• Aucun résultat trouvé

Fractography of clinical failures of indirect resin composite endocrown and overlay restorations

N/A
N/A
Protected

Academic year: 2022

Partager "Fractography of clinical failures of indirect resin composite endocrown and overlay restorations"

Copied!
20
0
0

Texte intégral

(1)

Article

Reference

Fractography of clinical failures of indirect resin composite endocrown and overlay restorations

SARATTI, Carlo Massimo, et al.

Abstract

tObjectives. Compare failure modes and fracture origins using fractography on recovered clin-ically fractured parts of indirect resin composite endocrowns and overlay restorations onendodontically treated teeth (ETT).Methods. Four endocrowns (3 molars, 1 premolar) and one overlay (molar) adhesively lutedon ETT were recovered after fracturing during function.

The time in service ranged between4 and 48 months. The composite materials were (i) CAD/CAM LAVA Ultimate (N = 1), (ii)Premise Indirect (N = 2), and (iii) Colombus (N = 2).

Fractography was performed by means ofdigital microscopy and SEM. Occlusal surfaces were checked for signs of fatigue degradationand contact wear. Cuspal plane angles were measured from profiles obtained from 3D digitalmicroscope images with respect to the horizontal plane of the occlusal central crown groove.Results. All five cases showed a wedge-opening mode I fracture, splitting the crown and toothin two parts through the crown's central groove. Classic brittle fracture features (arrest lines,twist and wake hackle) were easily identified on the fracture surfaces. Multiple origins werelocated [...]

SARATTI, Carlo Massimo, et al . Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dental Materials , 2021

DOI : 10.1016/j.dental.2021.02.002 PMID : 33627233

Available at:

http://archive-ouverte.unige.ch/unige:150550

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

dental materials 37 (2021)e341–e359

Availableonlineatwww.sciencedirect.com

ScienceDirect

j ou rn a l h o m epa ge :w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a

Fractography of clinical failures of indirect resin composite endocrown and overlay restorations

Carlo M. Saratti

a

, Giovanni T. Rocca

a

, Stéphane Durual

b

, Ulrich Lohbauer

c

, Jack L. Ferracane

d,e

, Susanne S. Scherrer

b,∗

aDivisionofCariologyandEndodontics,UniversityClinicsofDentalMedicine,UniversityofGeneva,Geneva, Switzerland

bDivisionofFixedProsthodonticsandBiomaterials,UniversityClinicsofDentalMedicine,UniversityofGeneva, Geneva,Switzerland

cResearchLaboratoryforDentalBiomaterials,DentalClinic1,UniversityofErlangen-Nuernberg,Erlangen, Germany

dDepartmentofRestorativeDentistry,SchoolofDentistry,OregonHealth&ScienceUniversity,Portland,OR,USA

eDivisionofBiomaterials&Biomechanics,OregonHealth&ScienceUniversity,Portland,OR,USA

a r t i c l e i n f o

Keywords:

Fractography Composite Fracture Restoration Crown Clinical Fatigue Wear ModeI

a bs t r a c t

Objectives.Comparefailuremodesandfractureoriginsusingfractographyonrecoveredclin- icallyfracturedpartsofindirectresincompositeendocrownsandoverlayrestorationson endodonticallytreatedteeth(ETT).

Methods.Fourendocrowns(3molars,1premolar)andoneoverlay(molar)adhesivelyluted onETTwererecoveredafterfracturingduringfunction.Thetimeinservicerangedbetween 4and48months.Thecompositematerialswere(i)CAD/CAMLAVAUltimate(N=1),(ii) PremiseIndirect(N=2),and(iii)Colombus(N=2).Fractographywasperformedbymeansof digitalmicroscopyandSEM.Occlusalsurfaceswerecheckedforsignsoffatiguedegradation andcontactwear.Cuspalplaneanglesweremeasuredfromprofilesobtainedfrom3Ddigital microscopeimageswithrespecttothehorizontalplaneoftheocclusalcentralcrowngroove.

Results.Allfivecasesshowedawedge-openingmodeIfracture,splittingthecrownandtooth intwopartsthroughthecrown’scentralgroove.Classicbrittlefracturefeatures(arrestlines, twistandwakehackle)wereeasilyidentifiedonthefracturesurfaces.Multipleoriginswere locatedalongthecentralgrooveinconjunctionwiththepresenceoffatiguecracks.Contact wearsurfacesshowedpittingandcracking.Cuspalplaneangleswerearound30–35,except a50palatalcuspslopefortheLavaUltimateoverlay.

Significance.Fractographyonclinicalfracturesofresincompositeswasenlightening.Occlusal surfacefatiguedegradationfromcyclicloading,modeIfracturefromappliedmastication forcesoncuspalplanes,andstressconcentrationwithinthecrown’scentralgroove,indicate limitationsofuseofthesematerialsforendocrownsinposteriorteeth.

©2021TheAcademyofDentalMaterials.PublishedbyElsevierInc.Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/

).

Correspondingauthor.

E-mailaddresses:carlo.saratti@unige.ch(C.M.Saratti),giovanni.rocca@unige.ch(G.T.Rocca),stephane.durual@unige.ch(S.Durual), ulrich.lohbauer@fau.de(U.Lohbauer),ferracan@ohsu.edu(J.L.Ferracane),susanne.scherrer@unige.ch(S.S.Scherrer).

https://doi.org/10.1016/j.dental.2021.02.002

0109-5641/©2021TheAcademyofDentalMaterials.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

1. Introduction

Endocrowns and overlays have been proposed to restore endodonticallytreatedteeth(ETT),relyingonadhesivetech- niquesasopposedtomoreinvasivepostandcorebuild-ups forretention[1–3].Bothendocrownsandoverlays(Fig.1)are fullcuspcoveragerestorationsofthemissingcrownsurface.

Anoverlayrestoresonlythecoronalpartofthetooth,while thepulpchamberisfullyfilledbyadirectlystratifiedresin- compositematerialbondedtothedentin.Anendocrownis acrown withacentralextensioninsidethepulpchamber.

Retentive undercuts ofthe pulpchambermay beremoved bythepreparationorpreviouslyfilledwithresin composite beforeadhesivelutingoftherestoration.

Asystematicreview[4],andtwo10to12-yearretrospec- tiveclinical evaluations[5,6] have been recently published supporting the use of endocrowns for rehabilitation of posterior ETT. Materials such as feldspar-based ceramic [6–8],polymer-infiltratedfeldspar-basedceramic[5],lithium- (di)silicate glass-ceramics [5,9] as well as resin-composite materials [10], have been clinically used for endocrowns.

Recently,developmentsinparticulatefilledresincomposites

Fig.1–Endocrownandoverlayrestorationschematicwith respecttopulpchamberbuild-up.

[11]havebroadenedtheiruseforindirectrestorationsowing toimprovedstrength,toughnessandfatiguebehaviorwhile maintainingamodulusofelasticitysimilartothatofdentin [12–15].Besideshavingacceptablemechanicalproperties,the mainadvantagescitedforresin-composite restorationsare easeofprocessing(indirectorCAD/CAMmade),highpolisha- bility,aswellasin-siturepairabilityincaseofaclinicalpartial fracture[16,17].

Theliteraturecontainsawealthofinvitrotestinginfor- mation regardingthese novelresin compositesfor indirect orCAD/CAMcrownrestorations,butclinicalfractureevents, althoughreportedinsurvivaldatafromlongitudinalstudies [5,18],arerarelyfractographicallydocumentedandanalyzed.

One exception is a recent paper by Lohbauer et al. [19]

reporting on fractured implant-supported CAD/CAM resin- compositecrownreconstructions.Fracturesare wellknown adverse outcomes for resin-composites in Class I and II restorationsand were reported tobethe mainreasons for failure, along with recurrentcaries,in asystematicreview andmeta-analysis[20].Therefore,whenin-servicefailureof largeadhesivelylutedresin-compositerestorations,suchas endocrowns, involve a fracture through the pulpchamber resultinginalossofthetooth,thevalueofacarefulfailure analysisoftherecoveredcrown-toothpartsinordertounder- stand the circumstances aroundsuch acatastrophic event becomesreadilyapparent[21,22].Asalreadywellexplained andoftenimplementedforceramicrestorations[22–25],fail- ureanalysisofrecoveredfracturedpartsusingfractographic means,suchasstereomicroscopyordigitalopticalmicroscopy with largedepth-of-fieldcombined withSEM, provides key information astothe fracture mode, fracture origin(s) and direction ofcrack propagationbased on the recognitionof fracturesurfacemarkings.Therequestforrecoveredpolymer- based failed restorationsforfurther analysisand attempts tocorrelatethisinformationwithinvitrotestoutcomeshas

Table1–Recoveredindirectcompositeresinrestoration:brand,manufacturer,processing,composition,toothlocation (FDI/universalnumberingsystem,Uni)andmonths(mths)inservicebeforefracture.

Case Brand,manufacturer,processing

&restorationtype

PolymerizationandComposition FDI/Uni Mthsin service 1 LAVAUltimate

(3MESPE)

laboratory-processed CAD/CAMoverlay

Heatpolymerized,highlycross-linkedUDMAresin matrixreinforcedby79wt.%ofzirconia-silicaclusters (0.6–10␮m)+zirconia(4−11nm)+silica(<20nm).

