• Aucun résultat trouvé

A review of polymer electrolyte membrane fuel cell durability test protocols

N/A
N/A
Protected

Academic year: 2021

Partager "A review of polymer electrolyte membrane fuel cell durability test protocols"

Copied!
11
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Journal of Power Sources, 196, 22, pp. 9107-9116, 2011-08-23

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.jpowsour.2011.07.082

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A review of polymer electrolyte membrane fuel cell durability test

protocols

Yuan, Xiao-Zi; Li, Hui; Zhang, Shengsheng; Martin, Jonathan; Wang,

Haijiang

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=9182aef9-91f4-4189-a070-c1ab17df6b3b

https://publications-cnrc.canada.ca/fra/voir/objet/?id=9182aef9-91f4-4189-a070-c1ab17df6b3b

(2)

JournalofPowerSources196 (2011) 9107–9116

ContentslistsavailableatScienceDirect

Journal

of

Power

Sources

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Review

A

review

of

polymer

electrolyte

membrane

fuel

cell

durability

test

protocols

Xiao-Zi

Yuan,

Hui

Li,

Shengsheng

Zhang,

Jonathan

Martin,

Haijiang

Wang

InstituteforFuelCellInnovation,NationalResearchCouncilCanada,4250WesbrookMall,Vancouver,BC,CanadaV6T1W5

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30May2011

Receivedinrevisedform26July2011 Accepted28July2011

Available online 23 August 2011

Keywords: Acceleratedtest Degradation Diagnosis Durability PEMfuelcell Protocol

a

b

s

t

r

a

c

t

Durabilityisoneofthemajorbarriers topolymerelectrolyte membranefuelcells(PEMFCs)being acceptedasacommerciallyviableproduct.Itisthereforeimportanttounderstandtheirdegradation phenomenaandanalyzedegradationmechanismsfromthecomponentleveltothecellandstacklevel sothatnovelcomponentmaterialscanbedevelopedandnoveldesignsforcells/stackscanbeachievedto mitigateinsufficientfuelcelldurability.Itisgenerallyimpracticalandcostlytooperateafuelcellunder itsnormalconditionsforseveralthousandhours,soacceleratedtestmethodsarepreferredtofacilitate rapidlearningaboutkeydurabilityissues.BasedontheUSDepartmentofEnergy(DOE)andUSFuelCell Council(USFCC)acceleratedtestprotocols,aswellasdegradationtestsperformedbyresearchersand publishedintheliterature,wereviewdegradationtestprotocolsatbothcomponentandcell/stacklevels (drivingcycles),aimingtogathertheavailableinformationonacceleratedtestmethodsanddegradation testprotocolsforPEMFCs,andtherebyprovidepractitionerswithausefultoolboxtostudydurability issues.Theseprotocolshelppreventtheprolongedtestperiodsandhighcostsassociatedwithreal life-timetests,assesstheperformanceanddurabilityofPEMFCcomponents,andensurethatthegenerated datacanbecompared.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

Contents

1. Introduction... 9107

2. AbriefreviewofPEMFCdegradation... 9108

2.1. Catalystlayerdegradation... 9108

2.2. Membranedegradation... 9109

2.3. GDLdegradation... 9109

2.4. Bipolarplatedegradation... 9109

2.5. Othercomponentdegradation... 9109

2.6. Operatingconditions,environment,contamination,operationmode,anddesign-induceddegradation... 9109

3. Acceleratedstresstestprotocolsforcellcomponents... 9110

3.1. Electrocatalyst... 9110

3.2. Catalystsupport... 9110

3.3. Membrane... 9111

3.3.1. MembranemechanicalAST... 9111

3.3.2. MembranechemicalAST... 9112

3.4. GDL... 9112

3.5. IonomerintheCL ... 9114

4. Cell/stackdurabilitytestprotocols... 9114

4.1. USDOEsinglecell/stacktestingprotocolsfortransportationapplications... 9114

4.2. Durabilitytestsforstationaryapplications... 9114

5. Concludingremarks... 9115

References... 9115

∗Correspondingauthor.Tel.:+16042213038;fax:+16042213001. E-mailaddress:haijiang.wang@nrc.gc.ca(H.Wang).

1. Introduction

Owingtotheirhighenergy efficiency,convenientoperation, andenvironmentallyfriendlycharacteristics,polymerelectrolyte

0378-7753/$–seefrontmatter.Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2011.07.082

(3)

membrane fuel cells (PEMFCs) are considered one of themost promisingfuel celltechnologiesforboth stationaryand mobile applications.Significantprogresshasbeenachievedoverthepast fewdecades.However,durabilityand costhave beenidentified as thetop two issues in PEMFC technology. On the one hand, it isrecognized that onlywhen fuel cellcostsare dramatically reducedtotheUSDepartmentofEnergy(DOE)targetof$50kW−1

willfuel cells becompetitivefor virtually everytype of power application.Ontheotherhand,toreachtechnologicalreadiness, automotivefuelcellpowersystemsneedtobeasdurableand reli-ableastoday’sinternalcombustionengines,correspondingtoa 5000-hoperatinglifetime(approximately7monthsoverarange ofvehicleoperatingconditions,includingvariablerelative humid-ity(RH),shutdown/start-up,freeze/thaw,andsubfreezingdownto −40◦C),andstationaryfuelcellsmustalsomeetoperating

life-timetargetsof morethan 40,000h(approximately4.5 years of continuousoperation)tocompetewithextantdistributedpower generationsystems,basedonthe2015DOEtargetsatcomponent, stack,andsystemlevels[1].TheDOEdurabilitytargetsfor station-aryandtransportationfuelcellapplicationsstandonthelifetimes ofenergyconversiondevicesthatarecompetitivewithfuelcells, suchasmicroturbinesandinternalcombustionengines, respec-tively.However,currentlythelifetimesoffuelcellvehicles and stationarycogenerationsystemsarearound1700hand10,000h, respectively[2].Clearly,intensiveR&Disstillneededtoaddress theissuesrelatedtoPEMFCdurabilityordegradationinorderto achievesustainablecommercialization.

As fuel cells must operate over a wide range of operat-ing and cycling conditions, including temperatures from well belowfreezingtowellabovetheboilingpointofwater,relative humidity(RH) fromambient tosaturated, and half-cell poten-tialsfrom 0to >1.5V,performance degradation is unavoidable, especially fortransportation applications.Althoughthelifetime targetsforautomobilesaremuchlowerthanthoseforstationary applications,operatingconditionssuchasdynamicloadcycling, start-up/shutdown,and freezing/thawing make the target very challengingforcurrentfuelcelltechnologies.Thecell/stack condi-tionscycle,sometimesquiterapidly,betweenhighandlowvoltage, temperature,humidity,andgascomposition.Thecyclingresults in physical and chemical changes to components, sometimes withcatastrophicresults[3].Althoughperformancedegradation is unavoidable,the degradation ratecan beminimized given a comprehensiveunderstandingofdegradationandfailure mecha-nisms.Normally,degradationtargetsrequirelessthan20%lossin theefficiencyofthefuelcellsystembytheendofitslife,anda degradationrateof2–10␮Vh−1 iscommonlyacceptedformost

applications[4].

Todate,variousfailuremodeshavebeenidentified,for exam-ple,catalystparticleripening(particlecoalescence), preferential alloydissolutionin thecatalystlayer,carbon supportoxidation (corrosion),catalystpoisoning,membranethinningandpin-hole formation,lossofsulfonicacidgroupsintheionomerphaseofthe catalystlayerorinthemembrane,bipolarplatesurfacefilmgrowth, hydrophilicitychangesinthecatalystlayerand/orgasdiffusion layer(GDL),andPTFEdecompositioninthecatalystlayerand/or GDL.Componentdecayorfailureisaffectedbymanyinternaland external factors,including material properties,fuel cell operat-ingconditions(suchashumidification,temperature,cellvoltage, etc.),impuritiesorcontaminantsinthefeeds,environmental con-ditions(e.g.,subfreezingorcoldstart),operationmodes(suchas start-up,shutdown,potentialcycling,etc.),andthedesignofthe componentsandthestack.Inaddition,thedegradationprocesses ofdifferentcomponentsareofteninterrelatedinafuelcellsystem. Itisthereforeimportanttoseparate,analyze,andsystematically understandthedegradationphenomenaofeachcomponentsothat novelcomponentmaterialscanbedeveloped andnoveldesigns

forcells/stackscanbeachievedtomitigateinsufficientfuelcell durability.

In this ongoing R&D, long-term durability tests are often requiredtoevaluatethedegradationmechanismsofvarious com-ponentsand thecorrespondingfuelcellsystems.However,itis generallyimpracticalandcostlytooperateafuelcellunderits nor-malconditionsforseveralthousandhours,soacceleratedstress test(AST)methodsarepreferredtofacilitaterapidlearningabout keydurabilityissues.ThegoaloftheASTistodeterminethe dura-bilityandperformance ofcurrentfuelcell componentswithout havingtotestovermanyyears[5].Therefore,ASTprotocolsare developedtoensurethatthetypeandformatofthedata gener-atedaresufficientsothatthedatasetscanbecompared,merged, andscaled.Asnewmaterialscontinuetobedevelopedandnew designsemerge,theneedforrelevantacceleratedtesting,aswell asASTprotocols,increases.However,asstatedbyDillaretal.[6],it isdifficultatthistimetoproposeanacceleratedprotocolwithout performingadetailedexaminationoftheexistingfuelcell perfor-manceanddiagnosticsdata,suchasionicresistance,polarization curves,lifetimetests,fuelcrossoverrates,andeffluent concentra-tions.Also,regardlessoftheacceleratedprotocoldeveloped,care mustbetakentoperformacceleratedtestingunderconditionsthat donotintroducenewfailuremechanismsthatwouldbeunrealistic infuelcellenvironments.

