Monte Carlo (RQMC) R. (0,1)s. f (u)du, RQMC Estimator:. aft. To estimate µ =. n−1. µ̂n,rqmc. 1X f (Ui ), = n i=0. with Pn = {U0 , . . . , Un−1 } ⊂ (0, 1)s an RQMC point set:. (i) each point Ui has the uniform distribution over (0, 1)s ;. Dr. (ii) Pn as a whole is a low-discrepancy point set. E[µ̂n,rqmc ] Var[µ̂n,rqmc ]. = µ. =. (unbiased),. Var[f (Ui )] 2 X + 2 Cov[f (Ui ), f (Uj )]. n n i<j. We want to make the last sum as negative as possible. Weak attempts: antithetic variates (n = 2), Latin hypercube sampling,....

(28) Variance estimation:. aft. 21. Dr. Can compute m independent realizations X1 , . . . , Xm of µ̂n,rqmc , then estimate µ and Var[µ̂n,rqmc ] by their sample mean X̄m and sample 2 . Could be used to compute a confidence interval. variance Sm.

(29) 22. Stratification of the unit hypercube. aft. Partition axis j in kj ≥ 1 equal parts, for j = 1, . . . , s. Draw n = k1 · · · ks random points, one per box, independently. Example, s = 2, k1 = 12, k2 = 8, n = 12 × 8 = 96. 1. Dr. ui,1. 0. 1. ui,0.

(30) 23. Stratified estimator:. n−1. Xs,n =. 1X f (Uj ). n. aft. j=0. The crude MC variance with n points can be decomposed as n−1. Var[X̄n ] = Var[Xs,n ] +. 1X (µj − µ)2 n j=0. where µj is the mean over box j.. Dr. The more the µj differ, the more the variance is reduced..

(31) 23. Stratified estimator:. n−1. Xs,n =. 1X f (Uj ). n. aft. j=0. The crude MC variance with n points can be decomposed as n−1. Var[X̄n ] = Var[Xs,n ] +. 1X (µj − µ)2 n j=0. where µj is the mean over box j.. Dr. The more the µj differ, the more the variance is reduced. If f 0 is continuous and bounded, and all kj are equal, then Var[Xs,n ] = O(n−1−2/s )..

(32) 23. Stratified estimator:. n−1. Xs,n =. 1X f (Uj ). n. aft. j=0. The crude MC variance with n points can be decomposed as n−1. Var[X̄n ] = Var[Xs,n ] +. 1X (µj − µ)2 n j=0. where µj is the mean over box j.. Dr. The more the µj differ, the more the variance is reduced. If f 0 is continuous and bounded, and all kj are equal, then Var[Xs,n ] = O(n−1−2/s ).. For large s, not practical. For small s, not really better than midpoint rule with a grid when f is smooth. But can still be applied to a few important random variables. Gives an unbiased estimator, and variance can be estimated by replicating m ≥ 2 times..

(33) 24. Randomly-Shifted Lattice. 1. Dr. ui,1. aft. Example: lattice with s = 2, n = 101, v1 = (1, 12)/101. 0. 1. ui,0.

(34) 24. Randomly-Shifted Lattice. 1. Dr. ui,1. aft. Example: lattice with s = 2, n = 101, v1 = (1, 12)/101. U. 0. 1. ui,0.

(35) 24. Randomly-Shifted Lattice. 1. Dr. ui,1. aft. Example: lattice with s = 2, n = 101, v1 = (1, 12)/101. 0. 1. ui,0.

(36) 24. Randomly-Shifted Lattice. 1. Dr. ui,1. aft. Example: lattice with s = 2, n = 101, v1 = (1, 12)/101. 0. 1. ui,0.

(37) 25. Variance bounds. aft. We can obtain various Cauchy-Shwartz inequalities of the form Var[µ̂n,rqmc ] ≤ V 2 (f ) · D 2 (Pn ). Dr. for all f in some Hilbert space or Banach space H, where V (f ) = kf − µkH is the variation of f , and D(Pn ) is the discrepancy of Pn (defined by an expectation in the RQMC case)..

(38) 25. Variance bounds. aft. We can obtain various Cauchy-Shwartz inequalities of the form Var[µ̂n,rqmc ] ≤ V 2 (f ) · D 2 (Pn ). for all f in some Hilbert space or Banach space H, where V (f ) = kf − µkH is the variation of f , and D(Pn ) is the discrepancy of Pn (defined by an expectation in the RQMC case).. Dr. Lattice rules: For certain Hilbert spaces of smooth periodic functions f with square-integrable partial derivatives of order up to α: D(Pn ) = O(n−α+ ) for all  > 0. This gives Var[µ̂n,rqmc ] = O(n−2α+ ) for all  > 0. Non-periodic functions can be made periodic via a baker’s transformation (easy)..