27/15 4

2 PremiseIndirect(Kerr) laboratory-processed endocrown

Lightcured+heatpolymerizedbis-GMAandTEGDMA matrixreinforcedby84wt.%ofnano-hybrid

pre-polymerizedfillers(PPF)+fineparticle barium-basedglass+nanosilica

47/31 47

3 PremiseIndirect(Kerr) laboratory-processed endocrown

Lightcured+heatpolymerizedbis-GMAandTEGDMA matrixreinforcedby84wt.%ofnano-hybrid

pre-polymerizedfillers(PPF)+fineparticle barium-basedglass+nanosilica

26/14 39

4 Colombus

(CendresetMétaux) laboratory-processed endocrown

Lightcured+heatpolymerizedbis-GMA/UDMA monomercontaining77wt.%ofbariumglassfillersand pyrogenicSiO2

47/31 48

5 Colombus

(CendresetMétaux) laboratory-processed endocrown

Lightcured+heatpolymerizedbis-GMA/UDMA monomercontaining77wt.%ofbariumglassfillersand pyrogenicSiO2

14/5 15

(4)

dental materials 37 (2021)e341–e359

e343

beenmadebyseveralauthors[21,26–28].Additionalinforma- tionregardingthecircumstancesofthefractureevent,timein service,toothlocation,crowndesignandprocessingmethod allaidinformulatingplausibleexplanationsforsuchunfa- vorableoutcomes.Forparticulatereinforcedresincomposite restorations,evidenceofdamageintheformofabrasivewear orfatigue(micro)crackingshouldbeinvestigatedonthecyclic loadedocclusalsurface,asthesephenomenawillgreatlycon- tributetotheoverallreductionofthemechanicalproperties ofthematerial[29,30].

Thispaperreports,forthefirsttimeinthedentalliterature, extensivefractographicfailureanalysisofrecoveredclinical fracturedpartsofresincomposite endocrownsand overlay restorationsadhesivelylutedonendodonticallytreatedteeth.

Thefailureanalysiscomparesfracturemodes,crackorigins andlocations,surfacecontactwearandfatiguedegradation for three different resin-composite materials processed by eitherindirectlayeringtechniqueorCAD/CAM.Findingsare discussedand explainedwithrespecttobiomechanicsand material science considerations relevant to resin compos- ites.

2. Materials and methods

2.1. Recoveredfracturedcrownparts

Four endocrowns (3 molars, 1 premolar) and one overlay (molar)adhesivelycementedonendodonticallytreatedteeth whichfracturedduringfunctionwererecoveredbythetreat- ingdentistsanddonatedtotheUniversityClinicsofDental Medicine of the University of Geneva for failure analysis.

The recovered endocrowns were indirect (layered) resin- compositeswhereas the overlay was anindirect CAD/CAM processedrestoration. Thetimes inservice before fracture rangedbetween4and48 months.Table1summarizes the recoveredrestorationsspecifyingbrandname,manufacturer, composition,processing,toothlocation(FDI/universalnum- bering systems) and months in service. When available, additionalinformationsuchasintra-oralphotographofthe insitufracturedrestoration,adhesivelutingprocedure,aswell asthecircumstancesofthefractureeventasdescribedbythe patientwerecollected.

Fig.2showsinsituimagesoftwoindirectresin-composite restorations split in half through the anatomical central groove: Case1(Fig. 2a) isaCAD/CAM made overlay (LAVA Ultimate)whichfracturedafter4months;Case4(Fig.2b,c) isanindirectcompositeendocrown(Colombus)whichfrac- turedafter48months.Inthisparticularcase,acarefulopening withanexplorer(Fig.2c)ofthecrackedendocrownrestora- tionwasneededforrecoveringofthelooserlingualfragment.

Suchdocumentationhelpsinidentifyingpossibledamageon thefracturedsurfacefromtheexplorer.

Allfive fracturecases involvednotonlythe restoration, butalsothetooth-rootstructureending,withatotallossof thetoothwhichhadtobeextracted.Whenbothhalvesofthe failedrestorationwereavailable,fractographywasperformed oneachofthem.

Fig.2–Insituclinicalimagesoftwoindirect

resin-compositerestorationssplitthroughthecentral groove.Fig.2a:CAD/CAMoverlay(LAVAUltimate)(Case1);

Fig.2b:Indirectcompositeendocrown(Colombus)(Case4).

Inthisparticularcase,acarefulopeningwithanexplorer (Fig.2c)ofthecrackedrestorationwasneededfor recoveringofthelooserlingualfragment.Such documentationisimportantasithelpsinidentifying possibledamagefromtheexploreronthefracturedsurface.

2.2. Fractographicfailureanalysis

Therecoveredfracturedparts (restorationwithtooth)were firstcleanedanddisinfectedinanultrasonicbathfor3min with5%sodiumhypochlorite,followedby3minindistilled waterandfinallyoneminuteinpureethanol.Astereomicro- scope(OlympusSZX9)andadigitalmicroscopewithalarge depthoffield(KeyenceVHX5000)wereusedfortheinitialdoc- umentation.Thefailureanalysisincludeddeterminingmode of failure, and identifying characteristic fracture markings (arrestlines,wakeandtwisthackle)onthefracturesurfaceto aidindeterminingtheoriginsoffracture.Inaddition,evidence ofocclusalsurfacecontactwearandsignsoffatiguecracking were recorded. Transilluminationwith an external quartz- tungsten-halogenlightsourcewasusedtorevealthepresence

(5)

ofsuchfatiguecracksadjacenttoareas ofocclusalcontact wearandthefracturesurface.Apreliminarymappingofthe observedfeatureswasthensketchedout,indicatingareasof interestforfurtherhighmagnificationanalysisutilizingthe SEM.Aftertheopticalmicroscopeevaluations,thespecimens weregluedonstubsandgoldcoated(20−100nm)fordetailed SEM(Sigma300VP,Zeiss)evaluationofthefractureorigins, characteristicsurfacecrackfeatures,andevidenceofocclusal surfacedegradationsuchaswear,fatiguecrackingandpitting.

3. Results

3.1. Fractographicfailureanalysis

Case1:CAD/CAM(LavaUltimate)resin-compositemolarNo.27/ 15overlay

The bonded overlay on tooth 27 had been made with afully digitalchair-side method, four monthsprior tothe fracture eventusing aCAD/CAMresin-composite bloc(LU).

Theinternalpulpchamberwasbuilt-upwithanano-hybrid resin-composite(T)(TetricEvoCeramA3,IvoclarVivadent)and the restorationcemented withaphotocuring hybridresin- composite(Tetric,IvoclarVivadent)usinganetch-and-rinse adhesive system(Optibond FL,Kerr Dental). Regarding the circumstanceofthefracture, thepatientreportedbitingon somethinghardduringmastication.

Fig.3illustratesthefracturemodeI(crackopening)through the occlusal central anatomical groove of the composite CAD/CAM restoration. Major occlusal contactsare marked withred arrows(and dotsinthe inset photo)asidentified bystereomicroscopy. Onthe mesialproximal view,thered arrowsindicatetheapproximateappliedloadingdirectionon thecuspalplanesduringchewinggeneratingmaximumstress levelswithinthecentralgroovefromwhichawedge-opening fracturestarted.

Fig.4showsa3Ddigitalmicroscopyocclusalviewofthe overlayincase1(Fig.4a)withthefracturerunningthrough thecentralgroovesplittingthecrownandtoothintwoparts.

The red arrows point to the multiple fracture origins on the occlusalcrown surface.Thefracture surface(Fig.4c)of therecoveredbuccalcrown-toothpartshowsmultiplecrack origins(redarrows)followedbynumeroussemicircularcon- centric arrest lines created atsuccessive times as aresult ofmultipledistinctloadingeventspropagatingthecrackon differentplanes. Thecrackpropagationdirections(dcp)are indicatedbyblackarrowsandrunapicallytowardstheroots.

TheLavaUltimate(LU)overlay’sthicknessis,initsthinnest part,2.3mm.Underneaththeoverlayrestorationisabuild- uplayerofresincompositeTetricCeram(Tetric)fillinginpart ofthetoothpulpchamber.Transillumination(Fig.4b)reveals occlusal surfacefatiguecracks extendingalong the central mesio-distalgroove.Ontheocclusalcrownsurface,adom- inant oblong-shaped contact wearfacet of20 × 30 mmis visibleonthedisto-buccalcuspalplane(Fig.4a–c,)aswellas asmalleroneonthemesio-buccalcuspplane(Fig.4c).These wearsurfaceswillbefurtherdiscussedinFigs.5and6.

Fig.5showsSEMphotomicrographsofthebuccalfractured partoftheLavaUltimateoverlay.Redarrowsindicatemultiple fractureoriginslocatedwithinthecentralgroove.Directionof crackpropagation(dcp)movesapically.Highermagnifications ofthefatiguecracksinthevicinityoforiginNo1(whitebox)are illustratedinFig.5b,c.Someofthesecracksarepenetrating deep(>1mm)intothebulk(Fig.5a).Concentricarrestlines (al)spacedoutindicatingthatthecrackprogressedinstages, are visibleinFig. 5a. Inbetweenarrestlinesaremany fine twisthackle(th)whicharehacklethathaverotatedfromthe original crackplaneinresponsetoalateral rotationinthe axisofprincipaltension.Zone2onthemesio-buccalcuspal planeandzone3onthedisto-buccalcuspalplanearewear contactswithapittedappearanceasfillersfromthecomposite materialwereremovedbythewearprocess.Zone1(Fig.5a,b) correspondstotheunpolishedCAD/CAMmachiningmarks.

