• Aucun résultat trouvé

Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite

N/A
N/A
Protected

Academic year: 2021

Partager "Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: cea-02338741

https://hal-cea.archives-ouvertes.fr/cea-02338741

Submitted on 25 Feb 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite

M. Bertrand, P. Pochon, N. Cedat, O. Baudouin, R. Sardeing

To cite this version:

M. Bertrand, P. Pochon, N. Cedat, O. Baudouin, R. Sardeing. Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite. 30th ESAT 2018 - European symposium on applied thermodynamics, Oct 2018, Prague, Czech Republic. �cea-02338741�

(2)

Modelling of krypton-xenon separation by dynamic

fixed-bed adsorption on zeolite

Introduction

Experimental study

Thermodynamic models

Conclusion

Currently noble gases separated by cryogenic distillation  expensive process with safety constraints due to the cryogenic temperatures used

Adsorptive separation (temperature/pressure swing adsorption)  an energy, safety and cost effective alternative method

Different selective materials used from inorganic adsorbents based on physical adsorption to new metal-organic

frameworks (MOFs) based on size and chemistry

Experimental set-up: fixed-bed adsorption column

OBJECTIVES

Development of a Kr/Xe separation process by selective adsorption on a chabazite zeolite in a fixed bed column

Experimental study of the Kr and Xe adsorption dynamics at different temperatures and under different operating conditions

Modelling of the Kr/Xe adsorption separation from a gas mixture

Zeolite AW500 suitable for Xe/Kr separation process from a gas mixture flow as their

breakthrough times are significantly different

Development of an adsorption modelling using software ProSim DAC

The model developed can be applied to design PSA/TSA cycles to separate Kr and Xe

The authors greatly acknowledge orano for sponsoring this study

Modelling using ProSim

Murielle Bertrand1, Patrick Pochon1, Nadège Cédat1, Olivier Baudouin2, Rodolphe Sardeing2

1- CEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes BP 17171 F-30207 Bagnols-sur-Cèze, France 2- ProSim SA Immeuble Stratège A, 51, rue Ampère F-31670 Labège, France

Choice of the adsorbent

A dozen of zeolites experimentally tested

  selection of a synthetic chabazite AW500 of general formulae Mx[(AlO2)x(SiO2)y],zH2O) due to its capture performances

Kr

Comparison simulation/experiments

Fixed-bed adsorption

Continuous acquisition of

Kr/N2 and Xe/N2 breakthrough curves in a fixed-bed column

Adiabatic system

Temperatures: from -20°C to +20°C

Initial feed concentrations: between 0 and 1%

Gas concentrations followed by mass spectrometry

Solid adsorbent thermally

pretreated at 300°C under nitrogen

Isotherms of Xe and Xr in N2 at different temperatures

Mass spectrometer

Dynamic simulation software ProSim DAC

Based on the mass, energy and momentum balances Propagation of the gas flow described by the axially dispersed plug flow

Mass transfer described by the Linear Driving Force Model (LDF)

linear law

Adsorption enthalpy: -7.3 kJ.mol-1

Comparison of the behaviour of Xe alone in N2 and in Kr/NO/NO2/N2 mixtures

Acknowledgment

Good agreement for both Kr and Xe

gas sampling

Flow rate controller

Mass spectrometer Column with

zeolite

T° probes Water loop

Freundlich – Heller model

Adsorption enthalpy: -18.8 kJ.mol-1

Xe

Gas Mixtures

Tests on Xe/Kr/NO/NO2/N2 mixtures

absence of interactions between components

Hypotheses:

Adsorbent assumed to be thermodynamically inert

Radial concentration gradients negligible

Gas mixtures supposed to behave as an ideal gas

Particule diameter µm 250 – 500 Surface area (m²/g) 327 Porosity volume (cm3/g) 0,32

Particle density (kg/m3) 1400

Pore diameter (nm) 11

Properties of the adsorbent

Application for a sensitivity analysis:

Adsorbent characteristics  no impact on the adsorption and separation performances

Process parameters: temperature, feed flow or initial concentration  high impacts

Example of breakthrough curves of Kr and Xe in N2 at -20°C

0 50 100 150 200 250 300 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 n(Xe ad s) mm ol/ kg P(Xe)^(1/1.13) kPa Isotherms of Xe 0°C Xe/N2 -20°C Xe/N2 0°C mixture -20°C mixture 20°C mixture -0,20 0,00 0,20 0,40 0,60 0,80 1,00 1,20 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 K r, X e (% mol ) Time (s) Breakthrough curves at -20°C Xe = 1 % Kr = 1% 0,0 50,0 100,0 150,0 200,0 250,0 300,0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 n(Xe /K r ad s) mm ol/ kg P(Xe/Kr) kPa Xe 20°C Xe 0°C Xe -20°C Kr 20°C Kr 0°C Kr -20°C

Références

Documents relatifs

Supplementary immunization in highest- risk polio-free areas: The third priority of the Global Polio Eradication Initiative will be to prevent the re-establishment of wild

[r]

deux cent soixante-seize milliards trente-neuf millions cinq cent quarante mille

[r]

et à Brienz. Certainement, sans qu'elles fussent jolies, il faisait beau les voir ramer d'un bras vi- goureux, en chantant les rondes alpestres. li tues

[r]

[r]

Pour un poste d’opérateur de machinerie lourde, Natasha a le choix entre recevoir un salaire hebdomadaire de 675 $ ou travailler 40 heures par semaine à 16,90 $/h... Selena vend