(39) 26. 1. Dr. ui,1. aft. Example of a digital net in base 2: The first n = 64 = 26 Sobol points in s = 2 dimensions:. 0. They form a (0, 6, 2)-net in two dimensions.. ui,0. 1.

(40) 26. 1. Dr. ui,1. aft. Example of a digital net in base 2: The first n = 64 = 26 Sobol points in s = 2 dimensions:. 0. They form a (0, 6, 2)-net in two dimensions.. ui,0. 1.

(41) 26. 1. Dr. ui,1. aft. Example of a digital net in base 2: The first n = 64 = 26 Sobol points in s = 2 dimensions:. 0. They form a (0, 6, 2)-net in two dimensions.. ui,0. 1.

(42) 26. 1. Dr. ui,1. aft. Example of a digital net in base 2: The first n = 64 = 26 Sobol points in s = 2 dimensions:. 0. They form a (0, 6, 2)-net in two dimensions.. ui,0. 1.

(43) 1. Dr. ui,1. aft. Example of a digital net in base 2: Hammersley point set (or Sobol + 1 coord.), n = 64, s = 2.. 0. Also a (0, 6, 2)-net in two dimensions.. ui,0. 1. 27.

(44) 1. Dr. ui,1. aft. Example of a digital net in base 2: Hammersley point set (or Sobol + 1 coord.), n = 64, s = 2.. 0. Also a (0, 6, 2)-net in two dimensions.. ui,0. 1. 27.

(45) 1. Dr. ui,1. aft. Example of a digital net in base 2: Hammersley point set (or Sobol + 1 coord.), n = 64, s = 2.. 0. Also a (0, 6, 2)-net in two dimensions.. ui,0. 1. 27.

(46) 1. Dr. ui,1. aft. Example of a digital net in base 2: Hammersley point set (or Sobol + 1 coord.), n = 64, s = 2.. 0. Also a (0, 6, 2)-net in two dimensions.. ui,0. 1. 27.

(47) 28. Digital net with random digital shift. aft. Equidistribution in digital boxes is lost with random shift modulo 1, but can be kept with a random digital shift in base b. In base 2: Generate U ∼ U(0, 1)s and XOR it bitwise with each ui . Example for s = 2: ui. = (0.01100100..., 0.10011000...)2. U = (0.01001010..., 0.11101001...)2. Dr. ui ⊕ U = (0.00101110..., 0.01110001...)2 . Each point has U(0, 1) distribution. Preservation of the equidistribution (k1 = 3, k2 = 5): ui. = (0.***, 0.*****). U = (0.101, 0.01011)2. ui ⊕ U = (0.C*C, 0.*C*CC).

(48) 29. Hammersley points. aft. Digital shift with U = (0.10100101..., 0.0101100...)2 , first bit. 1. 1. ui,1. 0. Dr. ui,1. ui,0. 1. 0. ui,0. 1.

(49) 30. aft. Digital shift with U = (0.10100101..., 0.0101100...)2 , second bit. 1. 1. ui,1. 0. Dr. ui,1. ui,0. 1. 0. ui,0. 1.

(50) 31. aft. Digital shift with U = (0.10100101..., 0.0101100...)2 , third bit. 1. 1. ui,1. 0. Dr. ui,1. ui,0. 1. 0. ui,0. 1.

(51) 32. aft. Digital shift with U = (0.10100101..., 0.0101100...)2 , all bits (final). 1. 1. ui,1. 0. Dr. ui,1. ui,0. 1. 0. ui,0. 1.

(52) 33. Variance bounds. aft. Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must have finite variation in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes). Popular constructions achieve D(Pn ) = O(n−1 (ln n)s ) = O(n−1+ ) for all  > 0.. Dr. Gives Var[µ̂n,rqmc ] = O(n−2+ ) for all  > 0. More recent constructions (polynomial lattice rules) offer better rates for smooth functions..

(53) 33. Variance bounds. aft. Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must have finite variation in the sense of Hardy and Krause (implies no discontinuity not aligned with the axes). Popular constructions achieve D(Pn ) = O(n−1 (ln n)s ) = O(n−1+ ) for all  > 0. Gives Var[µ̂n,rqmc ] = O(n−2+ ) for all  > 0. More recent constructions (polynomial lattice rules) offer better rates for smooth functions.. Dr. With nested uniform scrambling (NUS) by Owen, one has Var[µ̂n,rqmc ] = O(n−3+ ) for all  > 0.. Bounds are conservative and too hard to compute in practice. Hidden constant and variation often increase fast with dimension s. But still often works very well empirically!.