Further analysis ofthe fracture origin No1 isshown in Fig.6.Fatiguecracksarevisibleontheocclusalsurfacepene- trating∼200␮mdeepintothebulkofthecompositeoverlay withevidenceofsomecrackbranchingat90.Multiplearrest lines(al)areshowingthestopandgoprocessoftheadvanc-

Fig.3–Case1showingafracturemodeI(crackopening)throughtheocclusalcentralgrooveofthecompositeCAD/CAM restoration.Majorocclusalcontactsaremarkedwithredarrows(anddotsintheinsetphoto)asidentifiedby

stereomicroscopy.Onthesideview(Mesial),theredarrowsindicatetheapproximateappliedloading(L)directiononthe cuspalplanesduringchewinggeneratingmaximumstresslevelswithinthecentralgroovefromwhichawedge-opening fracturestarted.

(6)

dental materials 37 (2021)e341–e359

e345

Fig.4–Case1:LavaUltimate(LU)overlaywiththefracturerunningthroughthecentralgroove.Multiplefractureorigins(red arrows)(Fig.4a,b,c)arefollowedbynumerousconcentricarrestlines(al)alongthecrackpath(dcp)(Fig.c).Notethe occlusalfatiguecracks(Fig.b)andthelargewearfacetsonthecuspalplanes.Abuild-upofresincompositeTetricCeram (Tetric)constitutesarestorativebasebelowtheoverlay.

ingcrackprogressingapically.Multipletwisthackle(th)are presentbetweeneacharrestline.

Fig.7showsfurtherdetailsoftheLavaUltimatewearfacet onthedisto-buccalcuspalplaneinZone3(seealsoFig.4cand Fig.5a).Suchwearscarsareanongoingprocessofpolymer matrixcrackingandmatrix-fillerinterfacedebonding(Fig.7c,

d)acceleratingthelocalizedlossofmaterialandincreasingthe pittingofthesurface.Theporousweb-likematerialinFig.7d maybeeitherpartofaresidualresinlayerandcohesivefail- ureinthematrixorsomesortoforganicdepositswhichwere noteliminatedbythecleaningprocessofthespecimenbefore addingathin20nmgold-coatingfortheSEManalysis.Poten-

(7)

Fig.5–Case1(LavaUltimateoverlay).Multiplefractureorigins(redarrows)followedbynumerousconcentricarrestlines (al)alongthecrackpath(dcp).Fatiguecracksinthevicinityofthecentralgroovearepenetratingintothebulk.Zone2and3 ontheocclusalsurfaceshowwearcontactswithapittedappearance.Zone1correspondstotheunpolishedCAD/CAM machiningmarks.

tialdegradation/erosionoftheresinmatrixduetoexposure tooralandbacterialenzymescannotbeexcluded.

Case 2: indirect layered resin-composite molar No. 47 / 31 endocrown(PremiseIndirect)

Aswithcase1,thefracturesplitthecrownintwoparts through its central mesio-distal occlusalgroove in acrack openingmodeIfractureafter47monthsofintraoralfunction.

The recovered buccal part is viewed under a stereomicro-

scope(Fig.8a,b)anda3Ddigitalmicroscopeaftergold-coating (Fig.8c).Thelaboratoryhand-layeredendocrownisadhesively bondedtoapulpchamberbaselayerofhybridcomposite(Tet- ricEvoCeram).Twomainfractureoriginsmarkedbyyellow arrowswerelocatedontheocclusalsurface.CrackoriginNo 1isaprocessingholewithinthecentralgrooveofthecrown (Fig.8c).CrackoriginNo.2isconnectedtoanocclusalcontact damagedwearfacet(Fig.8b,c)onthe mesio-buccalcuspal

(8)

dental materials 37 (2021)e341–e359

e347

Fig.6–Case1.DetailedviewoffractureoriginNo1inFig.5.Fatiguecracksarevisibleontheocclusalsurfacepenetrating

∼200mdeepintothebulkofthecompositeoverlaywithevidenceofsomecrackbranchingat90.Multiplearrestlines(al) areshowingthestopandgoprocessoftheadvancingcrackprogressingapically.Twisthackle(th)arebetweeneacharrest line.

planeresultingfromocclusalcyclicloadingduringchewing (Fig.8b,c).Thefracturesurface(Fig.8a,c)showsmanyarrest linesnexttothefractureoriginsandtwisthackleattestingto thedirectionofcrackpropagation(dcp).

TheSEMimagesinFig.9a,bshowmoredetailsofcrack originNo1,aprocessingholeontheocclusalsurfaceatthe central groove from which wake hackle (wh, exiting from porosities)andtwisthackle(th)attesttothedirectionofcrack propagationdownwardstowardthetoothapex.Furtheraway onthemesio-buccalcusp,crackoriginNo2(Fig.9a,c)started fromamajorocclusalcontactasseeninFig.8b,ccontaining multiplefatiguecracksthatdevelopedundercyclicloading, resultinginaroughcrackedsurfacewithlossofcomposite material(Fig.9c,d).Fracturestartedfromoneofthesefatigue cracks and propagated in stepsas seen from the multiple arrestlinesandtwisthackle(Fig.9c).

Fig. 9a shows that the endocrown was not perfectly bonded to the tooth structure as well as to the compos- ite build-up within the pulp chamber. Evidence of these delaminationswaspresentinthestereomicroscope images obtainedbeforegoldcoating(Fig.8a),verifyingthattheywere notartefactsoriginatingfromthevacuumcoatingprocedure.

Fracturepropagationmayhavebeenfacilitatedwhenpass- ing through these weakened interfaces (endocrown/tooth;

endocrown/build-up;build-up/tooth).

Case 3: indirect layered resin-composite molar No. 26 / 14 endocrown(PremiseIndirect)

Thefractureofthisrestorationoccurredafter39months duringmasticationandsplittheendocrownandtooththrough the central groove in a wedge opening type of fracture (Fig.10a).Forthisrecoveredpalatal(P)partwewillfocusonthe disto-palatalportionofthefracturesurface,astoomuchofthe restorationwaslostinthemesio-palatalapproximalregion duetotheextractionprocess.Thedisto-palatalpartshowsthe fractureorigin(yellowarrow)startingfromamajoroccluso- distalcontactweardamagedsurface(Fig.10a–c)characterized bymultiplefatiguecracks(Fig.10b,c).Onthefracturesurface, thecrackoriginisrelatedtofatiguecracksreachingupto400

␮mdeep intothe bulk(Fig. 10c).Oncethe fracturestarted, the crack path underwent several stops and starts as evi- dencedbythemultiplesemi-circulararrestlinescontaining finetwisthackleinbetween.Thedirectionsofcrackpropaga- tion(dcp)areindicatedbyblackarrows(Fig.10a).Onthedistal portion,thecrack movedfirst apicallyinadistaldirection, thenwasdeflectedmesially,beforemeetingtheothercrack frontarrivingfromtheoccluso-mesialsidebeforeresuming itspropagationtowardsthetoothapex.Majorchangesinthe crackingplanecanbeseenfromFig.10a,cwhichareoccurring duetovariousenergylevelsbeingimpartedtotherestoration duringthecyclicchewingimpacts,butalsofromthesupport- ingtooth structureredirectingthecrackpath. Thebuild-up

(9)

Fig.7–Case1.HighermagnificationsoftheLavaUltimatewearfacetonthedisto-buccalcuspalplaneinZone3(seealso Fig.5a).Suchwearscarsareanongoingprocessofpolymermatrixcrackingandmatrix-fillerinterfacedebonding(Fig.7c,d) acceleratingthelocalizedlossofmaterialandincreasingthepitting.

compositebaseinthepulpchamberwasnotwellbondedto thetoothasseenfromthelargespacesatthemesialanddistal tooth-resininterface(Fig.10a).

Case 4: indirect layered resin-composite molar No. 47 / 31 endocrown(Colombus)

Theclinicalinsitufractureimagesofthiscaseareshown inFig.2.Thecrownsplitthroughthecentralgrooveinamode Ifractureduringchewingafter48months.Therecoveredlin- gualpartdocumentedinthefollowing3Ddigitalmicroscope andSEMimages(Fig.11)showstheendocrownbondedwitha self-adhesivelutingagent(RelyXUnicem)tothepulpcham- berandtoothstructurewithoutacompositebuild-uplayer.

Severalstartercracksareindicatedbyyellowandredarrows ontheocclusalsurfacewithinthecentralgroove.Themain crackorigin (redarrow)islocatedon thedisto-lingual cus- palplaneand connectedtoalarge oblong-shapedocclusal contact-loadsurface(Fig.11a).Twosmallerstartercracks(yel- low arrows) are visible on the mesio-lingual cuspal plane (Fig.11a)and propagatedtowardsthemesialmarginofthe endocrown.Close-upviewsofthefractureorigin(redarrow) (Fig.11b,c)showseveralspaced-outarrestlines(al)aswellas twisthackle(th)thatindicatethedcp(whitearrows)wasmov- ingdownwardstowardstheroots.Thecrackoriginisrelated toaprocessingholeontheocclusalsurface.

