• Aucun résultat trouvé

THE AEROGEL GLASS CONVERSION

N/A
N/A
Protected

Academic year: 2021

Partager "THE AEROGEL GLASS CONVERSION"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00229483

https://hal.archives-ouvertes.fr/jpa-00229483

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE AEROGEL GLASS CONVERSION

J. Phalippou, T. Woignier, M. Prassas

To cite this version:

J. Phalippou, T. Woignier, M. Prassas. THE AEROGEL GLASS CONVERSION. Journal de Physique

Colloques, 1989, 50 (C4), pp.C4-47-C4-52. �10.1051/jphyscol:1989408�. �jpa-00229483�

(2)

REVUE DE PHYSIQUE APPLIQUÉE

Colloque C4, Supplément au n°4, Tome 24, Avril 1989 C4-47

THE AEROGEL GLASS CONVERSION

J. PHALIPPOU, T. WOIGNIER and M. PRASSAS*

Laboratoire de Science des Matériaux Vitreux, Université des Sciences et Techniques du Languedoc, F-34060 Montpellier Cedex 2, France

* Corning Europe, 7 avenue de Valvins, F-77210 Avon, France

Résumé - Les divers traitements qui permettent de transformer un aérogel de silice en verre sont examinés. La monolithicité des aérogels peut être obtenue par évacuation hypercritique du méthanol ou du CO2. Ces deux voies ont été successivement utilisées et des comparaisons sur la structure de l'aérogel obtenu sont précisées. Les aérogels obtenus par évacuation hypercritique du méthanol sont hydrophobes. Le traitement d'oxydation permet d'obtenir des aérogels ne contenant plus de résidus carbonés. La température de frittage dépend de la nature de l'aérogel et est fonction de la teneur en eau. Nous montrons que l'eau joue un rôle très important dans les phénomènes de moussage et de cristallisation observés. Un traitement de chloration permet d'obtenir des verres de silice exempts d'eau de structure.

Abstract - The different treatments which have been carried out to transform an aerogel into a glass are reviewed. Monolithicity of aerogels can be reached using hypercritical drying qf methanol or CO2. These two ways are investigated and comparisons about the structure of the aerogels are deduced. Aerogels obtained from methanol hypercritical evacuation are hydrophobic. The oxidation treatment gives rise to free carbon aerogels. The sintering temperature depends on the nature of the aerogel and is linked to its hydroxyl content. It is shown that the water content plays a very important role and causes the bloating and the crystallization phenomena. A chlorination treatment of aerogel allows free water silica glass to be obtained.

1 - INTRODUCTION

Aerogels, as obtained, may be used for various applications. On the other hand, there are a lot of fundamental works devoted to these highly porous materials which have been demonstrated to be fractal. However aerogels may also be regarded as initial compounds to further elaboration processes. Due to their very fine structure, aerogel powders show a great tendency to densify at very low temperatures. The sintering of cordierite obtained from aerogel has been reported / l / . Some attempts in the laboratory show that a similar way is available for a ceramic oxide whose composition is close to that of mullite. A such advantage applies both to amorphous aerogels and to aerogels which are then submitted to a crystallization heat treatment.

Nevertheless the most important advantage of the hypercritical drying process concerns the possibility to get monolithic aerogels. In that case the sintering can be performed by a simple heat treatment without any grinding, compaction or other polluting treatments.

In such a way the monolith will be partially densified or totally densified in respect with required application.

A partially densified aerogel is a host material (like a sponge) and then it may be impregnated with numerous active molecules chosen showing specific properties.

Total densification is hard to realize for aerogels which undergo a sudden phase transformation when the temperature increases. Zr02 aerogels fall within that class of materials. The crystallization provokes a volume change which usually induces the cracking of the partially crystallized aerogels. Crystallization phenomenon has to be carefully controlled.

This paper is more particularly devoted to silica aerogels which remain amorphous during the sequency of heat treatments allowing the densification to be achieved.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989408

(3)

2 - PROPERTIES OF SILICA AEROGELS

M o n o l i t h i c s i l i c a aerogels are mainly obtained by two ways :

h y p e r c r i t i c a l d r y i n g o f a 1 iq u i d m i x t u r e HzO-alcohol o r CO2. These two ways were i n v e s t i g a t e d /2/. The s t r u c t u r e s o f aerogels are very s i m i l a r . The v i b r a t i o n a l s p e c t r a o f t h e same sample deshydrated using t h e two above mentionned ways are shown on f i g u r e 1.

The most important d i f f e r e n c e comes from t h e e f f e c t o f t h e e s t e r i f i c a t i o n r e a c t i o n which occurs i n t h e autoclave when t h e s o l v e n t i s an a l c o h o l i c medium. Due t o t h a t r e a c t i o n the aerogel becomes "hydrophobic". The h y d r o p h o b i c i t y i s l i n k e d t o t h e presence o f organic r a d i c a l s which r e p l a c e t h e most p a r t o f t h e f r e e s i l a n o l s groups.

U s u a l l y a xerogel has about 5 t o 6 s i l a n o l groups per nmz. A f t e r an e s t e r i f i c a t i o n treatment, s p e c i f i c s u r f a c e area measurements and m i c r o a n a l y s i s show t h a t t h e number o f OR groups/nmZ (ethoxy o r methoxy) v a r i e s between 2 and 3 depending on t h e d u r a t i o n and t h e tem- p e r a t u r e o f treatment /3/. This number can reach a value o f f i v e OMe/nmz i f t h e e s t e r i f i c a - t i o n i s c a r r i e d o u t a t 500°C w i t h methanol vapor /4/.

I t i s noteworthy t h a t t h e IR spectra shows t h a t s i l i c a aerogels c o n t a i n an apprecia- b l e amount o f s i l a n o l s groups although they are hydrophobic. I n t e r n a l s i l a n o l s whose the absorption band i s s i t u a t e d a t 3660 cm-I cannot be e s t e r i f i e d d u r i n g t h e autoclave t r e a t - ment.

COz aerogels are l e s s hydrophobic. I f no p r e c a u t i o n i s taken, t h i s s o r t o f aerogels w i l l again r e a c t w i t h atmospheric water. C a p i l l a r y condensation may occur which sometimes g i v e r i s e t o c a p i l l a r y stresses l e a d i n g t o c r a c k i n g o f t h e aerogel. For a l l these f e a t u r e s we b e l i e v e t h a t i t i s more convenient t o use hydrophobic aerogel as s t a r t i n g m a t e r i a l f o r conversion i n t o a massive s i l i c a glass.

Fig. 1 - S t r u c t u r a l comparison o f s i l i c a aerogels d r i e d u s i n g d i f f e r e n t s o l v e n t s evacuations.

3

-

THERMAL TREATMENTS BEFORE SINTERING

The thermal treatments performed b e f o r e s i n t e r i n g a r e c a r r i e d o u t t o remove t h e orga- n i c residues beared by t h e aerogel. The o x i d a t i o n r e a c t i o n may be f o l l o w e d u s i n g various techniques. GTA shows a w e i g t h l o s s o f about 5-10% depending on t h e aerogel cqmposition.

DTA c o n f i r m s t h a t o x i d a t i o n r e a c t i o n i s an exothermic phenomenon which appears between 300 and 500°C. A d e t a i l e d a n a l y s i s o f s t r u c t u r a l m o d i f i c a t i o n was c a r r i e d o u t using I R spectroscopy on t h i n s l i d e of aerogel. The study shows t h a t o r g a n i c r e s i d u e s r e a c t w i t h a i r and g i v e r i s e t o new s i l a n o l groups. S i l a n o l groups condense t o g e t h e r and c r e a t e s i l o - xane bonds /5/. As a consequence t h e Young's modulus o f aerogels increases /6/ and the s k e l e t a l d e n s i t y measured by h e l i u m pycnometry becomes c l o s e t o t h a t o f t h e s i l i c a glass /7/. Moreover t h e l a s t measurements c o n f i r m t h a t t h e p o r o s i t y o f aerogel remains t o t a l l y open d u r i n g t h e o x i d a t i o n process p r o v i d e d t h a t treatment i s conducted a t l o w temperature.

Raman s p e c t r a o f s i l i c a aerogels shows t h e presence o f " d e f e c t " bands (480 and 600 cm-I) whose t h e exact assignment i s n o t w e l l e s t a b l i s h e d . I n usual xerogels these bands are due t o c y c l i c arrangments o f s i l o x a n e bonds. The c y c l i c arrangments would induce an increase o f t h e s k e l e t a l d e n s i t y which has been shown h i g h e r than 2.2 /8/.

(4)

Cross polaris,ation NMR experiments a r e in progress t o b e t t e r understand t h e Raman l i n e s evolution a s a function of temperature.

4

-

AEROGEL EVOLUTION DURING THE SINTERING STAGE

The s t r u c t u r a l e v o l u t i o n o f t h e aerogel a s a function of temperature i s shown on f i g u r e

2.

The absorption bands a r e mainly due t o s i l a n o l s and s i l o x a n e groups. As t h e temperature i n c r e a s e s t h e water content decreases. The i n i t i a l oxided aerogel i s q u i t e t r a n s p a r e n t . I t becomes opaque a s t h e s i n t e r i n g progresses. Diffusion phenomenon accounts f o r t h i s behavior. The aerogel becomes again t r a n s p a r e n t during t h e l a s t i n s t a n t s of t h e s i n t e r i n g .

Fig.

2

- S t r u c t u r a l evolution of a s i l i c a aerogel a s a function of temperature.

The p a r t i a l l y d e n s i f i e d aerogel can be transformed i n t o a t r a n s p a r e n t one by impre- gnating with a l i q u i d s o l u t i o n whose t h e r e f r a c t i v e index i s c l o s e t o t h a t of t h e s i l i c a g l a s s .

The d i f f u s i o n i n t e n s i t y i s then a measurement of i n t e r e s t f o r t h e evaluation of close p o r o s i t y o r p o r o s i t y non a c c e s s i b l e by l i q u i d s o l u t i o n

/9/.

The s i n t e r i n g o f aerogel i s followed by various techniques. I t always occurs suddenly

in a s h o r t range of temperature. We have previously shown t h a t t h e s i n t e r i n g k i n e t i c depends

on numerous parameters linked t o t h e s t a r t i n g m a t e r i a l . The extent of hydrolysis, t h e cata-

l y s t n a t u r e and d i l u t i o n a r e among t h e most important parameters. On t h e o t h e r hand t h e

water o r a l k a l i content play a very important r o l e on a e r o g e l - g l a s s conversion (Fig.

3 ) .

(5)

Fig.

3

- Effect of alkali content (linear shrinkage) and water content (a

:

5000 ppm - b

:

800 ppm) on sintering behaviour.

Figure 4 shows the evolution of the specific surface area and the linear dimension change of a

A60S

aerogel. The textural properties of the aerogel do not vary up to 900- 950°C. Above this temperature range the sintering happens very quickly. The linear shrinkage of the sample is then about 50%. The totally densified material is transparent and exbibits physical properties analogous to that of the usual silica glass.

The analysis of the sintering mechanism has been performed using isothermal dilato- metric measurements. At low temperatures, the sintering is of small amplitude due to a diffusional mechanism. At higher temperatures the sintering appears due to a viscous flow phenomenon /lo/.

However the obtained glasses have a high water content (1000-5000ppm) as measured by IR spectroscopy using the intensity of the 2.73 pm absorption band. The samples fired at a temperature above 1250°C show a bloating effect which leads sometimes to a crystallization phenomenon.

Fig.

4 -

Textural

500 1000

properties evolution of a silica aerogel versus temperature.

(6)

5

-

FOAMING OF SILICA GLASS

We have p r e v i o u s l y shown t h a t t h e foaming e f f e c t i s n o t homogeneous. Bubbles a r e f i r s t l o c a t e d i n t h e c o r e o f t h e sample /11/. T h i s phenomenon i s l i n k e d t o t h e i n s u l a t i n g p r o p e r t y o f s i l i c a . As t h e t e m p e r a t u r e i n c r e a s e proceeds a t e m p e r a t u r e g r a d i a n t occurs between t h e s k i n and t h e c o r e o f t h e sample. The s u r f a c e d e n s i f i c a t i o n induces t h e chemical species, which c r e a t e t h e foaming e f f e c t , t o move towards t h e c o r e . O n l y t h e c o r e shows an open p o r o s i t y .

A r a p i d s i n t e r i n g induces a premature c l o s u r e o f t h e pores. Bubble gases a r e cons- t i t u t e d by Hz, 02, N2, CO and C02 /12/. However we have t o p o i n t o u t t h a t a i r i s n o t alone r e s p o n s i b l e f o r t h e foaming phenomenon.

As observed, s i n t e r i n g under vacuum l e a d s t o a g l a s s which b l o a t s a g a i n a t h i g h tem- p e r a t u r e s . Even reduced (500ppm) t h e w a t e r c o n t e n t remains v e r y h i g h . A s p e c t r o s c o p i c study /13/ shows t h a t t h e w a t e r c o n t e n t o f t h e g l a s s i s h i g h e r i n t h e c o r e .

The foaming e f f e c t has been i n v e s t i g a t e d i n some e x t e n t and we have shown t h a t t h e Mackenzie and S h u t t l e w o r t h ' s model can e x p l a i n b o t h t h e s i n t e r i n g and t h e foaming e f f e c t depending on t h e n a t u r e o f gas i n s i d e t h e p o r e s . Foaming i s l i n k e d t o t h e d i f f u s i v e p r o p e r t y o f t h e gas. Assuming t h a t t h e gas i s t h e foaming agent we have p e r f o r m e d experiments t o decrease t h e w a t e r c o n t e n t o f g l a s s e s o b t a i n e d f r o m a e r o g e l s /11/.

There a r e m a i n l y two manners t o reduce t h e w a t e r c o n t e n t i n g l a s s e s : n i t r i d a t i o n o r h a l o g e n a t i o n . H a l o g e n a t i o n i s t h e most c o n v e n i e n t , i t i s u s u a l l y c a r r i e d o u t u s i n g c h l o r i d e agents such as Clz, SOClz, CC14. The l a s t compound was chosen because t h e c h l o r i n a t i o n r e a c t i o n i s complete, i t o c c u r s a t l o w t e m p e r a t u r e and does n o t a f f e c t s i l o x a n e bonds.

The c h l o r i n a t i o n o f a e r o g e l s was performed a t 500°C f o r 15 t o 60 minutes. The o b t a i - ned g l a s s e s do n o t foam i n t h e t e m p e r a t u r e range between 1400-1500°C and t h e y a r e f r e e o f w a t e r (<lppm).

However t h e s i n t e r i n g must be c a r r i e d o u t i n s i d e t h e same f u r n a c e ( a l l o w i n g t h e c h l o r i n a t i o n t r e a t m e n t ) t o a v o i d t h e h y d r o l y s i s o f Si-C1 bonds.

I f t h e d u r a t i o n o f c h l o r i n a t i o n t r e a t m e n t i s t o o l o n g i t i s p o s s i b l e t o observe a n o t h e r foaming phenomenon which occurs a t v e r y h i g h t e m p e r a t u r e s (1800-2000°C). T h i s new foaming e f f e c t comes f r o m c h l o r i n e gas which i s r e l e a s e d .

I t can be p r e v e n t e d by t r e a t i n g t h e aerogel under oxygen t o remove Si-C1 groups.

These gas s p e c i e s a r e d i l u t e d i n t o a h i g h d i f f u s i v e gas such as h e l i u m .

Some a u t h o r s p r e f e r t o p e r f o r m a h a l o g e n a t i o n t r e a t m e n t u s i n g f l u o r i d e compounds. The S i - F i s s t r o n g e r t h a n Si-C1 bond and on an a n o t h e r hand i t i s w e l l known t h a t S i - F bond i s hydrophobic. However t h e f l u o r i n a t i o n t r e a t m e n t can i n d u c e a d e p o l y m e r i z a t i o n o f t h e s i l i c a network.

I n t h e case o f g e l s an e l e g a n t manner t o i n t r o d u c e f l u o r i d e element c o n s i s t s o f g e l i f y i n g t h e s o l u t i o n under HF c a t a l y s t c o n d i t i o n s . The g e l and as a consequence t h e aerogel c o n t a i n S i - F bonds. They a r e e a s i l y dehydrated and f o r some o f them no foaming i s observed /14/.

A c r y s t a l l i z a t i o n phenomenon sometimes occurs a t t e m p e r a t u r e s c l o s e t o those o f foaming. I t i s a l s o r e l a t e d t o t h e w a t e r c o n t e n t o f t h e m a t e r i a l . C r i s t o b a l i t e c r y s t a l s a r e l o c a t e d i n t h e v i t r e o u s phase between t h e bubbles. The c o r e o f t h e g l a s s c r y s t a l l i z e s b e f o r e t h e s u r f a c e . T h i s b e h a v i o r i s c o n t r a r y t o t h a t u s u a l l y observed i n s i l i c a g l a s s . On c o o l i n g , t h e 8->a c r i s t o b a l i t e t r a n s f o r m a t i o n i s c l e a r l y observed on DTA a t about 300°C and induces t h e c r a c k i n g o f t h e m a t e r i a l .

6

-

CONCLUSION

M o n o l i t h i c a e r o g e l s a r e m a t e r i a l s which a r e e a s i l y t r a n s f o r m e d i n t o g l a s s . Due t o t h e i r c h a r a c t e r i s t i c t e x t u r e w i t h h i g h s p e c i f i c s u r f a c e a r e a and open p o r o s i t y , e f f i c i e n t d e h y d r a t i o n t r e a t m e n t s can be performed r a p i d l y a t l o w temperature. S i n t e r i n g t a k e s p l a c e i n a narrow t e m p e r a t u r e range b u t may be c o n t r o l l e d as a f u n c t i o n o f t i m e a t l o w e r tempera- t u r e s . On a n o t h e r hand i t i s p o s s i b l e t o develop a g r a d i e n t of t e m p e r a t u r e and as a conse- quence a p o r e s i z e d i f f e r e n c e between t h e s u r f a c E and t h e c o r e . Such p a r t i c u l a r t e x t u r e s which a r e e a s i l y done may open a new f i e l d o f a p p l i c a t i o n s f o r s i l i c a a e r o g e l s .

REFERENCES

/I/ VESTEGHEM H.,et a l . , t h i s i s s u e .

/2/ WOIGNIER, T., T h e s i s M o n t p e l l i e r (France) (1984).

/3/ KONDO, S., FUJIWARA, H., OKAZAZI, E., I C H I I , T., J. C o l l o i d . and I n t e r . Science,

75

(1980) 328.

(7)

/4/ ASANO, T., KITAHARA, S., Nippon Kagatu Zasshi,

91

(1970) 109.

/5/ PRASSAS, M., PHALIPPOU, J., ZARZYCKI, J., Glastechn. Ber.,

56K

(1983) 542.

/6/ WOIGNIER, T., PHALIPPOU, J., VACHER, R., MRS Spring Meeting (Reno) ( A p r i l 1988) t o be p u b l i s h e d by M a t e r i a l Research Society.

/7/ WOIGNIER,

T.,

PHALIPPOU, J., J. Non-Cryst. Solids,

93

(1987) 17

/8/ BRINKER, C.J., TALLANT, D.R., ROTH, E.P., ASHLEY, C.S., J. Non-Cryst. Solids,

82

(1986) 117.

/9/ SATOH, S., SUSA, K., MATSUYAMA, I., SUGANUMA, T., J. Non-Cryst. S o l i d s ,

55

(1983) 455.

/lo/ PRASSAS,

M.,

PHALIPPOU, J., ZARZYCKI, J., i n "Science o f Ceramic Chemical Processing", ed. by HENCH L.L. and ULRICH, D.R., J. Wiley and sons, NY (1986) chap 17.

/11/ PHALIPPOU, J., WOIGNIER, T., ZARZYCKI, J., " U l t r a s t r u c t u r e Processing o f Ceramics, Glasses and Composites", Ed. HENCH, L.L., ULRICH, D.R., J. Wiley and sons

,

NY (1984) chap. 7.

/12/ YANAGISAWA, O., TANAKA, C., KOKUBU, Y., SUZUKI, Y., J. Non-Cryst. S o l i d s , 38-39 (1980) 599.

/13/ WOIGNIER, T., PHALIPPOU, J., Riv. d e l l a Staz. Sper. Vetro,

3

(1984) 47.

/14/ ZELLER, R., Thesis Mulhouse (France) (1987).

Références

Documents relatifs

Nhận thấy bảng từ chưa thực sự toàn diện để sử dụng cho việc đi sâu nghiên cứu ngôn ngữ, trong quá trình nghiên cứu điền dã ở Việt Nam những năm 90, Michel

Architects, engineers, builders and building operators unfamiliar with computer technology may be confused by the myriad of tools available for computer-aided design and

Estimez et ensuite mesurez `a l’aide d’un rapporteur la valeur de chaque

Estimez et ensuite mesurez `a l’aide d’un rapporteur la valeur de chaque

Further, evaluation of this aerogel showed tremendous activity for the cracking of propylene to methane with no activity for nitroxidation. Electron micrographs of this catalyst

Aerogels have been obtained ranging from 1 to 50% for the molar ratio Nb/Si: The synthesis is realized from NbC15 in CH30H and prehydrolysed TMOS solution, followed

For lower emissivities the situation is not as clear: Though an increasing density increases the IR extinction, non-linear coupling effects close to the low emissivity

The above-reviewed literature on reptile GC-content varia- tion is based on various kinds of data and methods, separately applied to distinct species. The important group of