(54) 34. aft. Classical Randomized Quasi-Monte Carlo (RQMC) for Markov Chains One RQMC point for each sample path.. Put Vi = (Ui,1 , . . . , Ui,τ ) ∈ (0, 1)s = (0, 1)dτ . Estimate µ by n−1. µ̂rqmc,n =. 1X g (Xi,τ ) n. Dr. i=0. where Pn = {V0 , . . . , Vn−1 } ⊂ (0, 1)s is an RQMC point set: (a) each point Vi has the uniform distribution over (0, 1)s ; (b) Pn covers (0, 1)s very evenly (i.e., has low discrepancy). The dimension s = dτ is often very large!.

(55) 35. Array-RQMC for Markov Chains. aft. L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.] Earlier deterministic versions by Lécot et al. Simulate an “array” of n chains in “parallel.” At each step, use an RQMC point set Pn to advance all the chains by one step. Seek global negative dependence across the chains.. Dr. Goal: Want small discrepancy (or “distance”) between empirical distribution of Sn,j = {X0,j , . . . , Xn−1,j } and theoretical distribution of Xj . If we succeed, we have an unbiased estimator with small variance, for any j:. µj. = E[g (Xj )] ≈ µ̂arqmc,j,n =. n−1. 1X g (Xi,j ) . n i=0.

(56) Some RQMC insight: To simplify the discussion, suppose Xj ∼ U(0, 1)` . This can be achieved (in principle) by a change of variable. We estimate Z µj = E[g (Xj )] = E[g (ϕj (Xj−1 , U))] = g (ϕj (x, u))dxdu (we take a single j here) by µ̂arqmc,j,n =. aft. [0,1)`+d. n−1 n−1 1X 1X g (Xi,j ) = g (ϕj (Xi,j−1 , Ui,j )). n n i=0. i=0. This is (roughly) RQMC with the point set Qn = {(Xi,j−1 , Ui,j ), 0 ≤ i < n} .. Dr. We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .. 36.

(57) Some RQMC insight: To simplify the discussion, suppose Xj ∼ U(0, 1)` . This can be achieved (in principle) by a change of variable. We estimate Z µj = E[g (Xj )] = E[g (ϕj (Xj−1 , U))] = g (ϕj (x, u))dxdu (we take a single j here) by µ̂arqmc,j,n =. aft. [0,1)`+d. n−1 n−1 1X 1X g (Xi,j ) = g (ϕj (Xi,j−1 , Ui,j )). n n i=0. i=0. This is (roughly) RQMC with the point set Qn = {(Xi,j−1 , Ui,j ), 0 ≤ i < n} . We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .. Dr. We do not choose the Xi,j−1 ’s in Qn : they come from the simulation. To construct the (randomized) Ui,j , select a LD point set Q̃n = {(w0 , U0,j ), . . . , (wn−1 , Un−1,j )} ,. where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d . Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD between the two sets), and compute Xi,j = ϕj (Xπj (i),j−1 , Ui,j ) for each i. Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states. For ` > 1, there are various ways to define the matching (multivariate sort).. 36.

(58) 37. aft. Array-RQMC algorithm. Dr. Xi,0 ← x0 (or Xi,0 ← xi,0 ) for i = 0, . . . , n − 1; for j = 1, 2, . . . , τ do Compute the permutation πj of the states (for matching); Randomize afresh {U0,j , . . . , Un−1,j } in Q̃n ; Xi,j = ϕj (Xπj (i),j−1 , Ui,j ), for i = 0, . . . , n − 1; Pn−1 g (Xi,j ); µ̂arqmc,j,n = Ȳn,j = n1 i=0 end for Estimate µ by the average Ȳn = µ̂arqmc,τ,n ..

(59) 37. aft. Array-RQMC algorithm. Dr. Xi,0 ← x0 (or Xi,0 ← xi,0 ) for i = 0, . . . , n − 1; for j = 1, 2, . . . , τ do Compute the permutation πj of the states (for matching); Randomize afresh {U0,j , . . . , Un−1,j } in Q̃n ; Xi,j = ϕj (Xπj (i),j−1 , Ui,j ), for i = 0, . . . , n − 1; Pn−1 g (Xi,j ); µ̂arqmc,j,n = Ȳn,j = n1 i=0 end for Estimate µ by the average Ȳn = µ̂arqmc,τ,n . Proposition: (i) The average Ȳn is an unbiased estimator of µ. (ii) The empirical variance of m independent realizations gives an unbiased estimator of Var[Ȳn ]..

(60) 38. aft. Key issues:. 1. How can we preserve LD of Sn,j = {X0,j , . . . , Xn−1,j } as j increases? 2. Can we prove that Var[µ̂arqmc,τ,n ] = O(n−α ) for some α > 1? How? What α? 3. How does it behave empirically for moderate n?. Dr. Intuition: Write discrepancy measure of Sn,j as the mean square integration error (or variance) when integrating some function ψ : [0, 1)`+d → R using Qn . Use RQMC theory to show it is small if Qn has LD. Then use induction..

