• Aucun résultat trouvé

Experimental and kinetic modeling study of biomass pyrolysis in an entrained flow reactor

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental and kinetic modeling study of biomass pyrolysis in an entrained flow reactor"

Copied!
1
0
0

Texte intégral

(1)

Experimental and kinetic modeling study of biomass pyrolysis

in an entrained flow reactor

Capucine DUPONT, Julien CANCES, Li CHEN,

CEA 17 rue des Martyrs, 38054 Grenoble cedex 09, France

Jean-Michel COMMANDRE,

RAPSODEE, UMR-CNRS 2392, Ecole des Mines d’Albi-Carmaux 81013 Albi CT cedex 9, France

Sauro PIERUCCI, Alberto CUOCI, Eliseo RANZI*

CMIC Politecnico di Milano P.zza Leonardo da Vinci, 32 20133 Milano, Italy

*Corresponding Author:

eliseo.ranzi@polimi.it

Pre

treatment

Collection

H

2

O, O

2

Gasification

Syngas

(H

2

, CO)

Synthesis

Liquid fuel

(Diesel

Fischer-Tropsch/methanol)

Post

treatment

Biomass

Pre

treatment

Collection

Pre

treatment

Collection

H

2

O, O

2

Gasification

Syngas

(H

2

, CO)

H

2

O, O

2

Gasification

Syngas

(H

2

, CO)

Syngas

(H

2

, CO)

Synthesis

Liquid fuel

(Diesel

Fischer-Tropsch/methanol)

Post

treatment

Synthesis

Liquid fuel

(Diesel

Fischer-Tropsch/methanol)

Post

treatment

Synthesis

Liquid fuel

(Diesel

Fischer-Tropsch/methanol)

Post

treatment

Biomass

Biomass

Motivation of the work:

Biomass to Liquid fuel

T4 L = 2 m Φint= 75 mm L = 2 m Φint= 75 mm L = 2 m Φint= 75 mm Sampling probe 1650 C.A. 750 z(mm) N2 M Solid feeding Analyses

FTIR, NDIR, FID, TCD, mirror Isothermal zone Laminar flow N2 M C.A. N2 H2O

The entrained flow reactor

The general features of biomass pyrolysis are analysed both on

the basis of a specifically conceived set of experiments and on

the basis of a detailed kinetic analysis including successive gas

phase reactions of released species. Experiments are performed

in a lab-scale Entrained Flow Reactor (EFR) to investigate

biomass pyrolysis under high temperatures (1073-1273 K) and

fast heating rate conditions (>500 K/s).

The influence of the particle dimensions, of the temperature and

of the residence time of gas and particles has been tested.

The particle size appeared as the most crucial parameter. Volatile

components released by the solid particles are then involved in a

detailed kinetic scheme of gas phase pyrolysis and combustion,

in order to better understand their successive fate. In this way it is

possible not only to explain the formation of CH

4

and C

2

species,

but also to predict the successive formation of benzene and

aromatic components

ABSTRACT

• CO is the major species

(

~ 50% of converted C is in CO)

• ~ 90% of O is in CO and H

2

O

• Hydrogen is equally distributed between H

2

, H

2

O and CH

4

+C

2

and tars

• C

2

H

4

et C

2

H

2

are not negligible

CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24%

Carbon

Hydrogen

Oxygen

CO 57% residue and tars

7% CO2 3% H2O 28% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24%

Carbon

Hydrogen

Oxygen

CO 57% residue and tars

7% CO2 3% H2O 28% CO 57% residue and tars

7% CO2 3% H2O 28%

Experimental measurements

• CO is the major species

(

~ 50% of converted C is in CO)

• ~ 90% of O is in CO and H

2

O

• Hydrogen is equally distributed between H

2

, H

2

O and CH

4

+C

2

and tars

• C

2

H

4

et C

2

H

2

are not negligible

CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24%

Carbon

Hydrogen

Oxygen

CO 57% residue and tars

7% CO2 3% H2O 28% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24%

Carbon

Hydrogen

Oxygen

CO 57% residue and tars

7% CO2 3% H2O 28% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% CO 41% residue and tars

38% CO2 3% C2H2 5% C2H4 5% CH48% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24% residue and tars

23% H2O 25% C2H2 3% C2H46% CH4 19% H2 24%

Carbon

Hydrogen

Oxygen

CO 57% residue and tars

7% CO2 3% H2O 28% CO 57% residue and tars

7% CO2 3% H2O 28%

Experimental measurements

Influence of the particle size

Large particles are only toasted,

while small particles are completely charified

0.4 mm:

1.1 mm:

Pyrolysis

Pyrolysis

Influence of the particle size

Large particles are only toasted,

while small particles are completely charified

0.4 mm:

1.1 mm:

Pyrolysis Pyrolysis

• Average biomass

composition:

cellulose42% hemicellulose 24% lignin 28% extractives 4% ash 2%

• Linear combination of cellulose, hemicellulose and lignin

cotton

% cellulose % lignin % hemicellulose

birch bark

• Model input data (*): – Moisture – Cellulose, – Hemicellulose – Lignin – Ash

(*) When biochemical analysis is not available, Cellulose, hemicellulose and lignin content are derived from Elemental Analysis with simple correlations.

