• Aucun résultat trouvé

Choquet integral

N/A
N/A
Protected

Academic year: 2021

Partager "Choquet integral"

Copied!
13
0
0

Texte intégral

(1)

Slide 0

& %

Tolerant or intolerant character of interacting criteria in aggregation by the

Choquet integral

Jean-Luc Marichal HCP’2003

Slide 1

' $

Aggregation in multicriteria decision aid

Alternatives A = {a, b, c, . . .}

Criteria N = {1, 2, . . . , n}

Profile a A −→ (x

a1

, . . . , x

an

| {z }

same interval scale

) R

n

or [0, 1]

n

Aggregation function

M : R

n

R M : [0, 1]

n

[0, 1]

(x

1

, . . . , x

n

) 7→ M (x

1

, . . . , x

n

)

(2)

Slide 2

& %

Choquet integral

Capacity on N :

v : 2

N

[0, 1], monotone, v (∅) = 0, and v(N ) = 1 F

n

:= {capacities on N }

Choquet integral of x R

n

w.r.t. v:

C

v

(x) :=

X

n

i=1

x

(i)

h

v £

(i), . . . , (n) ¤

v £

(i + 1), . . . , (n) ¤i with the convention that x

(1)

6 · · · 6 x

(n)

.

Slide 3

' $

Examples

If x

3

6 x

1

6 x

2

, we have

C

v

(x

1

, x

2

, x

3

) = x

3

[v(3, 1, 2) v(1, 2)]

+ x

1

[v (1, 2) v(2)]

+ x

2

v(2) If x

2

6 x

3

6 x

1

, we have

C

v

(x

1

, x

2

, x

3

) = x

2

[v(2, 3, 1) v(3, 1)]

+ x

3

[v (3, 1) v(1)]

+ x

1

v(1)

(3)

Slide 4

& %

Properties of the Choquet integral

Linearity w.r.t. the capacity

f

T

: R

n

R (T N ) s.t.

C

v

= X

T⊆N

v(T )f

T

(v ∈ F

n

)

Monotonicity

For any x, x

0

R

n

and any v ∈ F

n

x 6 x

0

C

v

(x) 6 C

v

(x

0

)

Slide 5

' $

Affine invariance

For any x R

n

, v ∈ F

n

, r > 0 and s R,

C

v

(rx

1

+ s, . . . , rx

n

+ s) = r C

v

(x

1

, . . . , x

n

) + s

The partial scores may be embedded in [0, 1]

Meaningfulness of weights

v(S ) = C

v

(1

S

) (S N, v ∈ F

n

) Example : N = {1, 2, 3, 4}

v (2, 3, 4) = C

v

(0, 1, 1, 1)

(4)

Slide 6

& %

Axiomatization

Consider a family of n-variable aggregation functions {M

v

: R

n

R | v ∈ F

n

}

This family satisfies the four properties above if and only if M

v

= C

v

(v ∈ F

n

)

(Marichal, 2000)

Slide 7

' $

Evaluation of students

Student St Pr Al

a 19 15 18

b 19 18 15

c 11 15 18

d 11 18 15

←→

St Pr Al

0.95 0.75 0.90 0.95 0.90 0.75 0.55 0.75 0.90 0.55 0.90 0.75

on [0, 20] on [0, 1]

x

0i

= rx

i

+ s

r = 1/20, s = 0

(5)

Slide 8

& %

Assumptions

St and Pr more important than Al

St and Pr are somewhat substitutive

a  b and d  c (⇒ nonadditive Choquet integral)

v (∅) = 0 v (St, Pr) = 0.50 v (St) = 0.35 v (St, Al) = 0.80 v (Pr) = 0.35 v (Pr, Al) = 0.80 v (Al) = 0.30 v (St, Pr, Al) = 1

Slide 9

' $

Results

Student St Pr Al Global evaluation

a 19 15 18 17.75

b 19 18 15 16.85

c 11 15 18 15.10

d 11 18 15 15.25

Ranking

¤

£

¡

a  b  d  c ¢

(6)

Slide 10

& %

Special types of interaction:

veto and favor effects

A criterion k N is

a veto for C

v

if

C

v

(x) 6 x

k

(x [0, 1]

n

)

a favor for C

v

if

C

v

(x) > x

k

(x [0, 1]

n

) (Grabisch, 1997)

If k is both a veto and a favor then k is a dictator

Slide 11

' $

Surprising behavior of C

v

Example of rule

x

k

6 18/20 ⇒ C

v

(x) 6 18/20 ”

k is a veto Proposition

1) k is a veto for C

v

if and only if λ [0, 1[ s.t. ∀x [0, 1]

n

x

k

6 λ C

v

(x) 6 λ

2) k is a favor for C

v

iff λ ]0, 1] s.t. ∀x [0, 1]

n

x

k

> λ C

v

(x) > λ

(7)

Slide 12

& %

More surprising...

One can show that

k is a veto ⇔ ∃ x < y : C

v

(y, . . . , y,

(k)

x , y . . . , y) = x k is a favor ⇔ ∃ x > y : C

v

(y, . . . , y,

(k)

x , y . . . , y) = x Example

C

v

(10, 11, 11) = 10 k = 1 is a veto

⇒ C

v

(10, 20, 20) = 10 !!

C

v

(19, 18, 18) = 19 k = 1 is a favor

⇒ C

v

(19, 0, 0) = 19 !!

Slide 13

' $

Analysis

Veto and favor criteria are rarely encountered

Some criteria might behave nearly like a veto or a favor

How can we measure the degree of veto (or favor)

of criteria ?

(8)

Slide 14

& %

Average value of C

v

over [0, 1]

n

: E(C

v

) :=

Z

[0,1]n

C

v

(x) dx [0, 1]

Examples

E(min) =

n+11

(most intolerant)

E(max) =

n+1n

(most tolerant)

E(OS

k

) =

n+1k

E(WAM

ω

) = E(median) =

12

E(min) 6 E(C

v

) 6 E(max)

Slide 15

' $

Conjunction and disjunction degrees

Position of E(C

v

) within the interval [E(min), E (max)]:

orness(C

v

) := E(C

v

) E(min) E(max) E(min) andness(C

v

) := E(max) E(C

v

)

E(max) E(min) (Dujmovi´c, 1974)

andness(C

v

) + orness(C

v

) = 1

(9)

Slide 16

& %

Examples

orness(min) = 0 (most intolerant)

orness(max) = 1 (most tolerant)

orness(WAM

ω

) = orness(median) =

12

k is a veto for C

v

orness(C

v

) 6 1/2 (not tolerant) Proof:

C

v

(x) 6 x

k

E(C

v

) =

Z

[0,1]n

C

v

(x) dx 6 Z

[0,1]n

x

k

dx = 1/2

Slide 17

' $

Veto and favor degrees

veto(C

v

, k) := 1

n−11

P

T⊆N\{k}

(n−t−1)!t!

(n−1)!

v(T ) favor(C

v

, k) :=

n−11

P

T⊆N\{k}

(n−t−1)!t!

(n−1)!

v(T ∪ {k})

n−11

Why these ugly definitions ?

(10)

Slide 18

& %

Properties of veto(C

v

, k)

Linearity w.r.t. the capacity

p

kT

R (T N ) s.t.

veto(C

v

, k) = X

T⊆N

v(T )p

kT

(k N, v ∈ F

n

)

Symmetry

For any permutation π on N

veto(C

v

, k) = veto(C

πv

, π(k)) (k N, v ∈ F

n

) where πv(π(S)) = v(S ) for all S N .

Slide 19

' $

Boundary conditions For any ∅ 6= T N we have

veto(min

T

, k) = 1 ∀k T (min

i∈T

x

i

6 x

k

∀k T )

Normalization Given v ∈ F

n

veto(C

v

, 1) = veto(C

v

, 2) = · · · = veto(C

v

, n)

veto(C

v

, i) = andness(C

v

)

(11)

Slide 20

& %

Axiomatization

Consider a family of real numbers

{ψ(C

v

, k) R | k N, v ∈ F

n

}

This family satisfies the four properties above if and only if ψ(C

v

, k) = veto(C

v

, k) (k N, v ∈ F

n

)

Slide 21

' $

Evaluation of students

orness(C

v

) = 0.517

St Pr Al

veto(C

v

, k) 0.437 0.437 0.575 favor(C

v

, k) 0.500 0.500 0.550 φ

k

(v ) 0.292 0.292 0.417 Shapley coefficients:

φ

k

(v) := X

T⊆N\{k}

(n t 1)! t!

n! [v (T ∪ {k}) v(T )]

(12)

Slide 22

& %

1 n

X

n

k=1

veto(C

v

, k) = andness(C

v

) 1

n X

n

k=1

favor(C

v

, k) = orness(C

v

) 1

n X

n

k=1

φ

k

(v) = 1 n

St Pr Al

veto(C

v

, k)/andness(C

v

) 0.905 0.905 1.190 favor(C

v

, k)/orness(C

v

) 0.968 0.968 1.064 n φ

k

(v) 0.875 0.875 1.250

Slide 23

' $

Conclusion

We have introduced

– global tolerance indices: orness, andness – local tolerance indices: veto, favor

Behavioral parameters: importance, interaction, dispersion, tolerance...

Identification of capacities: by optimization, learn-

ing data, constraints on behavioral parameters...

(13)

Slide 24

& %

Paper presented

J.-L. Marichal, Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral, European Journal of Operational Research, to appear.

Preprint available at: math.byu.edu/∼marichal

Références

Documents relatifs

In this paper, we propose a model allowing to identify the weights of interacting criteria from a partial preorder over a reference set of alternatives, a partial preorder over the

Now, a suitable aggregation operator, which generalizes the weighted arithmetic mean, is the discrete Choquet integral (see Definition 2.2 below), whose use in multicriteria

We show that, under rather natural conditions, the discrete Choquet integral is an adequate aggregation operator that extends the weighted arithmetic mean by the taking

However this leads to the same drawback (see Appendix A)... An alternative approach consists in defining such indices axiomatically. We present it in the following theorem.. Let

In measurement theory, it is classical to split the overall evaluation model u into two parts [11]: the utility functions (that map the attributes onto a sin- gle satisfaction

Every n-variable Choquet integral is comonotonically additive.. Axiomatizations of the Choquet

• are linear w.r.t.. Let us comment on the axioms presented in this characterization. First, we ask the veto and favor indices to be linear with respect to the fuzzy measures. We

Since the Choquet integral includes weighted arithmetic means, ordered weighted averaging operators, and lattice polynomi- als as particular cases, our results encompass