(61) 39. Convergence results and applications. aft. L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate, one-dimensional, stratification, etc. Var in O(n−3/2 ). Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state. El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.. Dr. Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification, Sudoku sampling, ... Wächter and Keller [2008]: Applications in computer graphics. Gerber and Chopin [2015]: Sequential QMC (particle filters), Owen nested scrambling and Hilbert sort. Variance in o(n−1 )..

(62) 40. Some generalizations. aft. L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the filtration F{(j, Xj ), j ≥ 0}. L., Demers, and Tuffin [2006, 2007]: Combination with splitting techniques (multilevel and without levels), combination with importance sampling and weight windows. Covers particle filters.. Dr. L. and Sanvido [2010]: Combination with coupling from the past for exact sampling. Dion and L. [2010]: Combination with approximate dynamic programming and for optimal stopping problems. Gerber and Chopin [2015]: Sequential QMC..

(63) 41. aft. Mapping chains to points when ` > 2. 1. Multivariate batch sort: Sort the states (chains) by first coordinate, in n1 packets of size n/n1 . Sort each packet by second coordinate, in n2 packets of size n/n1 n2 . ···. Dr. At the last level, sort each packet of size n` by the last coordinate. Choice of n1 , n2 , ..., n` ?.

(64) 42. A (4,4) mapping. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(65) 43. A (4,4) mapping. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(66) 44. A (4,4) mapping. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(67) 44. A (4,4) mapping. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. 0.3. sz. 0.5. s. s sz. s. 0.3. s s. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4. s. 0.4. s. sz. 0.5. s. s. 0.4 0.3. 0.8. 0.6. sz. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(68) 45. 1.0. s11. 0.9 0.8. 3. s10. s. 0.7 0.6 2 0.5. s. s6. s. 5. 0.1 0 0.0. 0.0. 0.1. 0.2. 0.9 0.8. s14. 0.7. 7. s 0.3. s. 4. 0.4. s5. s6. s15 s11 10. s1. 0.3. 8. s s13. 12. s. 0.2. 0. 0.1. 0.6. 0.7. 0.8. 0.9. 1.0. 0.0. 0.0. 4. s. 0.1. s. 14. s 9. 0.4. s. 0.5. s. s2. Dr. 1. s. s. 0.5. s9. s. 7. 0.2. 15. 3. 0.6. 0.4 0.3. aft. 1.0. s 13. s. s. s8 s12. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(69) 46. aft. Mapping chains to points when ` > 2. 2. Multivariate split sort: n1 = n2 = · · · = 2.. Sort by first coordinate in 2 packets.. etc.. Dr. Sort each packet by second coordinate in 2 packets..

(70) 47. Mapping by split sort. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(71) 47. Mapping by split sort. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(72) 47. Mapping by split sort. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(73) 47. Mapping by split sort. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. s. 0.3. s s. s. s. 0.4. 0.5. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. s. s. 0.5. s. s. 0.4 0.3. 0.8. 0.6. s. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(74) 47. Mapping by split sort. aft. Sobol’ net in 2 dimensions after random digital shift. States of the chains 1.0. 1.0. s. 0.9. s. s. s. 0.8. 0.6. 0.1 0.0. Dr. s. s. 0.2. s 0.0. 0.1. 0.2. 0.7. 0.3. sz. 0.5. s. s sz. s. 0.3. s s. s. 0.7. 0.8. 0.9. 1.0. s. 0.2. s. 0.1. 0.6. s. 0.0. 0.0. 0.1. s. s. 0.4. s. 0.4. s. sz. 0.5. s. s. 0.4 0.3. 0.8. 0.6. sz. 0.5. 0.9. s. 0.7. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(75) 48. Mapping by batch sort and split sort. States of the chains. aft. One advantage: The state space does not have to be [0, 1)d : Sobol’ net + digital shift. 1.0. ∞. s s. s. s. 0.9. s. 0.8. s. 0.7. s. s. Dr s. s. −∞. s s. −∞. s. 0.5. s. s. s. s. s s. s. 0.2. s. 0.0. ∞. s. 0.1. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. 0.6. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(76) 48. Mapping by batch sort and split sort. States of the chains. aft. One advantage: The state space does not have to be [0, 1)d : Sobol’ net + digital shift. 1.0. ∞. s s. s. s. 0.9. s. 0.8. s. 0.7. s. s. Dr s. s. −∞. s s. −∞. s. 0.5. s. s. s. s. s s. s. 0.2. s. 0.0. ∞. s. 0.1. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. 0.6. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(77) 48. Mapping by batch sort and split sort. States of the chains. aft. One advantage: The state space does not have to be [0, 1)d : Sobol’ net + digital shift. 1.0. ∞. s s. s. s. 0.9. s. 0.8. s. 0.7. s. s. Dr s. s. −∞. s s. −∞. s. 0.5. s. s. s. s. s s. s. 0.2. s. 0.0. ∞. s. 0.1. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. 0.6. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(78) 48. Mapping by batch sort and split sort. States of the chains. aft. One advantage: The state space does not have to be [0, 1)d : Sobol’ net + digital shift. 1.0. ∞. s s. s. s. 0.9. s. 0.8. s. 0.7. s. s. Dr s. s. −∞. s s. −∞. s. 0.5. s. s. s. s. s s. s. 0.2. s. 0.0. ∞. s. 0.1. 0.0. 0.1. s. s. 0.4 0.3. s. s. s. 0.6. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(79) 48. Mapping by batch sort and split sort. States of the chains. aft. One advantage: The state space does not have to be [0, 1)d : Sobol’ net + digital shift. 1.0. ∞. s s. s. s. 0.9. s. 0.8. s. 0.7. Dr s. s. −∞. s s. −∞. s sz. 0.5. s. s. s. s s. s. 0.2. s. 0.0. ∞. s. 0.1. 0.0. 0.1. s. s. 0.4 0.3. sz. s. sz. 0.6. sz. s. s. s. s. s s. 0.2. 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(80) 49. Lowering the state dimension. aft. For ` > 1: Define a transformation h : X → [0, 1)c for c < `. Sort the transformed points h(Xi,j ) in c dimensions. Now we only need c + d dimensions for the RQMC point sets; c for the mapping and d to advance the chain. Choice of h: states mapped to nearby values should be nearly equivalent. For c = 1, X is mapped to [0, 1), which leads to a one-dim sort.. Dr. The mapping h with c = 1 can be based on a space-filling curve: Wächter and Keller [2008] use a Lebesgue Z-curve and mention others; Gerber and Chopin [2015] use a Hilbert curve and prove o(n−1 ) convergence for the variance when used with digital nets and Owen nested scrambling. A Peano curve would also work in base 3. Reality check: We only need a good pairing between states and RQMC points. Any good way of doing this is welcome! Machine learning to the rescue?.