• Linear combination of cellulose, hemicellulose and lignin

cotton % cellulose % lignin % hemicellulose birch bark cotton % cellulose % lignin % hemicellulose birch bark % cellulose % lignin % hemicellulose % cellulose % lignin % hemicellulose birch bark

• Model input data (*): – Moisture – Cellulose, – Hemicellulose – Lignin – Ash

(*) When biochemical analysis is not available, Cellulose, hemicellulose and lignin content are derived from Elemental Analysis with simple correlations.

Biomass Composition and Model Assumptions

0 0.005 0.01 0.015 0.02 0.025 0 0.2 0.4 0.6 0.8 1 dp=.4 mm T=1273 K CO CO2 H2 Reactor length [m] M ol e fr ac tion s 0 0.005 0.01 0.015 0.02 0.025 0 0.2 0.4 0.6 0.8 1 0.005 0.01 0.015 0.02 0.025 0 0.2 0.4 0.6 0.8 1 0.005 0.01 0.015 0.02 0.025 0 0.2 0.4 0.6 0.8 1 dp=.4 mm T=1273 K CO CO2 H2 Reactor length [m] M ol e fr ac tion s 0 0.002 0.004 0.006 0.008 0.01 0 0.2 0.4 0.6 0.8 1 dp=1.1 mm T=1223 K CO Reactor length [m] M ol e frac tions CO2 0 0.002 0.004 0.006 0.008 0.01 0 0.2 0.4 0.6 0.8 1 dp=1.1 mm T=1223 K CO Reactor length [m] M ol e frac tions CO2

Comparisons between experimental data (points) and model predictions (lines) at 1273 K for 0.4 mm and 1.1 mm particles

Effect of particle diameter.

Temperature Effect on secondary species:

Ethylene and Acetylene yields

Temperature Effect on secondary species:

Ethylene and Acetylene yields

Lumped multi-step devolatilization reactions are assumed

for cellulose, hemicellulose and lignins.

Stoichiometry of devolatilization reactions refer

to lumped volatile components.

A linear additive rule is assumed for biomasses.

Secondary gas phase pyrolysis and oxidation reactions

are included in a general detailed kinetic scheme of

pyrolysis and combustion of large hydrocarbon fuels.

Gas-particle model

include both intra and inter-phase

resistances of heat and mass transfer.

Mass and Energy balances of Entrained Flow Reactor are

solved for gas and solid phase.

0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4

c)

d)

a)

b)

0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 Mass fractions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH 4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4

c)

d)

a)

b)

Model Predictions

0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4

c)

d)

a)

b)

0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 M ass f rac tions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] cellulose char ash lignins 0.3 0.2 0.1 0 Mass fractions 0.4 0.5 hemi-cellulose 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] hydroxy-acetaldehyde 5-hydroxy-methyl-furfural phenol glyoxal 0.0003 0.0002 0.0001 0 Mo le fr ac tio ns 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0.020 0.015 0.010 Mo le fr ac tio ns 0.050 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0 CO H2 H2O CO2 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH 4 C2H2 C2H4 0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1. Reactor length [m] 0.003 0.002 0.001 0 Mo le fra cti on s CH4 C2H2 C2H4

c)

d)

a)

b)

Références

Documents relatifs

Pyrolysis was done at 700°C with a Nickel or Iron based catalyst introduced inside the wood matrix by wet impregnation.. In addition, a blank run was undertaken in which the

The kinetics of pyrolysis of biomass suggested that its thermal decomposition proceeds by various parallel pathways the most important of which being a low tem- perature, low

The Py number indicates that the time scale for the heat transfer is much longer than the reaction time scale and the biomass fast pyrolysis process in the reactor is heat

The main findings of this study are as follows: (i) PBS significantly decreases after BMS implantation, whereas it increases after DES implantation irrespective of underlying lesion

Inconsistency-aware query processing. With the in- consistency measures at hand, we are interested in top-k query processing while taking into account the inconsistency degrees of

The kinetic parameters of polyurethane pyrolysis were evaluated by fitting the model to the experimental data obtained by TGA over a wide variety of heating rates.. A

2 that at nearly the same reflux ratio and same purity of ethanol in the distillate, along with the reduction of the total tray number of the extrac- tive distillation column by

The Figure 5 and Figure 6 show respectively normalized mass loss (TG curve) and derivative mass loss (DTG curve) of char of rice straw, coal and their mixture during oxidation