The pitted and worn occlusalcontact surface (Fig. 12a) fromwhichthemaincriticalcrackstarted(Fig.12b)contains veryfewmicrocracksincontrasttothepreviousPremiseIndi- rectcases2and3.Highermagnificationofthefractureorigin (Fig. 12b) shows a smooth surface of the processing pore, fromwhichfracturestarted,differentfromthefatigued,pit- tedand worncontactsurface.Highermagnificationsofthe pittedocclusalwearsurfaceshowslossofcompositematerial (Fig.12c)butwithrelativelyfewfatiguemicrocracks(Fig.12d).

Case 5: indirectlayered resin-composite premolarNo. 14 /5 endocrown(Colombus)

Thefractureoccurredofthisrestorationafter15months splittingtheendocrownandpartofthetoothintwothrough thecentralgrooveinmodefailureI(Fig.13a).Therecovered palatalpartshowsamainfractureorigin(redarrow)onthe occlusalsurfacerelatedtoaweakeningprocessingpore(0.5 mmindepth)(Fig.13b,c).Theinternalsurfaceoftheprocess- ingporeissmoothbecausetheresinispoorlycureddueto oxygenexposure.Onemajorarrestline(al)andmanytwist hackle(th)arevisibleonthefracturesurfacebelowthefrac- tureorigin (Fig.13b, c).Thedcp(blackarrows)moves from occlusaltoapical.Amajorocclusalcontactwearsurface(Fig.

a)indicatesarathercenteredloadingonthepalatalcuspal planeand wasnotincontactwiththe fractureorigin.The

(10)

dental materials 37 (2021)e341–e359

e349

Fig.8–Case2.Mendocrown(PremiseIndirect)recoveredbuccalhalfafter47monthsofintraoralfunction.Twomain fractureorigins(yellowarrows)locatedontheocclusalsurfacearefollowedbymanyarrestlinesalongthecrackpath(dcp) onthefracturesurface.CrackoriginNo1isaprocessingholewithinthecentralgrooveofthecrown(Fig.8c).Crackorigin No.2isconnectedtoanocclusalcontactdamagedwearfacet(Fig.8b,c).

wear facet, as well as the extending fatigue crack on the occlusalsurface(Fig.13b),arefurtheranalyzedundertheSEM inFig.14.

Atlowmagnification(Fig.14a)theocclusalcontactwear surfaceshowspitting(littleholes).Thepittingisaresultof the lossof compositeand localized pull-out offiller parti- clesduringcontactwearwiththeopposingtooth(Fig.14b) leavingarathersmoothvoidinthepolymermatrix.Further, verysmallporeswithinthepolymermatrixcontributetothe compositesurfacepitting(Fig.14b).Fromeachsideofthefrac-

tureorigin(Fig.13b),threechipfractures(Fig.14a)areseen.A fatiguecrackhasgrownhorizontallywithacurvature(Fig.13b, Fig.14a).Thetipofthefatiguecrack,magnifiedat10,000×in Fig.14cshowspolymercracking,crackbridging(br),transfiller fracture(tf),andfillerinterfacedebonding(fi))includingadis- lodgedfillerparticleinsidetheopencrack.Despitethelarge wearcontactsurface,fewlittlefatiguecracksarepresentcom- paredtothefindingsforthepreviouslydescribedcases2and 3.

(11)

Fig.9–Case2(PremiseIndirect).DetailsofcrackoriginNo1(Fig.9a,b),aprocessingholeontheocclusalsurfaceatthe centralgroove.Wakehackle(wh),twisthackle(th)andarrestlines(al)attestthedcptowardthetoothapex.CrackoriginNo 2(Fig.9a,c)startedfromamajorocclusalcontact(seeFig.8b,c)containingmultiplefatiguecracksfromcyclicloading (Fig.9c,d).Fracturestartedfromoneofthesefatiguecracksandpropagatedinstepsasseenfromthemultiplearrestlines (al)andtwisthackle(th)(Fig.9c).

3.2. Cuspalplaneangles

CuspalplanesanglesweremeasuredforLavaUltimate(case 1)andColombus(case4and5).Profilmeasurementsobtained from3DdigitalocclusalimagesareshowninFig.15.Fig.15a illustratestheLavaUltimatebrokenoverlay.Fig.15bindicates theprofilsectionsmadefromthecentralgroove(horizontal plane)tothecuspstips.RespectiveslopesforLavaUltimate were 35 forthe mesio-buccal(MB) and disto-buccalcusps (DB)and50 forthemesio-palatalcusp(MP).Measurements forColombuscase4areshowninFig.15c.Thecuspalplane anglesforthelingualrecoveredpartwererespectively35for theMLand30fortheDLcuspslopesontheirsteepestportion.

Fig.15drepresentstheColombuscase5palatalrecoveredpart withacuspalplaneangleof30.ForthetwoPremiseIndirect compositeendocrowns,measurementcouldnotbeperformed withsufficientconfidence.

4. Discussion

Brittlematerialssuchashighlyfilled resin compositeswill failwithlittletonoplasticdeformation.Fractureoftenoccurs catastrophically,meaningthattotalfailureoccursinasudden

andunexpectedway.Butfracture,beforebeingcatastrophic, mayalsooccurinstagesinwhichacrackwillgrowinsteps under cyclic loads ofvarying magnitudesand orientations suchasduringchewing,assistedbythepresenceoforalfluids.

Therefore,whenperformingafractographicanalysisonbro- kenpartsitisimportantdescribingtheoverallfracturepattern aswellasrecognizingthefractureorigin(s),thesource(s)from whichbrittlefracturebegan[22,31].

The fractographic failure analysis performed on four endocrowns and one overlay restored over endodontically treated teethrevealed several common key characteristics.

Firstly, allcases failedprimarilyin awedge-opening mode Ifracture throughthe centralocclusalgrooveofthecrown, splittingnot onlytherestoration, butthe supporting tooth structureaswell.Secondly,inallcasesmultipleoriginsoffrac- turewerelocatedattheocclusalsurfacewithinornearbythe centralgroove.Thirdly,largecontact-loadingareasoncuspal planesshowedsignsofwearandpittingtypicallywithsome fatiguecracks.

On the basis ofthese observations ofclinical fractures, the failureprocessesare discussedwithrespecttofracture mechanics theory and factors involved in the mechanical fatiguedegradationofdentalresincomposites.

(12)

dental materials 37 (2021)e341–e359

e351

Fig.10–Case3(PremiseIndirect)molarendocrownwithtoothfractureafter39months.Ontherecoveredpalatalpartthe failureanalysisfocusesontheoccluso-distalfractureorigin(yellowarrow)startingfromamajorocclusalcontactdamage (Fig.10a–c)containingmultiplesurfacefatiguecracks(Fig.10b,c)someofwhichareextendingupto400mdeepintothe bulk(Fig.10c).Majorchangesinthecrackingplanecanbeseenfromtheblackarrows(dcp)Fig.10a,c.Thebuild-up compositebaseinthepulpchamberwasnotwellbondedtothetoothasseenfromthelargespacesatthemesialanddistal tooth-resininterface.

4.1. Fatiguecrackingdegradation

Fatigue degradation of resin-composites has been widely explainedin many key papers [29,32–34] and isthe major

cause of failure of a structure subjected to cyclic loading.

Theformationofmultiplefatiguecracks,inducingabreak- up ofthe composite structure with the resultant lowering ofthemechanicalproperties,hasbeenidentifiedwithinthe

(13)

Fig.11–Case4:RecoveredlingualpartoftheColombusendocrown(molarNo.47/31)(seeFig.2c)whichfracturedafter34 months.Themaincrackorigin(redarrow)isrelatedtoaprocessinghole(Fig.11b,c)locatedontheDLcuspalplaneand connectedtoalargesaucer-shapedocclusalcontactsurface(Fig.11a).Twosmallerstartercracks(yellowarrows)arevisible ontheMLcuspalplane(Fig.11a).Multiplearrestlines(al)andtwisthackle(th)indicatethedcptowardsthetoothapex.

occlusalsurface.Duringtheearlystagesofocclusalfunction- ingoftherestoration,cracksofsubcriticalsizesareformed from repeated loading atlevels below the critical level for catastrophicfailureofthespecificmaterial.Thecrackscon- tinuetogrowandbranchduringthecyclicloadinginduced bychewing.Atsomepointinthefatigueprocess,theseini- tiallyseparatedindividualmicrocrackswillconnectwiththeir neighbors,forminglargermacrocracksextendingdeeper(i.e.

radialextension)intothebulkoftheresincompositerestora- tion. Thiswas clearly shown on the occlusal and fracture surfacesofCases1–3 (Figs. 5,6,10)whereocclusalfatigue crackspenetratedandevenbranchedinthesubsurfacebulk ofthecompositeresinmaterial.

Thisdeteriorationofthe materialduetosurfacefatigue crackingsignificantlylowerstheabilityoftheresincompos- ite towithstandfurtherchewing loadsand accelerates the processofcatastrophicfracture.Becausetherestorationsare constantlybathedintheaqueousoralenvironment,fluidscan penetrate throughthesurfacemicrocracksandbeabsorbed bytheresinmatrix.Theresultissomemicroscopicswelling ofthe resin matrix along with theformation ofinterfacial stressandhydrolysisofthesilane-mediatedbondbetweenthe inorganicfillerandthepolymermatrix[29,32,33,35].Evidence of water uptake of 43 ␮g/mm3 after 2 months of intrao- ral function wasmeasured on recoveredfractured partsof LavaUltimatecrownsbondedtozirconiaimplantabutments

(14)

dental materials 37 (2021)e341–e359

e353

Fig.12–Case4(Colombus):SEMimagesofthemainfractureorigindescribedinFig.11.Theoriginisaprocessingpore(red arrow)(Fig.12a,b)havingasmoothsurface.Thepittedandwornocclusalcontactsurface(Fig.12a,c)containsveryfew microcracks(Fig.12d).