(81) 50. Sorting by a Hilbert curve. aft. Suppose the state space is X = [0, 1)` . Partition this cube into 2m` subcubes of equal size. When a subcube contains more than one point (a collision), we could split it again in 2` . But in practice, we rather fix m and neglect collisions.. Dr. The Hilbert curve defines a way to enumerate (order) the subcubes so that successive subcubes are always adjacent. This gives a way to sort the points. Colliding points are ordered arbitrarily. We precompute and store the map from point coordinates (first m bits) to its position in the list. Then we can map states to points as if the state had one dimension. We use RQMC points in 1 + d dimensions, ordered by first coordinate, which is used to match the states, and d (randomized) coordinates are used to advance the chains..

(82) 51. Hilbert curve sort. aft. Map the state to [0, 1], then sort.. States of the chains 1.0. s. 0.9. s. 0.8 0.7 0.6. s. s. s. Dr. s. 0.5. 0.3. s. s. 0.2 0.1 0.0. s. s. 0.4. s. 0.1. 0.2. 0.3. s. s. s. 0.0. s s. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(83) 51. Hilbert curve sort. aft. Map the state to [0, 1], then sort.. States of the chains 1.0. s. 0.9. s. 0.8 0.7 0.6. s. s. s. Dr. s. 0.5. 0.3. s. s. 0.2 0.1 0.0. s. s. 0.4. s. 0.1. 0.2. 0.3. s. s. s. 0.0. s s. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(84) 51. Hilbert curve sort. aft. Map the state to [0, 1], then sort.. States of the chains 1.0. s. 0.9. s. 0.8 0.7 0.6. s. s. s. Dr. s. 0.5. 0.3. s. s. 0.2 0.1 0.0. s. s. 0.4. s. 0.1. 0.2. 0.3. s. s. s. 0.0. s s. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(85) 51. Hilbert curve sort. aft. Map the state to [0, 1], then sort.. States of the chains 1.0. s. 0.9. s. 0.8 0.7 0.6. s. s. s. Dr. s. 0.5. 0.3. s. s. 0.2 0.1 0.0. s. s. 0.4. s. 0.1. 0.2. 0.3. s. s. s. 0.0. s s. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0.

(86) aft. What if state space is not [0, 1)` ?. 52. Ex.: For the Asian option, X = [0, ∞)2 .. Then one must define a transformation ψ : X → [0, 1)` so that the transformed state is approximately uniformly distributed over [0, 1)` .. Dr. Not easy to find a good ψ in general! Gerber and Chopin [2015] propose using a logistic transformation for each coordinate, combined with trial and error. A lousy choice could possibly damage efficiency..

(87) 53. Hilbert curve batch sort. ∞. aft. Perform a multivariate batch sort, or a split sort, and then enumerate the boxes as in the Hilbert curve sort. Advantage: the state space can be R` . s. s. s. s. s. Dr. s. s. s. s. −∞. s. s. −∞. s. s. s s. s. ∞.