Theintentofthisreviewistogatheravailableinformationon ASTmethodsanddegradationtestprotocolsforPEMFCs,providing practitionerswithausefultoolboxforstudyingdurabilityissues, inthehopethattheseprotocolswillhelptopreventtheprolonged testperiodsandhighcostsassociatedwithreallifetimetests,to assesstheperformanceanddurabilityofPEMFCcomponents,and toensurethatthegenerateddatacanbecompared.Itshouldbe pointedoutthatalthoughavarietyofcelldurabilityteststandards havebeendevelopedbydifferentorganizationsaroundtheworld, e.g.,theFuelCellTEstingandSTandardisationthematicNETwork (FCTESTNET)andtheJapanAutomobileResearchInstitute(JARI), theDOEASTmethodsarethemostcommonlyacceptedprotocols. Therefore,thispaperwillmainlyreviewASTprotocolsdeveloped bytheDOEprograms,aswellasASTprotocolspublishedintheopen literature.Forclarity,thesetestingprotocolsaresummarizedinto twogeneralcategories—componentlevel,and stackand system level.WithinthecomponentASTs,electrocatalyst,catalystsupport, membrane,GDL,ionomer,andinterfacialdegradationareincluded. Atthesystemlevel,drivingcycleisdiscussed.

2. AbriefreviewofPEMFCdegradation

2.1. Catalystlayerdegradation

Thecatalystlayer(CL)isamultiple-phasedmatrixcontaininga highsurfaceareacarbonsupportloadedwithnanoscaledPtor Pt-alloyparticlesandionomerrecastdispersion.ThethinCL,witha thicknessintheorderof∼15␮m,iscriticalforfacilitatingafast cat-alyticreactionthatrequiresfreeaccessforgas,electrons,protons, andwater[4,7,8].

CLdegradation relatesto thestability of both the materials andthestructure.Amongotherdegradationphenomena(suchas crackingordelaminationoftheCL,catalystwashout,electrolyte (ionomer)dissolution,carboncoarsening,andcatalystpoisoning bycontaminants),Ptparticlegrowth,Ptmigration,andcarbon cor-rosionareconsideredthemostdominantcausesofCLdegradation. Several mechanisms have been proposed to account for Pt particle growth. Small Pt particles may dissolve and redeposit onthe surface of largerparticles, leading toparticlegrowth, a phenomenoncalledOstwaldripening[9];randomcluster–cluster collisionsof Ptparticlesmayresult in Ptagglomerationonthe

(4)

X.-Z.Yuanetal./JournalofPowerSources196 (2011) 9107–9116 9109

carbonsupportatthenanoscale[10];theminimizationofthe cata-lystclusters’GibbsfreeenergymayleadtoPtparticlegrowthatthe atomicscale[11];andthemovementandcoalescenceofPtparticles onthecarbonsupportcancausecoarseningofthecatalyst[12]. Par-ticlesizegrowthwillresultinreductionofthecatalyticallyactive surfaceareaandultimatelyleadtoadecreaseincatalystactivity andstability.

PtmigrationoccurswhenthedissolvedPtspeciesdiffuseinto theionomerphaseandsubsequentlyprecipitateinthemembrane throughthereductionofPtionsbycrossoverhydrogenfromthe anodeside[13–15].Ptmigrationintothemembranedramatically decreasesitsstabilityandconductivity.

Carboncorrosion occurs through the electrochemical oxida-tionof carbon:C+2H2O→CO2+4H++4e− (Eo=0.207VRHE)[16].

Despitecarbon’sthermodynamicinstability,carboncorrosion dur-ingnormalfuelcelloperationisnegligibleatpotentialslowerthan 1.1Vvs.RHE,duetoitsslowkinetics[17–19].However,the pres-enceofPtcancatalyzethecarbonoxidationreactionandreduce itspotentialto0.55Vvs.RHEorlower[20].Carboncorrosionis believedtobepromotedbythetransitionbetweenstart-upand shutdowncyclesand byfuelstarvation.Start-up andshutdown causenon-uniformdistributionoffuelontheanodeandhydrogen crossoverthroughthemembrane. Undercircumstancesof non-uniformfueldistributionandfuelstarvation,theanodeelectrode ispartially coveredwithhydrogen,makingtheanodepotential negativeandthusleadingtocarboncorrosion.

2.2. Membranedegradation

AsakeycomponentoftheMEA,themembranetransports pro-tonsintheformofanelectrolyteandactsasa barrierbetween anodeandcathodetopreventgaspermeation.Themostcommonly usedmembraneiscomposedofperfluorosulfonicacid(PFSA),such asNafion®membranes.

Extensivestudieshavebeenconductedonmembrane degra-dation mechanisms, and it is known that typical membrane degradationinafuelcellresultsfrommechanical,thermal, and chemicaldegradation.Mechanicaldegradationincludesmembrane cracks,tears,punctures,andpinholesduetothepresenceofforeign particlesorfibersintroducedduringtheMEAfabricationprocess thatmightperforatethemembrane [21–23].Chemical degrada-tionoriginatesfromchemicalattackbyhydrogenperoxideradicals, resultinginbreakageofthemembrane’sbackboneandside-chain groupsandsubsequentlossofmechanicalstrengthandproton con-ductivity,thusleadingtoanincreaseinresistanceanddeclining cellperformance[24–26].Thermaldegradationoccurswhenthe membranebecomesdehydratedduetohigh-temperature opera-tion,lowhumidity,andothercauses,andleadstothelossofproton conductivity[27].

2.3. GDLdegradation

TheGDLisacarbon-basedporoussubstratebetweentheCLand theflowfield thatenablesgasphase transport,watertransport, electronicandthermalconduction,andmechanicalsupport.The GDLconsistsoftwolayers,amacro-porouslayermadeofcarbon fiberpaperorcarboncloththatiscoveredwithamicro-porous layer (MPL) made of carbon black powder and a hydrophobic agent(PTFE).Todate,theGDListheleaststudiedMEAcomponent intermsofdurabilityanddegradation.SeveralGDLdegradation mechanismshavebeenproposed:carbonoxidation[28,29],PTFE decomposition[30],andmechanicaldegradationasaresultof com-pression[31].Thefirsttwomechanismscausehydrophobicityloss andchangesintheGDLporestructure,resultinginanincreasein thewatercontentoftheGDLandMPLandthusimpedinggasphase masstransport[32–34].Itshouldbenotedthatthecarbonfibersof

theGDLandthecarbonblackparticlesoftheMPLaremorestable thanthecarbonblackintheCLduetotheabsenceofPtthatcan cat-alyzetheelectrochemicaloxidationofcarbon.However,chemical surfaceoxidationofcarbonbywatercannotbeexcluded[28,29].

2.4. Bipolarplatedegradation

Bipolarplates areresponsibleforseparating thefuelandair (oxygen)gases and thecoolant, uniformlydistributing reactant andproductstreams,andcollectingthecurrentgeneratedthrough the electrochemical reactions in the anode and cathode. Low ohmicresistance,lowgaspermeability,highcorrosionresistance, goodthermalandchemicalstability,andappropriatemechanical properties are requiredfor the long-termstability ofthe bipo-larplates inanoperating fuelcellenvironment[35,36].Several materialshavebeenemployedandevaluatedasbipolarplatesfor PEMFCs,includinggraphite,metals,graphite/carbon-based com-posites, and polymer-based composites [37–39]. Graphite and graphitecompositeshavefavorablepropertiessuchashigh resis-tancetocorrosionandchemicals,lowdensity,andhighelectrical andthermal conductivity,butsufferfromsurfacecarbon oxida-tion/corrosion under extreme operating conditionssuch ascell reversal[4],leadingtoincreasedcontactresistance.Metallic bipo-larplates,dependingonthenatureofthemetals,cansufferfrom corrosionandsurfaceoxidefilmgrowth[40],leadingtotherelease ofcontaminantsandincreasedcontactresistance[41,42].

2.5. Othercomponentdegradation

Incomparisontotheextensivestudiesonthedurabilityofthe key components(catalyst,membrane, GDL, andbipolar plates), durabilitystudiesonseals,endplates,andbusplateshavelongbeen ignored,andtheliteraturedataisverylimited.

Gasketscanexperiencereducedthicknessoverlong-term oper-ation,leadingtoincreasedcompressionforceontheGDLanda subsequent decreasein GDL porosity as wellas an increase in reactant transport resistance [43]; gaskets can also experience crossoverleakage,causing damagetothemembrane [44]. End-platesandbusplatesmaysufferfromsimilarcorrosionissuesbut toamuchlesserextent.

2.6. Operatingconditions,environment,contamination, operationmode,anddesign-induceddegradation

ThedurabilityofeachcomponentofaPEMFCisaffectedbymany externalfactorsinanoperatingfuelcell,includingthefuelcell oper-atingconditions(suchashumidification,temperature,cellvoltage, etc.),impuritiesorcontaminantsinthefeeds,environmental con-ditions(e.g.,subfreezingorcoldstart),operationmodes(suchas start-up,shutdown,potentialcycling,etc.),andthedesignofthe componentsandthestack[45,46].