[19].Thus,crackformationmayresultfromacombinationof external(masticatory)damageaccumulation,internalresid- ualstressesinthemicrostructureofthecompositematerial fromprocessingaswellasfromhydrolyticdegradation[19,35].

Evidenceforthedeteriorationofthepropertiesofthecom- positehasbeenshowninseveralinvitrostudies.Forexample, theColombuscompositeusedinCase4and5,experienceda lossofstrengthof62%fromitsstaticcharacteristicflexural strengthvalueofS0=145MPawhensubjectedtoarotating- bendingcantileverfatiguetest(16.7Hzand106cycles)under moistconditions.The50%survivalstress(S50)was54.6MPa [36].

Belli[37]showeda48%reductionfromtheinitialflexural strengthvalueof123MPaforLavaUltimate,thematerialused incase1,whenthecompositewasexposedto104cyclesin aninvitrofour-point-bendingcyclicfatiguetest.Inanother study by Wendler[14], Lava Ultimate CAD/CAM disks lost closeto40% oftheirinitialstrengthwhensubjected to105 cycles ofbiaxialloading(ball-on-three-balls). Other studies havedemonstratedalossofstrengthandtoughnessduring cyclicfatigueunderhydrolyticconditionswiththemagnitude beinginfluencedbythefillervolumefraction,fillerparticle sizes,qualityofthecross-linkingofthematrixandchemistry ofthemonomers[15,32,38–43].Theclinicalfracturesforcases

1–5occurred afterrespectively4,47,39,48and 15months.

Assuming3periodsof15minchewingperdayatarateof60 cyclesperminuteat1Hz[44],therespectiveloadingcycles would be324,000×(Case 1),3,807,000×(Case 2),3,159,000× (Case 3), 3,888,000× (Case 4) and 1,215,000× (Case 5). The extentofthelossofstrengthcreatedbytheclinicalfatigue degradationineachoftheclinicalcasespresentedcannotbe expressedwithcertainty,butconsideringthefatigue-induced micro/macrocracksvisibleontheocclusalsurface,aswellas thelargecontactwearfacetsformed,onecanhypothesizethat theserestorationsfailedmorerapidlythanexpecteddueto theiraccumulatedstructuraldegradation.

Fatiguefracturewilloccuroveravarietyofcracksizesasa functionofappliedstresses.Hence,failurefromasmallcrack willoccurunderhighappliedstress,whereas,fractureiniti- atedfromlargercrackswilloccurunderlowerappliedstress [29].

4.2. ModeIfracture(crackopeningmode)andfracture surface

Fracture mechanics are used to study fracture processes in materialsthat are eitherbrittleor have aductile-brittle behaviorwithsubstantialplasticity.Thelinearelasticfracture

(15)

Fig.13–Case5:Indirectendocrownfractureonthe premolartoothNo.14/5after15months.Therecovered palatalpartshowsamainfractureorigin(redarrow)onthe occlusalsurfacewhichisaweakeningprocessingpore.On eithersideoftheoriginarechipdamages(Fig.13b)from whichafatiguecrackextends.Arrestlines(al)andtwist hackle(tw)areindicatingthedcp(blackarrows)(Fig.13b,c).

Amajorocclusalcontactwearsurface(Fig.13a)indicates therathercenteredloadingonthepalatalcuspalplane.

Again,thefailureisamodeIwedgeopeningtypewith propagationofthecrackfromocclusaltoapical.

Fig.14–Case5:Detailsofthecontactwearzonereveals pull-outofthereinforcingfillerparticles(Fig.14b)leavinga rathersmoothvoidinthepolymermatrix.Verysmallpores withinthepolymermatrixcontributetotheoverall

compositesurfacepitting(Fig.14a).Thetipofthefatigue crackinginFig.14a,magnifiedat10,000xinFig.14c,shows polymercracking,crackbridging(br),transfillerfracture(tf), fillerinterfacedebonding(fi)includingadislodgedfiller particleinsidetheopencrack.

(16)

dental materials 37 (2021)e341–e359

e355

Fig.15–3DrepresentationoftherecoveredpartsforLavaUltimate(Fig.15a),Colombuscase4(Fig.15c)andColombuscase 5(Fig.15d).Cuspalplanesanglesmeasuredfromprofileswithrespecttothehorizontalplaneofthecentralgrooveas showninFig.15b,dprovidedanglesforLavaUlitmateof35fortheMBandDBcusps,and50fortheMPcusp.Colombus case4(Fig.15c)hadlingualcuspplanesof30(DL)and35(ML)ontheirsteepestportion.Colombuscase5(Fig.15d)hada palatalcuspplaneof30.

mechanicsapproach(LEFM)dealswithbrittlefracture,defined asoriginatingfromasharpcrackresultingfromprocessingor fromfatiguecrackingunderfunctionalcyclicloading.These small sharp cracks on the surface can rapidly grow when placedintensionorshearundervaryingamplitudeandalter- natingcyclicloads untilreachingacriticallengthatwhich thematerialwillfracturecatastrophically.Dentalparticulate- reinforcedresincompositesarehighlybrittleintheirbehavior [45],thusallowingapplicationofLEFMprinciplestostudytheir fracturephenomena.

ModeIfracturecorrespondingtoatensile stressnormal toaplaneofcrackingwasobservedforallfiveclinicalfail- urecases.AcrackopeningfracturemodeIoccurredfromthe wedge-openingeffectoftheloadedcuspsfromtheantagonist toothoncethecriticalstressintensitylevelwasreachedatthe fractureorigin.Nevertheless,theloadingofthecrownscus- palplanesduringthechewingcyclesmayhavesomein-plane shearmodeIIloadingactingonthecrackatthesametimeit isunderopeningmodeIloading.Theinitialcrackorflawmay alsobeorientedatananglewithrespecttotheappliedcus- palload.Thus,itisverylikelythatacombinationofloading conditionsinmixedmodeI(normal)andmodeII(shear)have

actedintheinitialcrackpropagation.Thismaybeseenfrom thedifferentfractureplanesaftermajorarrestlinesaswellas thepresenceoftwisthackleformedundermodeI/IIloadings.

Attemptstodeducefracturestressusingquantitativefrac- tographywouldbeveryspeculativeasthecriticalcracklength is difficulttoidentifyforseveral reasons,including lossof informationduetobrokenoffmaterialattheorigin,possible R-curvebehaviorofthecomposite,andthepresenceofnumer- ousfractureorigins.However,evidenceofdeeppenetrating fatiguecracksintothebulk(400␮mupto1mm)indicates thattherestorationshadbeensubjectedtoquiteheavyloads duringchewing.

Arrest lines are observed from iterative loading creat- ingincrementalcrackgrowth[31].Onthefracturesurfaces, closely spaced-outconcentricarrestlinesnext tothecrack originsareindicatorsofamomentarystopofthecrackprop- agation. Afterresumingpropagation,the crackhas slightly changedplanesduetoachangeintheaxisofprincipleten- sion[31].Weassumethatduringcyclicfatigueloading,distinct loadingeventsreachathresholdenergythatcausesthecrack topropagateinstages,thoughtheenergyassociatedwithany oftheseeventsisnotsufficientlyhightocausecatastrophic

(17)

failure.Thismaybeanexplanationforthesenumerousreg- ularly spaced-out sharp lines visible inall molar fractures (cases1–4),regardlessofwhichresincompositereconstruc- tionmaterialwasused.

Manually layered endocrowns are prone to fabrication defects,mainlyairbubblesorpores.Hence,bothColombus cases4and5aswellasPremiseindirect(case3,originNo.1) hadprocessingporesof∼0.5mmdeep,whichactedascrack origins.Thesesmallcavities(i.e.holes)werealllocatedatthe occlusalsurfacenexttothecentralisthmusandsometimes indirectrelationwithcontactloadingsurfacedegradation.

These occlusal surface cavities, which remain unpolished aftercuring,mayalsobeincompletelypolymerizedduetothe presenceofanoxygeninhibitedlayerontheirsurface.Hence, theseprocessingdefectswillserveastheweakestlink,com- binedwithlocalized stress concentrationalong thecentral groovefromcuspalplaneswedgeopeningloadings.Evidence forthisexistsasthedegreeofconversionforColombuscom- posite(withabisGMA/UDMAmatrix)hasbeenmeasuredby FTIRtobe60%onthesurfaceand73%inthebulk[46].

AfracturetoughnessofKIc=0.56MPa√

mhasbeenreported forColombususingtheBraziliandisktest[46],whereasforthe heat-curedCAD/CAMblockofLavaUltimate,toughnessval- uesofKIc=1.14MPa√m(compacttensiontest)[14],and0.91 MPa√

m(notchlesstriangularprismNTP)[47]werereported.

Themanufacturer’sproductdescriptionindicatesaKIc=2.02 MPa√

m(SEVNB).Itisassumedthatthefracturetoughnessfor PremiseIndirectcompositewillliebetweenthatofColombus and Lava Ultimate, as it has a similar chemical composi- tionthoughaslightlyhigherfillercontentascomparedwith Colombus,butis,alsolightactivatedfollowedbyheatpoly- merization with a degree ofconversion of 58% after 24 h [48].Thesedifferencesintoughnesshoweverhavenotpre- ventedthecatastrophicclinicalfractureincludingthelossof thetooth.