(88) 54. aft. Convergence results and proofs. For ` = 1, O(n−3/2 ) variance has been proved under some conditions. For ` > 1, worst-case error of O(n−1/(`+1) ) has been proved in deterministic settings under strong conditions on ϕj , using a batch sort (El Haddad, Lécot, L’Ecuyer 2008, 2010).. Dr. Gerber and Chopin (2015) proved o(n−1 ) variance, for Hilbert sort and digital net with nested scrambling..

(89) 55. Proved convergence results. ∆j. =. sup |F̂j (x) − Fj (x)| x∈X Z 1. V∞ (g ) = 0. Dj2. 1. Z 0. 0. We have. (corresponding variation of g ) n−1. 1 1X (F̂j (x) − Fj (x)) dx = + ((i + 0.5/n) − Fj (X(i),j )) 12n2 n i=0. 1. dg (x) dx. 2. Dr. Z. dg (x) dx dx. (star discrepancy of states). 2. =. V22 (g ) =. aft. L., Lécot, Tuffin [2008] + some extensions. Simple case: suppose ` = d = 1, X = [0, 1], and Xj ∼ U(0, 1). Define. dx. (corresp. square variation of g ).. Ȳn,j − E[g (Xj )]. ≤ ∆j V∞ (g ),. Var[Ȳn,j ] = E[(Ȳn,j − E[g (Xj )])2 ] ≤ E[Dj2 ]V22 (g )..

(90) 56. Convergence results and proofs, ` = 1. aft. Assumption 1. ϕj (x, u) non-decreasing in u. Also n = k 2 for some integer k and that each square of the k × k grid contains exactly one RQMC point. Let Λj = sup0≤z≤1 V (Fj (z | · )).. Proposition. (Worst-case error.) Under Assumption 1, ∆j ≤ n. −1/2. j X. j Y. (Λk + 1). Dr. k=1. i=k+1. Corollary. If Λj ≤ ρ < 1 for all j, then ∆j ≤. 1 + ρ −1/2 n . 1−ρ. Λi ..

(91) 57. Convergence results and proofs, ` = 1. aft. Assumption 2. (Stratification) Assumption 1 holds, ϕj also non-decreasing in x, and randomized parts of the points are uniformly distributed in the cubes and pairwise independent (or negatively dependent) conditional on the cubes in which they lie. Proposition. (Variance bound.) Under Assumption 2, E[Dj2 ] ≤. j j Y 1X (Λ` + 1) Λ2i 4 `=1. !. n−3/2. i=`+1. Dr. Corollary. If Λj ≤ ρ < 1 for all j, then E[Dj2 ] ≤. Var[Ȳn,j ] ≤. 1 + ρ −3/2 1 n = n−3/2 , 2 4(1 − ρ ) 4(1 − ρ) 1 V 2 (g )n−3/2 . 4(1 − ρ) 2. These bounds are uniform in j..

(92) 58. aft. Convergence results and proofs, ` > 1. Worst-case error of O(n−1/(`+1) ) has been proved in a deterministic setting for a discrete state space in X ⊆ Z` , and for a continuous state space X ⊆ R` under strong conditions on ϕj , using a batch sort (El Haddad, Lécot, L’Ecuyer 2008, 2010).. Dr. Gerber and Chopin (2015) proved o(n−1 ) for the variance, for Hilbert sort and digital net with nested scrambling..

(93) 59. Example: Asian Call Option. aft. S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13. RQMC: Sobol’ points with linear scrambling + random digital shift. Similar results for randomly-shifted lattice + baker’s transform. log2 Var[µ̂RQMC,n ] -10. n−1 crude MC. -30 -40 8. Dr. -20. 10. 12. 14. 16. 18. RQMC sequential array-RQMC, split sort n−2. 20. log2 n.

(94) 60. Example: Asian Call Option. Sort Split sort. RQMC points SS Sobol Sobol+NUS Korobov+baker SS Sobol Sobol+NUS Korobov+baker SS Sobol Sobol+NUS Korobov+baker. α=. log2 Var[Ȳn,j ] log2 n. -1.38 -2.04 -2.03 -2.00 -1.38 -2.03 -2.03 -2.04 -1.55 -2.03 -2.02 -2.01. Dr. Batch sort (n1 = n2 ). aft. S(0) = 100, K = 100, r = ln(1.09), σ = 0.2, tj = (230 + j)/365, for j = 1, . . . , τ = 10. Var ≈ O(n−α ).. Hilbert sort (logistic map). VRF 2.0 × 102 4.0 × 106 2.6 × 106 2.2 × 106 2.0 × 102 4.2 × 106 2.8 × 106 4.4 × 106 2.4 × 103 2.6 × 106 2.8 × 106 3.3 × 106. VRF for n = 220 . CPU time for m = 100 replications.. CPU (sec) 3093 1116 1402 903 744 532 1035 482 840 534 724 567.