ThechangesintemperatureandRHassociatedwithtransitions betweenlowandhighpowercanhaveadverseeffectson compo-nentpropertiesandthusontheintegrityofthefuelcellsystem. Forexample,asRHincreases,thewateruptakeinthemembrane increasesandtheionomerswells,yieldingtensileresidualstresses duringdryingandthuscontributingtomechanicalfailuresinthe membrane[47].

ImpuritiessuchasCOandH2Sarepresentinthefuelasaresultof

thereformingprocess,orintheairintake(e.g.,NOx,SOx,orvolatile

organiccompounds)duetoairpollution[48].Impuritiescanalso comefromfuelcellcomponents(suchasmetalionsfrombipolar plates)[49]orfromthesecondelementsinPtalloycatalysts(such asCo2+)[50,51].Theseimpuritiesareknowntoadverselyaffect

fuelcellperformanceanddurabilitybyseveralmeans:thekinetic effect,causedbythepoisoningofbothanodeandcathodecatalyst

(5)

sites;themasstransfereffect,duetochangesinthestructureand hydrophobicityoftheCLsand/orGDLs;andtheconductivityeffect, causedbyincreasedresistanceinthemembraneandionomer[52]. Theabilitytosurviveandstartupatsubfreezingtemperatures isanimportantrequirementforPEMFCs,particularlyin automo-bileapplications.SubjectingaPEMFCtosubfreezingtemperatures hasbeenreportedtocausesignificantdropsinthecathode electro-chemicalsurfacearea(ECSA),whichwasattributedtoiceformation intheCLsthatresultedinincreasedporosityandultimate delami-nationoftheCLfromthemembrane[53].Theeffectoffreeze/thaw thermalcyclesonthepropertiesofMEAcomponents(CL,GDL,and membrane)hasbeenextensivelystudiedbutmostlythroughex situinvestigations,andtheresultsaresometimesconflicting. Gen-erally,freeze–thawcyclingwillchangethewatercontent/statein theCLs [53],theairpermeabilityoftheGDL[31],and the con-ductivityofthemembrane[54,55].Detailedcharacterizationofthe durabilityofMEAcomponentsunderfuelcelloperatingconditions duringfreeze/thawcyclesapparentlyneedstobebetterevaluated

[45].

Thedesignoffuelcellcomponentssuchasflowfieldsand mani-foldscanhaveasignificantimpactonwatermanagementandfeed flows,whichcaninturnaffectthedurabilityofMEAcomponents andofthefuelcell.Forexample,animproperdesigninthechannel depthoftheflowfieldscaninducewaterblockage,andimproper manifolddesign canresultin poorcell-to-cellflowdistribution, bothofwhichwillcauselocalizedfuelstarvation[56].Thislocalized fuelstarvationcaninduce,through“reversecurrent”mechanisms, localpotentialsontheairelectrodesignificantlyhigherthan1.0V andtherebyinducecorrosionofthecarbonsupport,resultingin permanentlossofelectrochemicallyactivearea.

Fuelcellstart-upandshutdownareoperationalmodesthatcan haveaprofoundinfluenceonfuelcelldurability.Underconditions ofprolongedshutdown,allthehydrogenwilleventuallycrossover fromtheanodetothecathode,resultingintheanodeflow chan-nelsbeingfilledwithair.Inthiscase,fuelcellstart-upwillcreate atransientconditioninwhichfuelexistsattheinletbuttheoutlet isstillfuel-starved attheanodeside. Thislocalizedfuel starva-tioncaninducethelocalpotentialatthecathodetobehigherthan 1.8V,causingseriousdeterioration infuelcellperformance and durability[57].

3. Acceleratedstresstestprotocolsforcellcomponents Afuelcellisacomplicatedsystemcomprisingvarious compo-nents.AnASTshouldnotonlyactivatethetargetedfailuremodeof thespecificcomponent,butalsominimizetheconfoundingeffects fromother components.Specific ASTconditions and cyclesare thusintendedtoisolateeffectsandfailuremodes,andarebased onassumed,butwidelyaccepted,mechanisms.Forinstance,the ASTprotocolforcatalystsupportsisdifferentfromtheprotocol forelectrocatalystsbecausethecomponentsexperiencedifferent degradationmechanismsunderdifferentconditions.Similarly,the ASTformechanicaldegradationofthemembraneshouldisolate theeffectsofchemicaldegradationofthemembrane.

Tounderstanddegradation mechanisms,component interac-tions, and the effects of operating conditions, and to increase samplethroughputandreduceexperimentaltime,fuelcell devel-opershaveimplementedvariousASTstoanalyzethefailuremodes ofcurrentfuelcellcomponents.TheseASTsattempttoensurethat thetest conditionsandproceduresdo notresultindegradation mechanismsthataredifferentfromthoseencounteredduring nor-maloperation.TheDOEandtheUSFuelCellCouncil(USFCC)have establishedPEMFCdurabilitytestingprotocolswiththeintentof providingastandardsetoftestconditionsandoperating proce-duresforevaluatingnewcellcomponentmaterialsandstructures.

TheDOEASTprotocolsweredevelopedbytheFreedomCARFuel CellTechnicalTeam(FCTT),comprisedofrepresentativesfromthe DOEand US automakers,toprovide guidanceand standardiza-tionforDOEcomponentdevelopmentprojects.TheFreedomCAR targets[58]arecloselyalignedwiththeDOEsystem,stack,and componenttechnicaltargets.Inputwasalsosolicitedandreceived fromseveralfuelcelldevelopersandfromtheUSFCC,which is developingASTsforbroader,long-termapplications.Basically,the USFCCprotocolsareinagreementwiththeDOEprotocols.Other thantheDOEandUSFCCprotocols,avarietyofASTsatdifferent levelsunder variousoperating conditions havebeen published. SomeareinlinewiththeDOEprotocolswhileothersarespecially designedfordifferentpurposes.

ThefollowingsectionssummarizetheDOEcellcomponentAST protocols,includingforelectrocatalysts,catalystsupports, mem-brane/MEA chemical stability, and membrane/MEA mechanical durability,derivedfromreferences[59,60],aswellasexamplesof ASTsavailableintheliterature.

3.1. Electrocatalyst

Electrocatalyst degradation mechanisms depend on factors suchaspotential,temperature,humidity,contaminants,and car-bonsupportstability.Hence,electrocatalystdegradationcanbe accelerated by potential control, undesirable temperatures and humidities,contaminants,andloadcycling[8].Inparticular,athigh electrodepotentialsthedurabilityofcatalystscanbecompromised byPtsintering,particlegrowth,anddissolution.ASTstressorscan beanycombinationofthesefactorswhentestingisconductedina complexenvironment.

Because catalyst sintering/dissolution is accelerated under potentialcycling [61], the DOEelectrocatalyst ASTis based on potentialcycling. Table1liststheDOEtestingprotocolsaswell asthetestingmetricsforelectrocatalysts[3].Herecatalytic activ-ityischaracterizedinAmg−1at150kPaabsolutebackpressureand

at900mVwithiR-correctedonH2/O2.

TheASTforelectrocatalystspecifiesloadcyclingfrom0.7Vto 0.9Vfor30,000cyclesoruntilcatalyticactivitylossreaches60%, theECSAdecreasesby40%,orperformanceisreducedby30mV at0.8Acm−2.Cyclingtohighervoltagewouldaccelerate

degra-dationbutmightalsoincrease corrosionofthecarbon support, convolutinginterpretationoftheresults.

TheUSFCCpresentstwo protocolsforelectrocatalysttesting. ThefirstisverysimilartotheDOEprotocoldescribedinTable1

butwithaslightlywider voltagecyclingrange(0.6–0.96V)and aironthecathode.Thesecond hasa stillwider voltagecycling range(0.6–1.2V)withN2onthecathode[62].TheDOErangeis

restrictedto0.7–0.9Vtoreducethepossibilityofcatalystsupport degradationathighervoltagesandtoisolatedegradationeffects.

Avarietyofinvestigationsintocatalystdegradationhavebeen conducted[63–70].CatalystASTsdescribedintheliterature gener-allysimulatedutycycleinducedcatalystdegradationbypotential cyclingfromalowerpotential,intherangeof0.1–0.7V,toincreased potential,suchasOCV,1.0,or1.2V.Someexamplesofthesestudies aregiveninTable2.

3.2. Catalystsupport

Durabilityofcatalystsupportsisanothertechnicalbarrierfor stationary and transportation applications of PEMFCs. Conven-tionalPEMelectrodesconsistofplatinumparticlessupportedon carbon.Carbonisanexcellentmaterialforsupporting electrocat-alysts,allowing facilemass transport of reactantsand fuelcell reactionproducts,andprovidinggoodelectricalconductivityand stabilityundernormalconditions.However,underprolonged con-ditionsof hightemperature, highwater content, low pH, high

(6)

X.-Z.Yuanetal./JournalofPowerSources196 (2011) 9107–9116 9111 Table1

DOEASTprotocolsforelectrocatalyst[3](reproducedwithpermissionfromtheElectrochemicalSociety). Cell Singlecell25–50cm2

Operating con- di-tions

Temperature:80◦C

Relativehumidity:anode/cathode100/100% Fuel/oxidant:H2/N2

Pressure:150kPaabsolute

Cycle Stepchange:30sat0.7Vand30sat0.9V Cycletime:60s

Cyclenumber:30,000

Metrics Catalyticactivity Frequency:beginningandendoflife Target:<60%lossofinitialcatalyticactivity Polarizationcurve Frequency:after0,1k,5k,10k,and30kcycles

Target:<30mVlossat0.8Acm−2

ECSA/cyclic voltammetry

Frequency:after1,10,30,100,300,1000,3000cyclesandevery5000cyclesthereafter Target:<40%lossofinitialarea

Table2

Catalyst/CLASTprotocolsintheliterature.

Testmode Stressor Availableprotocols Authors Reference Insitu Potentialcycling Linearpotentialsweepfrom0.1Vtoanupperlimit(varying

from0.8Vto1.5V)at10mVs−1inincrementsof300cycles;

80◦C,N

2with226%RHatthecathode,H2with100%RHatthe

anode

R.L.Borupetal. [71]

Exsitu Fixedpotential 20◦C,0.5MH2SO4,afixedpotentialat1.2V(vs.RHE)for192h Y.Y.Shaoetal. [72]

Exsitu(Ptdissolution) Constantpotential 40–80◦C,1MHClO4,constantpotentialbetween0.85V(vs.

RHE)and1.4V(vs.RHE)

V.A.T.Dametal. [73]

Insitu Potentialcycling Linearsweepfrom0.1toeither1.0or1.2Vat10mVs−1;60C

or80◦C,50%or100%RH,N

2onthecathodeandH2onthe

anode

K.L.More [74]

Insitu Potential Cathode1.2Vrelativetotheanode;80◦C,100%RH,N 2onthe

cathodeandH2ontheanode

J.Frisketal. [75]

oxygen concentration, and/or high potential, oxidation of car-bon(carboncorrosion)ispronetoacceleration.Corrosionofhigh surfaceareacarbonsupportsathighelectrodepotentialsposes sig-nificantconcernsandistypicallyacceleratedduringfuelstarvation andstart-up/shutdowncycling.Evaluationofcarbonsupport dura-bilityisthusperformedathighvoltagewithhydrogenontheanode andnitrogenonthecathodetoisolateelectrochemicalcorrosion fromchemicalcorrosioninthepresenceofair.Table3liststheDOE ASTprotocolsaswellasthetestingmetricsforcatalystsupports[3]. TheASTforthesupportspecifiesasteady-stateholdat1.2Vfor 200horuntilcatalyticactivitylossreaches60%,ECSAdecreasesby 40%,orperformanceisreducedby30mVat1.5Acm−2oratrated

power.SupportsotherthancarbonmayrequirechangestotheAST toreflectdifferentdegradationmechanisms.

TheUSFCCprovidestwotestcyclesforevaluatingcatalyst sup-ports.OnecycleusesthesameholdvoltageastheDOE(1.2V)and theotheruses1.5Vtoacceleratecorrosion.BothUSFCCprotocols uselowertemperature(80◦Cvs.DOE’s95C)andhigherRH(100%

vs.DOE’s80%).

OtherprotocolsusedforcatalystsupportASTsaresimilartothe DOE/USFCCones,whicharemoreorlessrelatedtohighpotential ortopotentialcyclingwithhighpotentialinvolved.Someexamples arelistedinTable4.

3.3. Membrane

Acceleratedmembranetestscanincludeundesirable tempera-tureandRH,OCV,loadcycling,Fenton’stest,freeze/thawcycling, stress cycling under tension, high-pressure testing, and high-temperatureexposure[8].

3.3.1. MembranemechanicalAST

MembranesarethekeycomponentsofthefuelcellMEAand stack;theymustbedurableandtolerateawiderangeof operat-ingconditions,includinghumidityrangingfromambientto100% RHandtemperaturerangingfrom−40to120◦C.Improved

mem-branesareneededthatperformbetterandarelessexpensivethan thecurrentgenerationofpolymermembranes.

Table3

DOEASTprotocolsforcatalystsupport[3](reproducedwithpermissionfromtheElectrochemicalSociety). Cell Singlecell25–50cm2

Operatingconditions Temperature:95◦C

Relativehumidity:anode/cathode80/80% Fuel/oxidant:H2/N2

Pressure:150kPaabsolute Cycle Step:holdat1.2V

Cycletime:24h Totaltime:200h

Metrics CO2

release

Frequency:on-line Target:<10%massloss Catalyticactivity Frequency:every24h

Target:<60%lossofinitialcatalyticactivity Polarizationcurve Frequency:every24h

Target:<30mVlossat1.5Acm−2orratedpower

ECSA/cyclic voltammetry

Frequency:every24h Target:<40%lossofinitialarea

(7)

Table4

CatalystsupportASTprotocolsintheliterature.

Testmode Stressor Availableprotocols Authors Reference Insitu Potentialcycling Potentialcyclingfrom0.04to1.2Vvs.RHEat2mVs−1;50C,

withfullyhumidified4%H2/N2andHefortheanodeand

cathode,respectively

L.M.Roenetal. [20]

Insitu IdleandOCV Idle(0.9Vvs.RHE)andOCVfor2000hat80◦C R.Makhariaetal. [76]

Insitu Potentialcycling Linearpotentialsweepfrom0.1to0.96V,1.0V,1.2V,and1.5V R.L.Borupetal. [71]

Mechanicalandchemicaldegradationofthepolymerionomer thatcomprisesthePEMbothincreasewithtemperature.Changein RHisanotherseriousconditionthatresultsinmechanical degra-dationof themembrane during practical operation. RH cycling resultsinswellingofthemembrane asit absorbswater athigh RHand shrinkageasitloseswateratlow RH.Thisswell/shrink cyclingresultsinhighmechanicalstressesinthemembraneand subsequentmechanicalfailure,leadingtogascrossoverthrough themembrane.AsdemonstratedbyCrumandLiu[77],RHcycling canbeusedtoexaminemechanicaldurabilityinisolation,orto examinecombinedmechanicalandchemicaldurability.Inaninert nitrogenatmospherewithRHcycling,themechanicaldurability associatedwithexpansionandcontractionoftheionomerunder theflowfieldchannelsisisolated.WhenthesameRHcyclingis employedwithairandhydrogenfeedgases,mechanicaland chem-icaldurabilityarecombined.Table5showstheDOEmembrane mechanicalASTprotocolsbasedonRHcycling[3].Thetest con-tinuesfor20,000cyclesoruntilcrossoveris10sccm.Membrane performanceismeasuredasthenumberofcyclesbeforeathreshold crossoverisobserved.

Gascrossoverisagoodindicatortomonitormembrane degra-dationormechanicalstability.Thiscanbedonebyeithermeasuring gasflowrateaccordingtotheproceduresdevelopedbytheUSFCC or measuringhydrogen crossoverelectrochemically (mAcm−2),

thelatterbeingwellacceptedbyfuelcellresearchers.

3.3.2. MembranechemicalAST

The DOE AST protocol for membrane chemical durability involvesasteady-stateholdfor200hatOCVand90◦C,aslisted

inTable6 [3].AtOCV,thefueland oxidantarenotbeing con-sumedelectrochemically,sothereispotentiallymorecrossover, resulting in peroxide production and radicals that attack the membrane[78].Similarly,crossovercanbemeasuredbyeither gas flow rate or hydrogen crossover. The test continues until OCVdecays by 20% or crossoverreaches 20mAcm−2. Fluoride

ionrelease(oranequivalentfornon-fluorinatedmembranes)is alsomeasuredduringthetestformonitoringpurposes.Fluoride ion release is an indicationof membrane deterioration for flu-orinatedmembranesand hasbeencorrelatedtomembrane life

[79,80].

TheUSFCCASTsformembranesarevirtuallyidenticaltothe DOEprotocolsdescribedinTables3and4.Thedifferencesare asso-ciatedwiththeoxygenconcentration(airvs.theUSFCC’s40%or 100%O2)onthecathodeduringthetest.TheDOEspecifiesairto

accommodatethoselaboratoriesthatrestrictoxygenusage.

Unfortunately,membranedurabilityisalwaysstudiedusinga MEA.Thus,theDOE/USFCCmembraneASTprotocolisdescribed asamembrane/MEAASTprotocol.Despitethedifficulties,several studieshaveexaminedcandidateconditionsforexsituaccelerated testingofmembranes.LaContietal.[21]describemultiplemethods ofacceleratingdegradationinmembranes.Itispossibletosimulate thedegradationofPEMsusinganacceleratedtestmediumsuchas Fenton’sreagent(smallamountsofhydrogenperoxide(∼3%)and Fe2+ions(4ppm)insolution).ThisFenton’stestisalsodescribed

bytheUSFCCasanadditionalmembrane/MEAprotocol.The fer-rousioncatalyzesthedecompositionofperoxidetoperoxyand/or hydroxyl radicalsthat chemically attacktheperfluorinated sul-fonicacidpolymers.MeasurementofF−intheeffluentprovides

ameasureofmembranestability[80].However,thisFenton’stest onlyappliestofluorinemembranes,suchasNafion®.Another

addi-tionalmembrane/MEAASTprotocolrecommendedbytheUSFCC isacombinedhumidity/loadcycledevelopedbyDuPont.TheRHis cycledbetween1and100%atfixedloadfor24h,followedbyaload cyclebetween10and800mAcm−2atfixedRHfor24h.Thecycle

isrepeatedforthedurationofthetest.TheDOEdidnotincludethis protocolbecausealthoughitprovidesinsightintothebehaviorofa membranewiththecombinedcycle,itdoesnotallowisolationof theeffectsanddegradationmechanismsforRHandvoltagecycling. W.L.Gore&Associateshaveconductedextensiveinvestigations intodurability testing andaccelerated testing procedures.They observedan approximately10×relationship formembrane life betweentheirstandardandacceleratedresidentialtestprocedures, while H2 crossover(monitored regularlyfor both standard and

acceleratedtesting)graduallyincreasedovertime.Comparedtothe standardprotocol(Tcell=70◦C,DPa,DPc=70◦C,PH2=PAir=0psig),

they concluded that the accelerated fuel cell life test protocol (Tcell=90◦C,DPa,DPc=83◦C,PH2=5psig,andPAir=15psig)wasa

validtestingconditiontoevaluatemembranedurabilityfor resi-dentialfuelcellapplications[81].

Numerousexperiments havetackledmembrane degradation

[82–88], examining various stressors: temperature, humidity, freeze–thawcycling, OCV,and Fenton’stest. Someexamplesof membraneASTs, aswellastheirtestingprotocols, arelistedin

Table7.

3.4. GDL

Changesinthemicrostructureandsurfacecharacteristicsofthe GDLduetomateriallossandporesizedistributionshiftsmaycause changesinthewatercontentlevelandtransportpropertiesofthe

Table5

DOEASTprotocolsformembranemechanicaldegradation[3](reproducedwithpermissionfromtheElectrochemicalSociety). Cell Singlecell25–50cm2(testusingaMEA)

Operatingconditions Temperature:80◦C

Fuel/oxidant:air/airat2slpmonbothsides Pressure:ambientornoback-pressure

Cycle Stepchange:cycle0%RH(2min)to90◦Cdewpoint(2min)

Cycletime:24h

Totaltime:untilcrossover>10sccmor20,000cycles

Metrics Crossover Frequency:every24h Target:<10sccm

(8)

X.-Z.Yuanetal./JournalofPowerSources196 (2011) 9107–9116 9113

Table6

DOEASTprotocolsformembranechemicalstability[3](reproducedwithpermissionfromtheElectrochemicalSociety). Cell Singlecell25–50cm2

Operatingconditions Temperature:90◦C

Relativehumidity:anode/cathode30/30%

Fuel/oxidant:hydrogen/airatstoicsof10/10at0.2Acm−2

Pressure:anode250kPa(inlet),cathode200kPa(inlet) Cycle Step:steadystateOCV

Cycletime:24h Totaltime:200h

Metrics F-releaseorequivalentfornon-fluorinemembranes Frequency:atleastevery24h Hydrogencrossover(mAcm−2) Frequency:every24h

Target:<20mAcm−2

OCV Frequency:continuous

Target:<20%lossinOCV High-frequencyresistance Frequency:every24hat0.2Acm−2

MEA.Todate,theDOEhasnotdevelopedanystandardAST pro-tocolsondurabilityanddegradationissuesforGDLs.Eveninthe literature,onlyalimitednumberofstudieshavefocusedonGDLs aseffectivecharacterizationtechniquesisrelativelylimited.Asa result,noDOEorothercommonlyusedASTprotocolsare avail-ableforthisreview.Instead,abriefsummaryofsomeinsituand exsitustressorsthathavebeenusedtotackleGDLdegradationis provided.

In situstressorsthat havebeen usedtoassessGDL stability includefreeze/thawcyclesandfuelstarvation.Forexample,Kim etal.[92]reportedinterfacialdelaminationbetweentheCLandGDL after100freeze/thawcyclesfrom−40◦Cto70C,whichresulted

fromiceformationandinturnsignificantlyincreasedGDL deforma-tion.Mukundanetal.[93]conductedfreeze/thawcyclesdownto −80◦Cusingdryice,andtheirresultsindicatedthatmultiplecycles couldleadtointerfacialdelaminationandGDLfailureinthefuel cell.Also,prolongedorrepeatedpulsesofH2starvationandhigh

potentialcontrolcanchangethemicrostructureandcausematerial lossintheMPLandGDL.Oszcipoketal.[94]haveobservedreduced GDLsurfacehydrophobicityincold-startconditions.

Many researchstudieshave alsoexaminedGDLdegradation usingexsitu methods.Indurability tests,ex situstressorshelp avoid potential confounding effects from other adjoining com-ponents. Ex situ stressors are intended to simulatea complex environmentfortheGDLduringfuelcelloperation.Forexample, Frisketal.[95]submergedtheGDLinhydrogenperoxidesolution, amethodsimilartoFenton’stest,andinthiswaydetectedweight lossandMPLcontactangleincreaseintheGDL.Woodetal.[96]

immersedGDLsamplesinliquidwaterwithdifferentoxygen con-centrationstolookatdecreasesinhydrophobicitywithexposure timeandwatertemperature.CompressivestrainoftheGDLunder steady-stateandfreezingconditionswasalsousedasanexsitu stressorbyLeeandMerida[31].BymonitoringtheGDL’s proper-ties–e.g.,electricalresistivity,bendingstiffness,airpermeability, surfacecontactangle,porosity,andwatervapordiffusion–they wereabletoinvestigatethedegradationmechanisms.

ResearchersattheInstituteforFuelCellInnovation(IFCI)ofthe NationalResearchCouncilCanada(NRC)[97–99]haveestablished theirownGDLtestingprotocols.Prioritizationofthevarious stres-sorswasaccomplishedbyexposingsamplesofGDLtoelevated conditionsfor200h.Eachstressorwasappliedindividuallyatan elevatedleveltoisolatetheparticulareffectofthestressorunder examination.Thelistofstressorswastrimmedtofourinorderto accommodatethe200hoftestingrequiredforeachduringthefirst quarter.Thefourstressorswere:

•Elevatedflowrate

•Elevatedtemperature(120◦C)

•Constantelectricalpotential(1.8V) •Dynamicelectricalpotential

Earlyon,itwasproposedthatGDLdamageduringhot-pressing orstackassemblyatoverlyhighpressurescouldhaveaneffecton degradation.Theconditionsselectedtorepresentthetwotypesof damagedGDLwere:

•Hot-pressinginahotpressat135◦Cand30barfor5min

•Stackassemblyinacellwithabladderpressureof200psigfor 30min

ToaccommodatethedamagedGDLsamplesintothestressor testing,a3-cellstackwasrequiredratherthanthesinglecell origi-nallyplannedfor.A3-cellstackallowedforsimultaneoustestingof anundamagedGDLsampleandbothdamagedGDLsamplesunder identicalconditions.

Uponcompletionofthetestingatelevatedconditions,thetest plancalledforcharacterizationoftheinduceddegradation. Charac-terizationwasaccomplishedthroughmultiplesetsofpolarization curvesacquiredusingacatalyst-coatedmembrane(CCM)in sin-glecellhardware.Characterizationwasalsoaccomplishedthrough theuseofvariousanalyticaltechniques,suchasmasslossandSEM. Additionalrecommendedtoolsare:

Table7

Membrane/MEAASTprotocolsintheliterature.

Testmode Stressor Availableprotocols Authors Reference Insitu RHcycling 65◦C,RHcyclingfrom30to80%orfrom80to120%with

30min/step,withairsuppliedtotheanodeandthecathode

X.Huangetal. [89]

Insitu RHcycling 80◦C,RHcyclingfrom0to150%with2min/step,withair

suppliedtotheanodeandthecathode

M.F.Mathiasetal. [59]

Insitu OCV OCVatcelltemperatureof80◦Candbothgaseshumidifiedat

60◦C,withhydrogenandairsuppliedtotheanodeandthe

cathode

M.Inabaetal. [90]

Exsitu Fenton’stest Solutionmethod:16mgL−1Fe2+inasolutionofFeCl2/4H2O

and30%H2O2;72◦C;freshsolutionevery12h.Exchange

method:Nafion®samplesweretreatedinsaturated

FeCl2·4H2Osolutionfor24h,then40mLofperoxidewas

added.72◦C;freshperoxideevery24h

(9)

•Contactangleanalysis •X-raydiffraction

•X-rayphotoelectronspectroscopy •Mercuryintrusionporosimetry

•Surfaceroughness(Wyko3-DSurfaceProfiler,modelNT-2000) •TGA

3.5. IonomerintheCL

Manyresearchgroupshavepostulatedthationomer degrada-tion/lossmightbeoneofthecritical factorsleadingtoreduced CLperformance afterlong-termoperationorAST.Astheactual Nafion® ionomernetwork withintheCLisnot aseasily

distin-guished/imagedasPtandcarbonsupports,it isusuallydifficult toidentifyionomerdegradationintheCLusingtraditional mor-phologycharacterizationmethods.However,someresearchgroups haverecentlymaderemarkableprogressin confirmingNafion®

ionomerdegradationinCLsbyusinguniquediagnostictools.Xie etal.[63]usedcellimpedancetrendstorevealdegradationofthe recastionomernetworkintheCL.Zhangetal.[100]usedXPSto detectCLionomerdegradation(ordecreaseinconcentration).With EIS,Houetal.[101]measuredtheCL’sionicresistanceatdifferent currentstomonitorchangesintheionicresistanceprofile.With thehelpof statisticalinformation fromexperimentalimagesof CLs,Rongetal.[102]simulatedtheCLmicrostructure,revealing microstructuralchangesonthemicroscaleduringPEMFCageing.

Anadditionalconsiderationisthatasionomerdegradationin theCLisalwayscoupledwithmembranedegradation,itisdifficult todistinguishthemfromeach other,forexamplebymeasuring fluoridereleaserate.ResearchersattheUniversityof Waterloo, workingwithresearchersattheNRC,haveconsideredusing hydro-carbon membranes to investigate ionomer degradation in the catalystlayer.Theuseofhydrocarbonmembraneshelpseliminate theeffectsofmembranedegradation.Apreliminarytesting proto-colforthispurposecombinesvariousstressors,asshowninTable8.

4. Cell/stackdurabilitytestprotocols

Componentdegradation protocols are important in evaluat-ingPEMFCdurabilityat thematerialand componentlevelwith the intent to understand and compare the degradation mech-anismsof differentmaterials/components,and thus toimprove thecomponent’sperformanceanddurability,particularlyforthe developmentofnewmaterialsandnewdesigns.Inasinglecell orstack,manycomponentshavestrongandcomplexinteractions, complicatingthedegradation mechanismsofparticular compo-nentsatthecellorstacklevel.Therefore,eachcomponentmust ultimatelybeevaluatedinanintegratedfuelcellorstacksystem sothatthedurabilitydataofeachcomponentcanmoreaccurately reflectthecomponent’slifetimeinanactualfuelcellofareal sta-tionarypowergeneratororvehicle.Thissectionsummarizesthe degradation/durabilitytestingprotocolsthathavebeendeveloped orusedforsinglecellsorstacks.Ithastobenotedthattheexisting singlecell/stackdegradationtestingprotocolsmaynotbe compre-hensiveenoughtoevaluatetheeffectsofalloperatingconditions thatwillbeencounteredduringrealfuelcelloperation,particularly forautomobile applications,whichoften involvea combination ofvariouscomplicatedsituations.Morecomprehensiveprotocols needtobedevelopedtoaddressadditionalissues.

4.1. USDOEsinglecell/stacktestingprotocolsfortransportation applications

TheUSDOE,throughitsmultiple-yearHydrogenProgram,has developeddurabilitytestingprotocolsforfuelcellstacks.

Steady-statedurabilitytests[103]areconductedunder steady-state conditions (constant voltage and constant current) for a periodoftime,sometimesaslongasafewthousandhours.These testsaimtoexaminethedegradationrateof asinglecell/stack and thedegradationmechanismsof componentsunder steady-stateconditions.Measurementsofpolarizationcurves,membrane resistance,hydrogencrossover,andelectrochemicalsurfacearea (throughCVs)aremadeinsituperiodicallyduringthedurability testtocharacterizechangesinthosefundamentalpropertiesasa functionoftime.Effluentwateranalysis(elementalanalysis,ionic content,and pH)isconductedtomonitorfordegradation prod-ucts.ChangesintheCL(catalystparticlesize,catalystsintering, carboncorrosion,etc.)andthemembranearecharacterizedafter thedurabilitytestsbyscanningelectronmicroscopy/energy dis-persiveX-rayspectroscopy(SEM/EDS),X-rayfluorescence(XRF), X-raydiffraction(XRD),transmissionelectronmicroscopy(TEM), andneutronscattering,etc.

Potentialcyclingdurabilitytestsareappliedtosinglecellsasan acceleratedtestingtechniquetomimicthedynamicloadofan auto-motiveapplication,whichrequiresmanyrapidchangesinloadover thecourseofthefuelcell’slifetime[103].Duringpotentialcycling (sweeping),theanodeisexposedtonitrogen.Thecathodepotential issweptlinearlyfromaninitialvoltageofusually0.1Vtoanupper limitvoltagerangingfrom0.96Vto1.2V.Thescanningrateranges from5to50mVs−1.Aftercyclingintervals,thepolarizationcurve

oftheMEAandthecatalystsurfaceareaaremeasured.Afterthe cyclingiscompleted,post-characterizationmeasurementsare per-formedbyXRD,SEM,TEM,andothermethods,asdescribedearlier. Thesepostmortemanalysesareusedtodifferentiatethe contribu-tionsoffuelcellcomponentstothedegradationoftheoverallcell performance.

Start-up/shutdown cycling durability tests [104] have been developedbyLosAlamosNationalLab(LANL)toexaminethe degra-dationoffuelcellcomponentswhenthefuelcellissubjectedto shutdown/start-upcycles.Inthisprotocol,forshutdownsthefuel cellisfirstrunatOCVwithcontinuousdryairflowatthe cath-odeside,thenpurgedattheanodesidewithdryairfor5min;for start-ups,theanodeissubjectedtodryhydrogenflowatfullpower for5min.Inadditiontothepostmortemanalysesdiscussed ear-lier,anotherimportantanalyticaltooltodeterminetheeffectof start-up/shutdownismeasurementofCO2(andCO)evolutionat

thecathodebynon-dispersiveinfrared(NDIR).

Drivecycletests[45,105]areprotocolsdevelopedand standard-izedbytheDOEtoassessthelong-termdurabilityoffuelcellsfor vehicularapplicationsandtocomparestackperformancewithDOE targets.Thedrivecycleprotocolwasconstructedbyconverting fed-eralinternalcombustionenginedrivecycle“US06”toanequivalent PEMFCenginedrivecycle.Thisprotocolinvolvessteppingthrough aseriesofdifferentcurrentdrawstypicalofautomotiveloads.To establishthecurrentdensityprofile,aninitialpolarizationcurveis plottedandthenusedtodeterminethecurrentdensitiesatwhich averagecellvoltagesof0.88,0.80,0.75,0.65,and0.6Vareobtained. Thestackisthensubjectedtothecurrentdensityprofileshownin

Table9[45].Thestackloadcyclebasedontheinitialstack polar-izationcurveisshown inFig.1[45].Asa quantitativemeasure, thestackdurabilityisdefinedasthetimeittakesfortheaverage cellvoltagetodecayby10%fromtheinitialvoltagewhentested accordingtotheaboveprocedures.

4.2. Durabilitytestsforstationaryapplications

The DOEdurability target for PEMFCs in stationary applica-tionsis muchlongerthanforautomotiveapplications(20,000h vs.5000hby2015).However,theoperationalcomplexityof sta-tionaryapplicationsisfarless. Asaresult,there havenotbeen asmanyefforts todeveloptesting protocolsfor PEMFCsin

(10)

sta-X.-Z.Yuanetal./JournalofPowerSources196 (2011) 9107–9116 9115 Table8

ASTprotocolsforionomerdegradationintheCLusinghydrocarbonmembranes. Testcondition(1) Idlecondition(10mAcm−2),singlecell25–50cm2

Steptime 48h

Testcondition(2) Operationalcondition(300mAcm−2)

Steptime 48h

Testcondition(3) Loadcyclingat50,400,and800mAcm−2,10hfor2cycles

Steptime 60h

Testcondition(4) Thermalcyclingat35,55,70,and90◦Cfor10heach

Steptime 40h

Metric F-releaseorequivalentfornon-fluorinemembranes Frequency:attheendofeachcycleoratleastevery24h Hydrogencrossover Frequency:attheendofeachcycleoratleastevery24h

Target:<20mAcm−2

Polarizationcurve Frequency:attheendofeachcycleoratleastevery24h High-frequencyresistance Frequency:attheendofeachcycleoratleastevery24h

Table9

Currentdensityvs.timeforthedrivecycleprofile[45](reproducedwithpermission fromBorupetal.[45].Copyright{2007}AmericanChemicalSociety).

Step Duration(s) Cxx Step Duration(s) Cxx

1 15 OCV 9 20 C75 2 25 C80 10 15 C88 3 20 C75 11 35 C80 4 15 C88 12 20 C60 5 24 C80 13 35 C65 6 20 C75 14 8 C88 7 15 C88 15 35 C75 8 25 C80 16 40 C88

Fig.1.Loadprofileforthestackdrivecyclestresstest[45](reproducedwith per-missionfromBorupetal.[45].Copyright{2007}AmericanChemicalSociety).

tionaryapplications.Mostlong-termlifetimetestsforstationary applicationsarecarriedoutata givensetpointorgroupofset pointswiththevoltageor,morecommonly,thecurrentdensity heldconstantforhundredsorthousandsofhourspertest[45].The jointresearchcouncil(JRC)hasusedfourdifferentsub-tests (nor-malefficiencytest,thermalloadcycling,electricalloadcycling,and start-up/shutdown)insequenceforthestationaryfuelcellsystem testmodule[106]asopposedtothesinglecelltestmoduleTM PEFCSC5-4[107],inwhichtheyutilizedon/offcyclingtoaccelerate ageing.

5. Concludingremarks

The US DOEhydrogen programshave established durability targetsforPEMFCsintransportationandstationaryapplications. These targets are based on the characteristics of current and future competitive technologies. AST/durability protocols have been developed by the DOE and the FreedomCARFCTT at the componentlevelinanattempttogainameasureofcomponent durabilityandperformanceagainstDOEtechnicaltargets.These protocolshavenotbeenconclusivelycorrelatedtoactualservice, andarenotintendedtobecomprehensivebecausemanyissues criticaltoatransportationfuelcell(e.g.,freeze/thawcycles)are notaddressedduetothedesign-specificnatureofoperating pro-cedures.Asaresult,thedrivecycleprotocolwasconstructedby convertingthefederalinternalcombustionenginedrivecycleto anequivalentPEMFCenginedrivecycle,whichstillrequires

cor-relationwithdatafromstacksandsystemsoperatingunderactual drivecycles.Therefore,additionalteststocorrelatetheseresults withrealworldlifetimesmaybeneeded,includingactualdriving, start/stop,andfreeze/thawcycles.