Thepreferentialpathfollowedbythegrowingandpropa- gatingcrackfromtheocclusalfatiguedsurfacedemonstrated amixtureofpolymermatrixcracking,interfacialdebonding, cluster/fillerfractureandevencrackbridging,allofwhichrep- resenttypicaltougheningmechanismsseeninmicrohybridas wellasnanofilledcomposites[49].

Thefactthatdentalresincompositeswilldegradeintheir mechanicalpropertieswithmajorlossesofstrength(40–50%) afterbeingsubjectedtoonly1045cyclesunderfatiguetest- ing[14,37]requirescareinmaterialselectionaswellascrown design.Manyfactorswillincreasestressconcentrationand crackformation,suchascuspanglesandanatomicalgrooves inaV-notchshapeasdiscussedinthenextsection.

4.3. Cuspanglesandcentralgroovenotchdesign

ArecentpublicationbyShahmoradi[50]showedviaFEmod- elsofamonolithiccrowndesignthatcuspangles,thecrown’s centralgroovenotchdesign(sharpvsround)andthethick- nessoftherestorationgreatlyinfluencethecrack-initiation loadleadingtofracture.Their modelsclearlydemonstrated thatcuspangles≥40(measuredfromthehorizontalplaneof thecentralgroovetothecuspalplane)createstressconcen- trationsinthecenterofthecentralgrooveforacontactload of150Nandacrownthicknessof1.5mm.Inourresearch,

thecuspanglesoftherecoveredfracturedcrownpartswere between30–35 inmostofthe cases,exceptforthepalatal cuspofLavaUltimatewhichwasindeedquitesteep(i.e.50).

Thesharpnessofthecentralgroovenotchcouldnotbever- ified,asportionsofmaterialhadbeenlost,butforaCAD/CAM machinedcrownthecentralgrooveisneversharpduetothe limitations ofthe bur dimensions and machining process.

However,forthe artisanalmadecrowns,dependingon the layering techniqueused inthe laboratory, thecentral isth- musofthecrownscanbesharpandincorporatesomelarge processingporeswhichmayserveascrackorigins.Thefinal messagefromFEMliteratureisclear:formonolithicmaterials (allexceptzirconia)cuspslopesof20−30(fromahorizontal grooveplane)aswellasaroundedcentralisthmusshouldbe incorporatedintothedesignofthecrown[50–52].

4.4. Compositecompositionandocclusalsurface degradation

Thecontactwearzonesontheocclusalsurfacewiththeantag- onisttoothwereeasilyidentifiedwiththestereomicroscope.

Whethertherewasexcessive wearcannotbeconcludedas noinitialevaluationwasavailable.However,themicroscopic analysis ofthe occludingsurfaceshowed localdegradation throughpitting,wearandsometimesmicro/macrocracking.

The differences between the five presented cases may be discussedinlightofthecompositionalandprocessingdiffer- encesofthematerials.

Increasingthefillercontentwithnano-particlesandclus- tersinthemicro-sizedrange,alongwithahighlycross-linked polymer matrix due tothe use of high pressure and heat forimprovingthedegreeofconversion,increasestoughness andstiffness[47,53].Hence,theresincompositewill,insuch formulations,behaveinamorebrittlemannerasmatrixdefor- mationislimited.Thismayexplainthepresenceofmultiple microandmacrocracksinthevicinityoftheisthmusnextto thefracturesiteforLavaUltimate.After4monthsofintrao- ral function, Lava Ultimate overlay showed pitted contact wearsurfaces resultingfrom breaking-offofmicroclusters offillerparticles,leavingmultiplelocalizeddeepcraterson theocclusalsurfaceatthecontactwearregion.Littletono microcrackingwasdetectedwithinthelargeslidingcontact surfaces,confirmingresearchfindingsfromaprevioussliding contacttest[54]forthismaterial.Unfortunately,noinforma- tionisavailableregardingtheantagonisttoothinvolvedinthe occlusalcontact.

Thelargeandsmoothlookingoblong-shapedcontactwear surfacesforbothColombuscases(4and5)maybeattributed tosomeinitialocclusaladjustmentswhichwerewellpolished, asnoobviousscratchesremainedonthesurface.Thepitted contactwearsurfacelookedsimilartothatoftheLavaUlti- materestoration.Theantagonistcontactingtoothhasenamel cuspsforCase4asverifiedfromavailableX-Rays.However, noinformationisavailableregardingtheantagonisttoothfor Case5.

PremiseIndirect(Case2and3),ahighlyfilledandcross- linked resin composite (84 wt.% [55]), showed very rough occlusalcontactsurfaceswithextensivecrackdamages.The existence of multiplewide open cracks most probably are attributedtohighercontactpressure andfrictionoccurring

(18)

dental materials 37 (2021)e341–e359

e357

over3yearsofmechanicalfunction,acceleratingtheforma- tionofasurfaceandsub-surfacecracknetwork,drastically loweringthelifetimeoftherestoration.Theextensiverough- nessofthecontactwearsurfacesisduetoanongoingloss ofreinforcingfillerparticlesaccompaniedbybreaking-offof portionsofthepolymermatrix,leavingdeepopencracks.The availableX-Raysforbothcases2and3showedagainantago- nistteethwithenamelcusps.

Allthreeoftheresincompositematerialshavesimilarelas- ticmoduliconstants(around11−12GPa)andsimilarwt.%of fillerparticles(77−84wt.%)[12,36,56].Somedifferencescer- tainlyexistintermsofdegreeofconversionwhichaddstothe pittingandmicro/macrocrackformation.Butthedominant degradation process willcome from the intraoral chewing conditions,contactpressure,occlusionimpactsandfrictional wear. Thefact thatthe strongest, toughestand best cured material,LavaUltimate,failedprematurelyafter4monthsis relatedtothewedge-openingforcesactingontherelatively steepcuspalplanes,andthefactthatitwasanoverlaywitha thicknessrangingbetween2.3–2.8mm,contrarytothemore voluminousandthickerendocrowns(∼3−4mm)intheother fourcases.

4.5. Clinicalconsiderations

Fractureofdirectlayeredcompositerestorationsonposterior teethhasbeenreportedtobeanimportantreasonforfail- urewithariskincreasefrom the secondyear onward[20].

For indirect CAD/CAM or laboratory layeredresin compos- iteendocrowns, thereare noclinical trialresults available.

Itis therefore more difficult tobe more specific regarding thefailureanalysiswithalimitednumberoffracturecases.

Inaddition, allfivecasesinthis studywere locatedindif- ferentteethand presenteddifferentanatomies.Despite all beingclassifiableasadhesiverestorationstoETT,theywere allofdifferentthicknessesasaresultoftheirdifferentdesigns (overlayvsendocrown)orextensionsoftheendocoreinside the pulpchambers. Nevertheless, one should consider the effectivenessofETTwithresincompositesasthechoiceof reconstruction material in high stress regions inposterior teeth.

Asmentionedintheintroduction,theuseofnovelresin compositesforcrownreconstructionsonmolars,havebeen suggested[3,11].Themainargumentinfavorofresincom- positesvsceramicsarecosts,easeoffabrication,handlingand repairincaseofpartialfracture.

Overall,strength,fracturetoughness,andelasticconstants werenotverydifferentamongthethreeresincomposites.All resincomposites willdegradeassoon astheyare exposed to water and cyclic fatigue which is the case in the oral environment. This shows that for such large restorations improvementintoughnessduetoprocessinghasnotbeensuf- ficienttoavoidcatastrophicfracture.Althoughtoughnessisa highlyrelevantpropertytocharacterizedentalresincompos- itematerials[27],onlyaweakcorrelationwasfoundrelating toughnessandclinicalfracturesinamajorsystematicreview ofresincompositesonposteriorteeth[57].Linearelasticprop- erties (E, flexural ␴, KIc) were also shown to have limited clinical relevance. Initial properties were better associated withmicrostructuralfeaturessuchasfillerparticlesandpar-

ticleclusters,whereasfatigueresistancedependedmoreon thepolymericmatrix[15].

Thetoughestandstrongestmaterialoftheanalyzedfail- ure caseswasLavaUltimatewhichsince2015isno longer indicatedbythemanufacturerforcrownsbecauseofdebond- ingissues.Thefracturedoverlaywasperformedinearly2013, beforetherevisedrecommendationwasissuedby3M.

Colombuswhichwasonthemarketintheyear2000,was madespecificallyforindirectmolarrestorations.Endocrowns werenotspecificallymentioned.Cases4and5wereperformed in2002andthechoicetousethismaterialtoreconstructan ETTwasmadebytheclinicianusingavailableadhesiveluting techniques.PremiseIndirecthasbeenindicatedforcrowns andbridgeswith,however,thespecificrequestbytheman- ufacturertoincorporatetheirpolyethylenebraidedfibersto reinforcetherestoration.Thiswasnotdoneinthetwofrac- turedmolarcases(2and3).Fiberreinforcementismeantto strengthenthereconstructionandprovidetougheningmech- anismsofcrackarrestordeflection.Itcannotbesaidwhether thefracturedmolarreconstructionswouldhavesurvivedor atleastnotfracturedverticallywithultimatelythelossofthe toothhadfibersbeenusedinthesecases.Nevertheless,the positioningofthefiberbundlesornetiscrucialwithrespect tothecrown’sthickness.Atechnicalreportonhowtorecon- struct endodontically treatedteeth witha resin composite build-upofthepulpchamber,followedbyafibernetworkand thenanadhesivelybondedCAD/CAMresincompositeover- laywasdescribedbyRocca[58].Deeplocationofaglass-fiber net (StickNet)justabovethe compositepulpchambercon- tainingthecorebuild-up,wasshowntobeinefficienttostop theverticaldetrimentalfractureofLavaUltimateoverlaysof 3mmthickness,aswellasthetoothroot,althoughsomepar- tialcrackdeviationatthetoothhadoccurred[59].Considering thatall thefracturesanalyzedfractographicallyindicateda crackoriginationatthecentralisthmus,amoreocclusalposi- tioningofthe fiber netabove adome-shapepulpchamber compositebuild-upcould betterservethe purposeofcrack arrestordeflectionandavoidthelossofthetoothinthecase offractureduringmastication.

Itisbeyondthescopeofthispapertodiscusswhichmate- rialforendocrownreconstructionwouldbemostappropriate for endodontically treated teeth [3,4,11,60]. Unfortunately, clinicalevidenceonthesuitabilityofchairsideresincompos- itebasedCAD/CAMblocksiscompletelylacking.Despitethis lackofevidence,manufacturerstodaybroadlyindicatetheir materialsforthepreparationofsinglecrowns.Theendocrown indicationisnotalwaysspecifiedinrespectiveinstructionsfor use.

Attemptstocompare theperformanceofresincompos- itesrestorations(inlays,onlays,overlays)overceramicsusing a meta-analysis remained inconclusive due to the lack of standardizationorcriteriareported[61].Regardingceramics, lithiumdisilicateglassceramicswouldrepresentthematerial ofchoice,astheycanbewellbondedtotoothstructureand haveagoodcompromiseintermsofstrength(300−400MPa), fracturetoughness(2.2–3.0MPa√m)andelasticmodulus(100 MPa).

Itisworthreemphasizingthatthedominantforcesonthe cuspal planesofsuchreconstructions are critical,asthese are wedge-opening forces that form detrimental cracks at

(19)

thecentralgroove.Hence,reconstructiondesignspossessing lesssteepcuspslopes,roundedcentralgroovesandocclusal contactmanagementtorelieve excessivechewing contacts shouldbethestandard.Certainly,basedonourfindings,devel- opmentofaresincompositematerialofferingimprovedwear andfatigueresistance,especiallyintheocclusallyloadedcon- tactregions,isdesirable.

5. Conclusion

Fractographic failure analysis of recovered clinically frac- tured molars and premolar endocrowns and overlay on endodonticallytreatedteethwassuccessfullyperformedwith stereomicroscopy, 3Ddigital microscopy and SEM analysis.

Fracture origins were located nearby the crown’s central isthmusontheocclusalsurfaceswithcatastrophiccrackprop- agation towardsthe root, splittingthe restoration and the tooth.Theresincompositereconstructionsfailedfromacom- binationofseveralfactors:(a)fatiguedegradationfromcyclic loading,(b)wedgeopeningmodeIfracturefromloadingson cuspalplanes, and(c)critical stressesconcentratinginthe vicinityofthecentralisthmuswhichactedassharpV-notches.

Clearevidenceofcontactwearwithpittingand sometimes extensivefatiguecrackingindicatedabrittlebehaviorunder functionalloading.Moreclinicaltrialsandfractographicfail- ureanalysesareneededtobetterunderstandpossibleclinical outcomelimitationsoftheuseofresincompositesforrecon- structionsofseverelydamagedendodonticallytreatedteeth.

Acknowledgement

Thisresearchdidnotreceiveanyspecificgrantfromfunding agenciesinthepublic,commercial,ornot-for-profitsectors.

references

[1] RoccaGT,KrejciI.Crownandpost-freeadhesiverestorations forendodonticallytreatedposteriorteeth:fromdirect compositetoendocrowns.EurJEsthetDent2013;8:156–79.

[2] BiacchiGR,MelloB,BastingRT.Theendocrown:an alternativeapproachforrestoringextensivelydamaged molars.JEsthetRestorDent2013;25:383–90.

[3] CarvalhoMA,LazariPC,GresnigtM,DelBelCuryAA,Magne P.Currentoptionsconcerningtheendodontically-treated teethrestorationwiththeadhesiveapproach.BrazOralRes 2018;32:e74.

[4] Sedrez-PortoJA,RosaWL,daSilvaAF,MunchowEA, Pereira-CenciT.Endocrownrestorations:asystematic reviewandmeta-analysis.JDent2016;52:8–14.

[5] BelleflammeMM,GeertsSO,LouwetteMM,GrenadeCF, VanheusdenAJ,MainjotAK.Nopost-nocoreapproachto restoreseverelydamagedposteriorteeth:anupto10-year retrospectivestudyofdocumentedendocrowncases.JDent 2017;63:1–7.

[6] OttoT,MormannWH.Clinicalperformanceofchairside CAD/CAMfeldspathicceramicposteriorshouldercrowns andendocrownsupto12years.IntJComputDent 2015;18:147–61.

[7] BindlA,MormannWH.Clinicalevaluationofadhesively placedCerecendo-crownsafter2years–preliminaryresults.

JAdhesDent1999;1:255–65.

[8] BernhartJ,BrauningA,AltenburgerMJ,WrbasKT.Cerec3D endocrowns–two-yearclinicalexaminationofCAD/CAM crownsforrestoringendodonticallytreatedmolars.IntJ ComputDent2010;13:141–54.

[9] daCunhaLF,GonzagaCC,PissaiaJF,CorrerGM.Lithium silicateendocrownfabricatedwithaCAD-CAMsystem:a functionalandestheticprotocol.JProsthetDent 2017;118:131–4.

[10] TzimasK,TsiafitsaM,GerasimouP,TsitrouE.Endocrown restorationsforextensivelydamagedposteriorteeth:clinical performanceofthreecases.RestorDentEndod2018;43:

e38.

[11] MainjotAK,DupontNM,OudkerkJC,DewaelTY,SadounMJ.

FromartisanaltoCAD-CAMblocks:stateoftheartof indirectcomposites.JDentRes2016;95:487–95.

[12] BelliR,WendlerM,deLignyD,CicconiMR,PetscheltA, PeterlikH,etal.ChairsideCAD/CAMmaterials.Part1:

measurementofelasticconstantsandmicrostructural characterization.DentMater2017;33:84–98.

[13] WendlerM,BelliR,PetscheltA,MevecD,HarrerW,LubeT, etal.ChairsideCAD/CAMmaterials.Part2:flexuralstrength testing.DentMater2017;33:99–109.

[14] WendlerM,BelliR,ValladaresD,PetscheltA,LohbauerU.

ChairsideCAD/CAMmaterials.Part3:cyclicfatigue parametersandlifetimepredictions.DentMater 2018;34:910–21.

[15] BelliR,PetscheltA,LohbauerU.Arelinearelasticmaterial propertiesrelevantpredictorsofthecyclicfatigueresistance ofdentalresincomposites?DentMater2014;30:381–91.

[16] RoccaGT,SedlakovaP,SarattiCM,SedlacekR,GregorL, RizcallaN,etal.Fatiguebehaviorofresin-modified monolithicCAD-CAMRNCcrownsandendocrowns.Dent Mater2016;32:e338–50.

[17] ShuX,MaiQQ,BlatzM,PriceR,WangXD,ZhaoK.Direct andIndirectRestorationsforEndodonticallyTreatedTeeth:

ASystematicReviewandMeta-analysis,IAAD2017 ConsensusConferencePaper.JAdhesDent2018;20:183–94.

[18] MiuraS,KasaharaS,YamauchiS,KatsudaY,HaradaA,Aida J,etal.ApossibleriskofCAD/CAM-producedcomposite resinpremolarcrownsonaremovablepartialdenture abutmenttooth:a3-yearretrospectivecohortstudy.J ProsthodontRes2019;63:78–84.

[19] LohbauerU,BelliR,CuneMS,SchepkeU.Fractographyof clinicallyfractured,implant-supporteddental

computer-aideddesignandcomputer-aidedmanufacturing crowns.SAGEOpenMedCaseRep2017;5,2050313X17741015.

[20] OpdamNJ,vandeSandeFH,BronkhorstE,CenciMS, BottenbergP,PallesenU,etal.Longevityofposterior compositerestorations:asystematicreviewand meta-analysis.JDentRes2014;93:943–9.

[21] BayneSC.Correlationofclinicalperformancewith’invitro tests’ofrestorativedentalmaterialsthatusepolymer-based matrices.DentMater2012;28:52–71.

[22] ScherrerSS,LohbauerU,DellaBonaA,VichiA,TholeyMJ, KellyJR,etal.ADMguidance-Ceramics:guidancetotheuse offractographyinfailureanalysisofbrittlematerials.Dent Mater2017;33:599–620.

[23] QuinnJB,QuinnGD,KellyJR,ScherrerSS.Fractographic analysesofthreeceramicwholecrownrestorationfailures.

DentMater2005;21:920–9.

[24] ScherrerSS,QuinnGD,QuinnJB.Fractographicfailure analysisofaProceraAllCeramcrownusingstereoand scanningelectronmicroscopy.DentMater2008;24:1107–13.

[25] ScherrerSS,QuinnJB,QuinnGD,KellyJR.Failureanalysisof ceramicclinicalcasesusingqualitativefractography.IntJ Prosthodont2006;19:185–92.

[26] HeintzeSD,FaouziM,RoussonV,OzcanM.Correlationof wearinvivoandsixlaboratorywearmethods.DentMater 2012;28:961–73.

(20)

dental materials 37 (2021)e341–e359

e359

[27] IlieN,HiltonTJ,HeintzeSD,HickelR,WattsDC,SilikasN, etal.Academyofdentalmaterialsguidance-resin composites:partI-Mechanicalproperties.DentMater 2017;33:880–94.

[28] FerracaneJL,HiltonTJ,StansburyJW,WattsDC,SilikasN, IlieN,etal.AcademyofDentalMaterialsguidance-Resin composites:partII-Techniquesensitivity(handling, polymerization,dimensionalchanges).DentMater 2017;33:1171–91.

[29] BaranG,BoberickK,McCoolJ.Fatigueofrestorative materials.CritRevOralBiolMed2001;12:350–60.

[30] KruzicJJ,ArsecularatneJA,TanakaCB,HoffmanMJ,CesarPF.

Recentadvancesinunderstandingthefatigueandwear behaviorofdentalcompositesandceramics.JMechBehav BiomedMater2018;88:504–33.

[31] QuinnGD.ANISTrecommendedpracticeguide:

fractographyofceramicsandglasses.Specialpublication (NISTSP)960-16e3.Gaithersburg,MD:NationalInstituteof StandardsandTechnology;2020,

http://dx.doi.org/10.6028/NIST.SP.960-16e3.

[32] LohbauerU,BelliR,FerracaneJL.Factorsinvolvedin mechanicalfatiguedegradationofdentalresincomposites.J DentRes2013;92:584–91.

[33] AwajaF,ZhangSN,TripathiM,NikiforovA,PugnoN.Cracks, microcracksandfractureinpolymerstructures:formation, detection,autonomicrepair.ProgMaterSci2016;83:

536–73.

[34] ArolaD.Fatiguetestingofbiomaterialsandtheirinterfaces.

DentMater2017;33:367–81.

[35] FerracaneJL.Hygroscopicandhydrolyticeffectsindental polymernetworks.DentMater2006;22:211–22.

[36] ScherrerSS,WiskottAH,Coto-HunzikerV,BelserUC.

Monotonicflexureandfatiguestrengthofcompositesfor provisionalanddefinitiverestorations.JProsthetDent 2003;89:579–88.

[37] BelliR,GeinzerE,MuschweckA,PetscheltA,LohbauerU.

Mechanicalfatiguedegradationofceramicsversusresin compositesfordentalrestorations.DentMater

2014;30:424–32.

[38] LohbauerU,FrankenbergerR,KramerN,PetscheltA.

Time-dependentstrengthandfatigueresistanceofdental directrestorativematerials.JMaterSciMaterMed 2003;14:1047–53.

[39] LohbauerU,FrankenbergerR,KramerN,PetscheltA.

Strengthandfatigueperformanceversusfillerfractionof differenttypesofdirectdentalrestoratives.JBiomedMater ResBApplBiomater2006;76:114–20.

[40] LohbauerU,RahiotisC,KramerN,PetscheltA,EliadesG.

Theeffectofdifferentlight-curingunitsonfatiguebehavior anddegreeofconversionofaresincomposite.DentMater 2005;21:608–15.

[41] LohbauerU,vonderHorstT,FrankenbergerR,KramerN, PetscheltA.Flexuralfatiguebehaviorofresincomposite dentalrestoratives.DentMater2003;19:435–40.

[42] ShahMB,FerracaneJL,KruzicJJ.R-curvebehaviorand micromechanismsoffractureinresinbaseddental restorativecomposites.JMechBehavBiomedMater 2009;2:502–11.

[43] ShahMB,FerracaneJL,KruzicJJ.R-curvebehaviorand tougheningmechanismsofresin-baseddentalcomposites:

effectsofhydrationandpost-cureheattreatment.Dent Mater2009;25:760–70.

[44] WiskottHW,NichollsJI,BelserUC.Fatigueresistanceof solderedjoints:amethodologicalstudy.DentMater 1994;10:215–20.

[45] QuinnJB,QuinnGD.Materialpropertiesandfractographyof anindirectdentalresincomposite.DentMater

2010;26:589–99.

[46] ScherrerSS,BotsisJ,StuderM,PiniM,WiskottHW,Belser UC.Fracturetoughnessofageddentalcompositesin combinedmodeIandmodeIIloading.JBiomedMaterRes 2000;53:362–70.

[47] RuseND,SadounMJ.Resin-compositeblocksfordental CAD/CAMapplications.JDentRes2014;93:1232–4.

[48] MaltaDA,MagneP,Monteiro-JuniorS.Bondstrengthand monomerconversionofindirectcompositeresin restorations,Part1:lightvsheatpolymerization.JAdhes Dent2014;16:517–22.

[49] ShahMB,FerracaneJL,KruzicJJ.Mechanisticaspectsof fatiguecrackgrowthbehaviorinresinbaseddental restorativecomposites.DentMater2009;25:909–16.

[50] ShahmoradiM,WanB,ZhangZ,WilsonT,SwainM,LiQ.

Monolithiccrownsfractureanalysis:theeffectofmaterial properties,cuspangleandcrownthickness.DentMater 2020;36:1038–51.

[51] SornsuwanT,EllakwaA,SwainMV.Occlusalgeometrical considerationsinall-ceramicpre-molarcrownfailure testing.DentMater2011;27:1127–34.

[52] SornsuwanT,SwainMV.Influenceofocclusalgeometryon ceramiccrownfracture;roleofcuspangleandfissure radius.JMechBehavBiomedMater2011;4:1057–66.

[53] PhanAC,TangML,NguyenJF,RuseND,SadounM.

High-temperaturehigh-pressurepolymerizedurethane dimethacrylate-mechanicalpropertiesandmonomer release.DentMater2014;30:350–6.

[54] WendlerM,KaizerMR,BelliR,LohbauerU,ZhangY.Sliding contactwearandsubsurfacedamageofCAD/CAMmaterials againstzirconia.DentMater2020;36:387–401.

[55] SoancaA,RomanA,MoldovanM,PerhaitaI,TudoranLB, RominuM.Studyonthermalbehaviour,structureandfiller morphologyofsomeindirectcompositeresins.DigJ NanomaterBios2012;7:1071–81.

[56] RoccaGT,GregorL,SandovalMJ,KrejciI,DietschiD.Invitro evaluationofmarginalandinternaladaptationafter occlusalstressingofindirectclassIIcompositerestorations withdifferentresinousbasesandinterfacetreatments.

¨Post-fatigueadaptationofindirectcompositerestorations¨.

ClinOralInvestig2012;16:1385–93.

[57] HeintzeSD,IlieN,HickelR,ReisA,LoguercioA,RoussonV.

Laboratorymechanicalparametersofcompositeresinsand theirrelationtofracturesandwearinclinicaltrials-A systematicreview.DentMater2017;33:e101–14.

[58] RoccaGT,RizcallaN,KrejciI.Fiber-reinforcedresincoating forendocrownpreparations:atechnicalreport.OperDent 2013;38:242–8.

[59] RoccaGT,SarattiCM,Cattani-LorenteM,FeilzerAJ,Scherrer S,KrejciI.Theeffectofafiberreinforcedcavity

configurationonloadbearingcapacityandfailuremodeof endodonticallytreatedmolarsrestoredwithCAD/CAMresin compositeoverlayrestorations.JDent2015;43:1106–15.

[60] MagneP,KnezevicA.Influenceofoverlayrestorative materialsandloadcuspsonthefatigueresistanceof endodonticallytreatedmolars.QuintessenceInt 2009;40:729–37.

[61] AktasG,YerlikayaH,AkcaK.Mechanicalfailureof

endocrownsmanufacturedwithdifferentceramicmaterials:

aninvitrobiomechanicalstudy.JProsthodont2018;27:

340–6.

Références

Documents relatifs

A new polishing brush with abrasive bristles for polishing resin-based restorations was tested to determine if it polishes restorations, including those with concave

The aim of this article is to present a simplified CAD/CAM-based chairside full-mouth adhesive rehabilitation tech- nique in the case of excessive wear us- ing the virtual

Marginal adaptation was assessed before and after each phase of mechanical loading (250,000 cycles at 50N, 250,000 cycles at 75N and 500,000 cycles at 100N); internal adaptation

Mean values of opened internal interface with dentin varied from 11.06% (Tetric Flow) to 28.15% (Prodigy). The present results regarding dentin adaptation confirmed that the

HVWLPDWHGWKDW PD[LPXPGHJUHHRIFRQYHUVLRQRIOLJKWFXUHG UHJXODU UHVWRUDWLYH UHVLQ FRPSRVLWHV LV UHDFKDEOH E\ OLJKW FXULQJ IRU VHFRQGV WKURXJK D PP WKLFN /7 $ VKDGH FRPSRVLWH

To evaluate the color stability of three resin-based materials continuously exposed to various staining agents. DUC, Olivier,

Thirty-nine conventional posterior composite fillings were placed according to the three-sited light curing technique using Tetric, a fine hybrid composite material, and Syntac,

The aim of this study was to systematically review the literature on the clinical behavior of direct anterior composite restorations and to identify the factors potentially