(95) 61. Example: Asian Call Option. Sort Split sort. RQMC points SS Sobol Sobol+NUS Korobov+baker SS Sobol Sobol+NUS Korobov+baker SS Sobol Sobol+NUS Korobov+baker. log2 Var[Ȳn,j ] log2 n. -1.38 -2.04 -2.03 -2.00 -1.38 -2.03 -2.03 -2.04 -1.55 -2.03 -2.02 -2.01. Dr. Batch sort (n1 = n2 ). aft. S(0) = 100, K = 100, r = ln(1.09), σ = 0.2, tj = (230 + j)/365, for j = 1, . . . , τ = 10.. Hilbert sort (logistic map). VRF 2.0 × 102 4.0 × 106 2.6 × 106 2.2 × 106 2.0 × 102 4.2 × 106 2.8 × 106 4.4 × 106 2.4 × 103 2.6 × 106 2.8 × 106 3.3 × 106. VRF for n = 220 . CPU time for m = 100 replications.. CPU (sec) 3093 1116 1402 903 744 532 1035 482 840 534 724 567.

(96) 62. aft. The small Markov chain. α=. log2 MISE log2 n. -1.00 -1.88 -1.91. Dr. RQMC points Monte Carlo Sobol+DS Lattice.

(97) 63. A small example with a one-dimensional state. aft. Let θ ∈ [0, 1) and let Gθ be the cdf of Y = θU + (1 − θ)V , where U, V are indep. U(0, 1). We define a Markov chain by X0 = U0 ∼ U(0, 1); Yj. = θXj−1 + (1 − θ)Uj ;. Xj. = Gθ (Yj ) = ϕj (Xj−1 , Uj ), j ≥ 1,. where Uj ∼ U(0, 1). Then, Xj ∼ U(0, 1) for all j.. Dr. We consider various functions g , all with E[g (Xj )] = 0: g (x) = x − 1/2, g (x) = x 2 − 1/3, g (x) = sin(2πx), g (x) = e x − e + 1 (all smooth), g (x) = (x − 1/2)+ − 1/8 (kink), g (x) = I[x ≤ 1/3] − 1/3 (step). We pretend we do not know E[g (Xj )], and see how well we can estimate it by simulation. We also want to see how well we can estimate the exact distribution of Xj (uniform) by the empirical distribution of X0,j , . . . , Xn−1,j ..

(98) 64. One-dimensional example. aft. We take ρ = 0.3 and j = 5. For array-RQMC, we take Xi,0 = wi = (i − 1/2)/n.. Dr. We tried different array-RQMC variants, for n = 29 to n = 221 . We did m = 200 independent replications for each n. We fitted a linear regression of log2 Var[Ȳn,j ] vs log2 n, for various g.

(99) 64. One-dimensional example. aft. We take ρ = 0.3 and j = 5. For array-RQMC, we take Xi,0 = wi = (i − 1/2)/n.. We tried different array-RQMC variants, for n = 29 to n = 221 . We did m = 200 independent replications for each n. We fitted a linear regression of log2 Var[Ȳn,j ] vs log2 n, for various g. Dr. We also looked at uniformity measures of the set of n states at step j. For example, the Kolmogorov-Smirnov (KS) and Cramer von Mises (CvM) test statistics, denoted KSj and Dj . With ordinary MC, E[KSj ] and E[Dj ] converge as O(n−1 ) for any j. For stratification, we have a proof that E[Dj2 ] ≤. n−3/2 1−θ = n−3/2 . 4(1 − ρ) 4(1 − 2θ).

(100) aft. 65. Some MC and RQMC point sets:. Crude Monte Carlo Latin hypercube sampling Stratified sampling Stratified sampling with antithetic variates in each stratum Sobol’ points, left matrix scrambling + digital random shift Add baker transformation Sobol’ points with Owen’s nested uniform scrambling Korobov lattice in 2 dim. with a random shift modulo 1 Add a baker transformation. Dr. MC: LHS: SS: SSA: Sobol: Sobol+baker: Sobol+NUS: Korobov: Korobov+baker:.