References

[1]Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan, August 2006 at

http://www1.eere.energy.gov/hydrogenandfuelcells/mypp.

[2]T.Payne,FuelCellsDurability&Performance,TheKnowledgePressInc.,US Brookline,2009.

[3]N.L.Garland,T.G.Benjamin,J.P.Kopasz,ECSTrans.11(2007)923–931. [4] J.Wu,X.Z.Yuan,J.J.Martin,H.Wang,J.Zhang,J.Shen,J.PowerSources184

(2008)104–119.

[5]DOEcellcomponentacceleratedstresstestprotocolsforPEMfuelcellsat

http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/components. html.March2007.

[6] D.A.Dillar,S.Guo,M.W.Ellis,J.J.Lesko,J.G.Dillard,J.Sayre,B.Vijayendran, FuelCellSci.Eng.Technol.(2004)553–560.

[7]F.A.deBruijn,V.A.T.Dam,G.J.M.Janssen,FuelCells8(2008)3–22. [8] S.Zhang,X.Z.Yuan,H.Wang,W.Merida,H.Zhu,J.Shen,S.Wu,J.Zhang,Int.

J.HydrogenEnergy34(2009)388–404.

[9]M.Watanabe,K.Tsurumi,T.Mizukami,T.Nakamura,P.Stonehart,J. Elec-trochem.Soc.141(1994)2659–2668.

[10] Y.Zhai,H.Zhang,D.Xing,Z.Shao,J.PowerSources164(2007)126–133. [11] P.Ascarelli,V.Contini,R.Giorgi,J.Appl.Phys.91(2002)4556–4561. [12]M.S.Wilson,F.H.Garzon,K.E.Sickafus,S.Gottesfeld,J.Electrochem.Soc.140

(1993)2872–2877.

[13] T.Akita,A.Taniguchi,J.Maekawa,Z.Siroma,K.Tanaka,M.Kohyama,K. Yasuda,J.PowerSources159(2006)461–467.

[14]P.J.Ferreira,G.J.laO’,Y.Shao-Horn,D.Morgan,R.Makharia,S.Kocha,J. Elec-trochem.Soc.152(2005)A2256–A2271.

[15] J.X.Zhang,B.A.Litteer,W.B.Gu,H.Liu,H.A.Gasteiger,J.Electrochem.Soc.154 (2007)B1006–B1011.

[16]D.P.Wilkinson,J.St-Pierre,in:W.Vielstich,H.A.Gasteiger,A.Lamm(Eds.), HandbookofFuelCells:Fundamentals,TechnologyandApplications,vol.3, JohnWiley&SonsLtd.,2003,pp.611–626.

[17]S.D.Knights,K.M.Colbow,J.St-Pierre,D.P.Wilkinson,J.PowerSources127 (2004)127–134.

[18]N.Sisofo,4th AnnualInter. FuelCellTesting Workshop,Vancouver,BC, Canada,September12–13,2007.

[19]A.Taniguchi,T.Akita,K.Yasuda,Y.Miyazaki,J.PowerSources130(2004) 42–49.

[20]L.M. Roen, C.H. Paik,T.D. Jarvi, Electrochem.Solid-State Lett. 7(2004) A19–A22.

[21]A.B.LaConti,M.Hamdan,R.C.McDonald,in:W.Vielstich,A.Lamm,H.A. Gasteiger(Eds.),HandbookofFuelCells,vol.3,Wiley,Chichester,2003,p. 647.

[22]G.Escobedo,K.Raiford,G.S.Nagarajan,K.E.Schwiebert,ECSTrans.1(2006) 303–311.

[23]C.Stone,G.H.M.Calis,2006FuelCellSeminarAbstracts,CourtesyAssociates, Hawaii,2006.

[24]O.Yamazaki,Y. Oomori,H.Shintaku,T.Tabata,2005FuelCellSeminar Abstracts,CourtesyAssociates,PalmSprings,2005.

[25]E.Endoh,2005FuelCellSeminarAbstracts,CourtesyAssociates,PalmSprings, 2005.

[26]R.Miyoshi,Y.Sakiyama,Y.Miwa,Y.Aoki,T.Yamamoto,Y.Ueno,A.Masuda, Y.Nakagawa,G.Katagiri,H.Nakayama,M.Hori,2006FuelCellSeminar Abstracts,CourtesyAssociates,Hawaii,2006.

[27]T.Okada,in:W.Vielstich,A.Lamm,H.A.Gasteiger(Eds.),HandbookofFuel Cells,vol.3,Wiley,Chichester,2003,pp.627–646.

[28] D.A.Stevens,J.R.Dahn,Carbon43(2005)179–188.

[29]M.Cai,M.S.Ruthkosky,B.Merzougui,S.Swathirajan,M.P.Balogh,S.E.Oh,J. PowerSources160(2006)977–986.

(11)

[30]M.Schulze,N.Wagner,T.Kaz,K.A.Friedrich,Electrochim.Acta52(2007) 2328–2336.

[31]C.Lee,W.Merida,J.PowerSources164(2007)141–153.

[32]L.R.Jordan,A.K.Shukla,T.Behrsing,N.R.Avery,B.C.Muddle,M.Forsyth,J. PowerSources86(2000)250–254.

[33]U.Pasaogullari,C.Y.Wang,Electrochim.Acta49(2004)4359–4369. [34]A.Z.Weber,J.Newman,J.Electrochem.Soc.152(2005)A677–A688. [35] V.Mehta,J.S.Cooper,J.PowerSources114(2003)32–53. [36]F.deBruijn,GreenChem.7(2005)132–150.

[37] J.Wind,A.LaCroix,S.Braeuninger,P.Hedrich,C.Heller,M.Schudy,in:W. Vielstich,H.A.Gasteiger,A.Lamm(Eds.),HandbookofFuelCells: Fundamen-tals,TechnologyandApplications,vol.3,JohnWiley&SonsLtd,2003,pp. 294–307.

[38] G.O.Mepsted,J.M.Moore,in:W.Vielstich,H.A.Gasteiger,A.Lamm(Eds.), HandbookofFuelCells:Fundamentals,TechnologyandApplications,vol.3, JohnWiley&SonsLtd,2003,pp.286–293.

[39]D.J.L.Brett,N.P.Brandon,J.FuelCellSci.Technol.4(2007)29–44.

[40]F.Barbir,PEMFuelCell:TheoryandPractice,ElsevierAcademicPress,New York,2005,pp.99–113.

[41] L.Ma,S.Warthesen,D.A.Shores,J.NewMater.Electrochem.Syst.3(2000) 221–228.

[42] A.Pozio,R.F.Silva,M.DeFrancesco,L.Giorgi,Electrochim.Acta48(2003) 1543–1549.

[43] S.J.C.Cleghorn,J.PowerSources158(2006)446–458.

[44]A.Husar,M.Serra,C.Kunusch,J.PowerSources169(2007)85–91. [45]R.Borup,J.Meyers,B.Pivovar,Y.S.Kim,R.Mukundan,N.Galand,etal.,Chem.

Rev.107(2007)3904–3951.

[46] H.J.Wang,H.Li,X.Z.Yuan(Eds.),PEMFuelCellFailureModeAnalysis,CRC Press,Taylor&FrancisGroup,USA,2011.

[47]A.Kusoglu,A.Karlsson,M.H.Santare,S.Cleghorn,W.B.Johnson,J.Power Sources161(2006)987–996.

[48] H.Li,J.L.Zhang,K.Fatih,Z.Wang,Y.Tang,Z.Shi,etal.,J.PowerSources178 (2008)103–117.

[49]H.Li,K.Tsay,H.J.Wang,J.Shen,S.Wu,N.Jia,etal.,J.PowerSources195(2010) 8089–8093.

[50] H.Li,K.Tsay,H.J.Wang,S.Wu,J.J.Zhang,N.Jia,etal.,Electrochim.Acta55 (2010)2622–2628.

[51]H.Li,J.Gazzarri,K.Tsay,S.Wu,H.J.Wang,J.J.Zhang,etal.,Electrochim.Acta 55(2010)5823–5830.

[52] X.Cheng,Z.Shi,N.Glass,L.Zhang,J.J.Zhang,D.T.Song,Z.S.Liu,H.J.Wang,J. Shen,J.PowerSources165(2007)739–754.

[53]E.Cho,J.J.Ko,H.Y.Ha,S.A.Hong,K.Y.Lee,T.W.Lim,etal.,J.Electrochem.Soc. 150(2003)A1667–A1670.

[54] M.Cappadonia,J.W.Erning,U.Stimming,J.Electroanal.Chem.376(1994) 189–193.

[55]A.Siu,J.Schmeisser,S.Holdcroft,J.Phys.Chem.B110(2006)6072–6080. [56]C.A.Reiser,L.Bregoli,T.W.Patterson,J.S.Yi,J.D.Yang,M.L.Perry,etal.,

Elec-trochem.Solid-StateLett.8(2005)A273–A276.

[57] J.P.Meyers,R.M.Darling,J.Electrochem.Soc.153(2006)A1432–A1442. [58]FreedomCAR Fuel Cell Technical Team Roadmap at http://www.

uscar.org/guest/viewteam.php?teamsid=17.

[59] M.Mathias,R.Makharia,H.A.Gasteiger,J.J.Conley,T.J.Fuller,C.J.Gittelman, S.S.Kocha,D.P.Miller,C.K.Mittelsteadt,T.Xie,S.G.Yan,P.T.Yu,Interface14 (2005)24–35.

[60]M.Mathias,H.Gasteiger,R.Makharia,S.Kocha,T.Fuller,T.Xie,J.Pisco, Preprints–Am.Chem.Soc.Div.FuelChem.49(2004)471–474.

[61]X.Wang,D.Myers,R.Kumar,AnnualProgressReport,DOEHydrogenProgram, U.S.DepartmentofEnergy,Washington,DC,p.920,2006.

[62]S.Knights,4thAnnualInter.FuelCellTestingWorkshop,Vancouver,BC, Canada,September12–13,2007.

[63]J.Xie,D.L.WoodIII,K.L.More,P.Atanassov,R.L.Borup,J.Electrochem.Soc. 152(2005)A1011–A1020.

[64]H.Xu,R.Kunz,J.M.Fenton,Electrochem.Solid-StateLett.10(2007)B1–B5. [65] S.Mitsushima,S.Kawahara,K.Ota,N.Kamiya,J.Electrochem.Soc.154(2007)

B153–B158.

[66]R.Ornelas,A.Stassi,E.Modica,A.S.Aricò,V.Antonucci,ECSTrans.3(2006) 633–641.

[67]X.P.Wang,R.Kumar,D.J.Myers,Solid-StateLett.9(2006)A225–A227. [68]W.Bi,T.F.Fuller,J.Electrochem.Soc.155(2008)B215–B221.

[69]W. Bi, G.E. Gray, T.F. Fuller, Electrochem. Solid-State Lett. 10 (2007) B101–B104.

[70]E.Guilminot,A.Corcella,F.Charlot,F.Maillard,M.Chatenet,J.Electrochem. Soc.154(2007)B96–B105.

[71]R.L.Borup,J.R.Davey,F.H.Garzon,D.L.Wood,M.A.Inbody,J.PowerSources 163(2006)76–81.

[72]Y.Y. Shao, G.P. Yin, Y.Z. Gao, P.F. Shi,J. Electrochem. Soc. 153 (2006) A1093–A1097.

[73]V.A.T.Dam,F.A.deBruijn,J.Electrochem.Soc.154(2007)B494–B499. [74]K.L.More,MicrostructuralcharacterizationofPEMfuelcellMEAs,2005DOE

H2ProgramReviewProceedings,May2005.

[75] J.Frisk,W.Boand,M.Hicks,M.Kurkowski,R.Atanasoski,A.Schmoeckel,2004 FuelCellSeminar,SanAntonio,TX,USA,November1–5,2004.

[76] R.Makharia,S.S.Kocha,P.T.Yu,M.A.Sweikart,W.B.Gu,F.T.Wagner,H.A. Gasteiger,ECSTrans.1(2006)3–18.

[77] M.Crum,W.Liu,ECSTrans.3(2006)541–550.

[78]A.Ohma,S.Suga,S.Yamamoto,K.Shinohara,J.Electrochem.Soc.154(2007) B757–B760.

[79] M.T. Hicks, 2006AnnualProgress Report,DOE HydrogenProgram, U.S. DepartmentofEnergy,Washington,DC,p.722,2006.

[80]D.Pierpont,M.Hicks,T.Watschke,P.Turner,ECSTrans.1(2006)229–237. [81]W.Liu,K.Ruth,G.Rusch,J.NewMater.Electrochem.Syst.4(2001)227–232. [82]C.A.Wilkie,J.R.Thomsen, M.L.Mittleman,J.Appl.Polym.Sci. 42(1991)

901–909.

[83]S.R. Samms, S.Wasmus, R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1498–1504.

[84]U.Beuscher,S.J.C. Cleghorn,W.B.Johnson,Int.J. EnergyRes.29(2005) 1103–1112.

[85]J.R.Yu,T.Matsuura,Y.Yoshikawa,M.N.Islam,M.Hori,Electrochem. Solid-StateLett.8(2005)A156–A158.

[86]H.L.Tang,P.K.Shen,S.P.Jiang,F.Wang,M.Pan,J.PowerSources170(2007) 85–92.

[87]R.C.McDonald,C.K.Mittelsteadt,E.L.Thompson,Fuelcells4(2004)208–213. [88]E.Cho,J.-J.Ko,H.Y.Hong,S.-A.Hong,K.-Y.Lee,T.-W.Lim,I.-H.Oh,J.

Elec-trochem.Soc.51(2004)A661–A665.

[89] X.Huang,R.Solasi,Y.Zou,M.Feshler,K.Reifsnider,D.Condit,S.Burlatsky,T. Madden,J.Polym.Sci.16(2006)2346–2357.

[90]M.Inaba,T.Kinumoto,M.Kiriake,R.Umebayashi,A.Tasaka,Z.Ogumi, Elec-trochim.Acta51(2006)5746–5753.

[91] S.Kundu,L.C.Simon,M.W.Fowler,Polym.Degrad.Stabil.93(2008)214–224. [92]S.Kim,B.K.Ahn,M.M.Mench,J.PowerSources179(2008)140–146. [93]R.Mukundan,Y.S.Kim,F.Garzon,B.Pivovar,ECSTrans.1(2006)403–413. [94]M.Oszcipok,D.Riemann,U.Kronenwett,M.Kreideweis,M.Zedda,J.Power

Sources145(2005)407–415.

[95] J.Frisk,W.Boand,M.Kurkowski,R.Atanasoski,A.Schmoeckel,2004FuelCell Seminar,SanAntonio,TX,USA,November,2004.

[96]D.Wood,J.Davey,F.Garzon,P.Atanassov,R.L.Borup,2005FuelCellSeminar, PalmSprings,CA,November,2005.

[97] J.Martin,J.Wu,H.Wang,Ballard–NRCIFCIjointresearchprojectongas diffusionlayeracceleratedstresstesting,IFCItechnicalreport, IFCI-PEMFC-CTR-046,January2007.

[98] J.Martin,J.Wu,H.Wang,Ballard– NRCIFCIjointresearchprojectongas diffusionlayeracceleratedstresstesting,IFCI-PEMFC-CTR-055,June2007. [99]J.Martin,J.Wu,H.Wang,Ballard–NRCIFCIjointresearchprojectongas

diffusionlayeracceleratedstresstesting,IFCI-PEMFC-CTR-066,October2007. [100] F-Y.Zhang,S.G.Advani,A.K.Prasad,M.E.Boggs,S.P.Sullivan,T.P.BeebeJr.,

Electrochim.Acta54(2009)4025–4030.

[101] J.Hou,W.Song,H.Yu,Y.Fu,L.Hao,Z.Shao,B.Yi,J.PowerSources176(2008) 118–121.

[102] F.Rong,C.Huang,Z.-S.Liu,D.Song,Q.Wang,J.PowerSources175(2008) 712–723.

[103] R.Borup,J.Davey,D.Wood,F.Garzon,M.Inbody,DOEHydrogenProgram,FY 2005ProgressReport1039–1045.

[104] R.Borup,J.R.Davey,A.B.Ofstad,H.Xu,R.Mukundan,F.Garzon,B.S.Pivovar, 2008FuelCellSeminar,LA-UR-08-4975.

[105] U.S.DepartmentofTransportation,FinalReport:FuelCellforTransportation Applications,FTA-IL-26-7006-2009.1,availableathttp://www.fta.dot.gov/ documents/Fule Cells forTransportationApplications FTA-IL-26-7006-2009.1.pdf.

[106] FCTestNet. 2006. WP2 Stationary Fuel Cell Systems: Test Programs andTestModules,availableathttp://fctesqa.jrc.ec.europa.eu/downloads/ Stationary/060603%20FCTESTNET%20Stationary%20Applications.pdf. [107] JRCscientificandtechnicalreports,Testingthevoltageandthepoweras

afunctionofthecurrentdensityfollowinganon/offprofileversustime (acceleratedageingon/offcyclingtestforaPEFCsinglecell),TestModule PEFCSC5-4,2010,availableathttp://fctesqa.jrc.ec.europa.eu/downloads/ PEMSCLV/OnOffageingcycleTestProcedure.pdf.

Figure

Fig. 1. Load profile for the stack drive cycle stress test [45] (reproduced with per- per-mission from Borup et al

Références

Documents relatifs

Documenter les occupations humaines et leur environnement Fouille 2014 400 m² ouverts 41 m² fouillés manuellement Fouille 2015 775 m² ouverts 11 m² fouillés manuellement 145

Considerando-se os baixos níveis de contaminação utilizados, nossos dados não são surpreendentes e corroboram os estudos que utiliza- ram rações contaminadas com 10,0mg FB 1

As the control variable in the energy management strategy is the power delivered by the fuel cell system, the surface degradation rate vs. current

At 1 M ethanol concentration (Figure 7.4 e and f) the measured currents are less stable than at the other concentrations. This is especially salient for the highest measured

The Fulfillment Decision tool is used to get an understanding of the most cost optimal fulfillment option (Drop Ship, FC, or AFS) for certain shipment volumes of items

Some Examples of GF Pasta Rice pasta Buckwheat Pasta Quinoa Pasta Durum Pasta Lentil Pasta.. Glycemic Index of Traditional and

Compounds were tested against human oral carcinoma cell line (KB), human breast cancer cell line (MCF7) and cisplatin-resistant human breast cancer cell line (MCF7-R) and showed