(101) 66. slope vs log2 n. Xj − 12 -1.02 -0.99 -1.98 -2.65 -3.22 -3.41 -2.95 -2.00 -2.01. Dr. − log10 Var[Ȳn,j ] for n = 221 − (Xj − 12 )+ − 18 I[Xj ≤ 13 ] − 7.35 7.86 6.98 8.82 8.93 7.61 13.73 14.10 10.20 18.12 17.41 10.38 19.86 17.51 10.36 13.55 14.03 11.98. Xj2. MC LHS SS SSA Sobol Korobov. 1 8. I[Xj ≤ 31 ] − -1.02 -1.00 -1.49 -1.50 -1.49 -1.50 -1.52 -1.85 -1.90. 1 3. aft. MC LHS SS SSA Sobol Sobol+baker Sobol+NUS Korobov Korobov+baker. Xj2 − 13 -1.01 -1.00 -2.00 -2.56 -3.14 -3.36 -2.95 -1.98 -2.02. log2 Var[Ȳn,j ] (Xj − 12 )+ − -1.00 -1.00 -2.00 -2.50 -2.52 -2.54 -2.54 -1.98 -2.01. 1 3. CPU time (sec) 1 3. 270 992 2334 1576 443 359.

(102) Density estimation. log2 E[KS2j ] -1.00 -1.42 -1.46 -1.50 -1.83 -1.55. log2 E[Dj2 ] -1.00 -1.50 -1.46 -1.57 -1.93 -1.54. Dr. slope vs log2 n MC SS Sobol Sobol+baker Korobov Korobov+baker. aft. 67. MISE hist. 64 -1.00 -1.47 -1.48 -1.58 -1.90 -1.52.

(103) 68. aft. Conclusion. We have convergence proofs for special cases, but not yet for the rates we observe in examples. Many other sorting strategies remain to be explored. Other examples and applications. Higher dimension.. Dr. Array-RQMC is good not only to estimate the mean more accurately, but also to estimate the entire distribution of the state..

(104) Some references on Array-RQMC:. 68. M. Gerber and N. Chopin. Sequential quasi-Monte Carlo. Journal of the Royal Statistical Society, Series B, 77(Part 3):509–579, 2015.. I. P. L’Ecuyer, V. Demers, and B. Tuffin. Rare-events, splitting, and quasi-Monte Carlo. ACM Transactions on Modeling and Computer Simulation, 17(2):Article 9, 2007.. I. P. L’Ecuyer, C. Lécot, and A. L’Archevêque-Gaudet. On array-RQMC for Markov chains: Mapping alternatives and convergence rates. Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 485–500, Berlin, 2009. Springer-Verlag.. I. P. L’Ecuyer, C. Lécot, and B. Tuffin. A randomized quasi-Monte Carlo simulation method for Markov chains. Operations Research, 56(4):958–975, 2008.. I. P. L’Ecuyer, D. Munger, C. Lécot, and B. Tuffin. Sorting methods and convergence rates for array-rqmc: Some empirical comparisons. Mathematics and Computers in Simulation, 2017. http://dx.doi.org/10.1016/j.matcom.2016.07.010.. Dr. aft. I.

(105) P. L’Ecuyer and C. Sanvido. Coupling from the past with randomized quasi-Monte Carlo. Mathematics and Computers in Simulation, 81(3):476–489, 2010.. I. C. Wächter and A. Keller. Efficient simultaneous simulation of Markov chains. Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 669–684, Berlin, 2008. Springer-Verlag.. aft. I. Some basic references on QMC and RQMC:. J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K., 2010.. I. P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics, 13(3):307–349, 2009.. I. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 1992.. I. Monte Carlo and Quasi-Monte Carlo Methods 2016, 2014, 2012, 2010, ... Springer-Verlag, Berlin.. Dr. I. 68.

(106) Approx. Zero-Variance Importance Sampling:. 68. Dr. aft. L’Ecuyer and B. Tuffin, “Approximate Zero-Variance Simulation,” Proceedings of the 2008 Winter Simulation Conference, 170–181. http://www.informs-sim.org/wsc08papers/019.pdf.

(107)

Références

Documents relatifs

Les couleurs africaines se réfèrent en général, à l’environnement, au qoutidien, les gens en Afrique ont une connaissance vivante des couleurs, néanmoins l’influence

Sehr seltene nichtzystische Varianten von Pankreaskarzino- men umfassen das Mikroadenokarzinom, den muzin6sen Karzi- noidtumor (Becherzellkarzinoid), das onkozyt~tre

For method optimisation, a gel containing approximately 40 pmol of ovalbumin, labelled with pHMB containing Hg with natural isotope composition (corresponding to 32 ng of Hg), in

Uniform sampling Update error and pixel probabilities Adaptive sampling Uniform sampling. Comparison with Tsallis entropy [Xu, Sbert, Xinh and

Accord- ing to this view, the human embryo is protected by the dignity of all “human life,” therefore one cannot bargain its right to life against any other value, however

We provide a finite-time analysis for stratified sampling for Monte-Carlo in the case of fixed strata. An immediate consequence is the asymptotic convergence of the variance of

The efficiency of the simulation methods under analysis is evaluated in terms of four quantities: the failure probability estimate Pˆ (F), the sample standard de viation σ ˆ of

Unit´e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unit´e de recherche INRIA Rhˆone-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST