• Aucun résultat trouvé

Stochastic modeling of the oceanic mesoscale eddies

N/A
N/A
Protected

Academic year: 2021

Partager "Stochastic modeling of the oceanic mesoscale eddies"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: hal-03140513

https://hal.inria.fr/hal-03140513

Submitted on 15 Feb 2021 HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stochastic modeling of the oceanic mesoscale eddies

Long Li, Deremble Bruno, Noé Lahaye, Etienne Mémin

To cite this version:

Long Li, Deremble Bruno, Noé Lahaye, Etienne Mémin. Stochastic modeling of the oceanic mesoscale eddies. 6th Sandbox STUOD Sandbox Workshop, Feb 2021, London, United Kingdom. pp.1-24. �hal-03140513�

(2)

Long Li , Bruno Deremble , Noé Lahaye and Etienne Mémin

Inria Rennes Bretagne Atlantique, France

1

2

1

1

1

Stochastic modeling of the

oceanic mesoscale eddies

(3)

Motivations

I. Can LU model better represent the mesoscale eddies effect on the

large-scale circulation?

II. Can LU model improve the internal variability of coarse-resolution

ocean models?

(4)

Dynamical core

2000

3000

4000

5000

6000

7000

-4

-2

0

2

4

6

8

10

Z (km)

Y (km)

OCEAN LAYER 1

OCEAN MIXED LAYER

OCEAN LAYER 2

ATMOSPHERE

MIXED LAYER

ATMOSPHERE

LAYER 1

ATMOSPHERE

LAYER 2

INCOMING SOLAR

RADIATION

HEAT DISTRIBUTED

INTERNALLY BY

RADIATION AND

ENTRAINMENT

WIND STRESS

LEADS TO EKMAN

PUMPING

EKMAN PUMPING

QUASI-GEOSTROPHIC

DYNAMICS

QUASI-GEOSTROPHIC

DYNAMICS

ENTRAINMENT

(5)

Deterministic QG equations

Evolution of -th layer potential vorticity (PV)

k

@

t

q

k

=

r· (u

k

q

k

) +

A

2

f

0

r

4

p

k

A

4

f

0

r

6

p

k

f

0

H

k

(w

k

w

k 1

)

u

k

=

1

f

0

r

?

p

k

q

k

=

1

f

0

r

4

p

k

+ (y

y

0

) +

f

0

H

k

(⌘

k

k 1

)

k

=

p

k+1

p

k

g

k

0

,

g

0

k

=

g(⇢

k+1

k

)

0

Update -th layer pressure, height and velocity

k

u

m

= u

1

+

?

f

0

H

m

Evolution of mixed layer temperature (or SST)

@

t

T

m

=

r· (u

m

T

m

) + K

2

r

2

T

m

K

4

r

4

T

m

+ w

0

T

1

+ T

m

2H

m

F

m

w

0

=

1

f

0

r ⇥ ⌧

w

N

=

ek

2f

0

r

2

p

N

w

1

=

m

T

2

1

T

w

0

Exp.1

Exp.2

(6)
(7)

Eddy-resolving simulations

(8)

Stochastic QG equations

Advection flux

Diffusion flux

Sources flux

Sinks flux

k

B

˙

t

k

-th layer eddy velocity noise (m/s)

a

k

dt

=

E

h

k

B

˙

t

E[

k

B

˙

t

]

k

B

˙

t

E[

k

B

˙

t

]

T

i

k

-th layer variance tensor

(

m

2

/

s

2

)

F

k

=

k

B

˙

t

1

2

r·a

k

q

k

+

1

2

a

k

rq

k

u

k

·r

?

k

B

˙

t

+a

k

rf +

1

2

X

i=1,2

@

x

?

i

a

k

ru

i

k

F

m

=

1

B

˙

t

1

r· a

1

T

m

+

1

a

1

rT

m

Evolution of SST

@

t

T

m

=

r· (u

m

T

m

) + K

2

r

2

T

m

K

4

r

4

T

m

+ w

0

T

1

+ T

m

2H

m

F

m

+

r· F

m

Evolution of -th layer PV

k

@

t

q

k

=

r· (u

k

q

k

) +

A

2

f

0

r

4

p

k

A

4

f

0

r

6

p

k

f

0

H

k

(w

k

w

k 1

) +

r· F

k

(9)

h

u

?

k

6= 0 if F

2

6= F

i

u

HR

k

u

HR

k

=

Fu

HR

k

+ (1

F)u

HR

k

Fu

HR

k

+ (1

F)u

HR

k

Data-driven modeling

(i) LU-POD

= (u

LR

k

u

LR

k

) + (1

F)u

HR

k

(1

F)u

HR

k

{

k,n

}

n=1,...,N

t

POD

u

?

k

=

F(1

F)u

HR

k

a

k

dt

=

M1

X

n=M0

k,n

T

k,n

k

B

˙

t

=

M1

X

n=M0

k,n

n

+ u

?

k

n

⇠ N (0, 1)

(M

0

< M

1

< N

t

)

(10)

P

k

= I

r✓

k

(

r✓

k

)

T

kr✓

k

k

2

,

k

=

f

0

H

k

(⌘

k

k 1

)

(ii) LU-POD-P

Data-driven modeling

e

k

B

˙

t

= P

k

k

B

˙

t

,

a

e

k

= P

k

a

k

P

T

k

LU-POD

(11)
(12)

Coarse-resolution simulations

Δx = 80

L

= [39,22]

LR

LU-POD

LU-POD-P

0

50

100

150

0

0.02

0.04

0.06

0.08

0.1

0.12

(13)

Coarse-resolution simulations

LR

LU-POD

LU-POD-P

Upper-layer PV (

Δx = 80

km,

L

d

= [39,22]

km)

of Exp.2 (with SST)

0

50

100

150

0

0.05

0.1

0.15

0.2

0.25

(14)

Statistical prediction

1st

Baroclinic

mode

Barotropic

mode

Comparison of

mean (60-180

yrs) contour of

pressure for

coarse-model

(120 km)

simulations

(Exp.1)

(15)

Statistical prediction

Barotropic

mode

Comparison of

mean (60-180

yrs) contour of

pressure for

coarse-model

(120 km)

simulations

(Exp.2)

1st

Baroclinic

mode

(16)

Z Z

Measures of statistics

Dispersion =

1

|A|

Z Z ⇣

2

REF

2

MOD

1

log

2

REF

2

MOD

dA

PC =

k

REF

MOD

k

2

A

k

2

REF

k

A

k

MOD

2

k

A

GRE =

1

2

p

REF

p

MOD

REF

2

A

+

1

2

Dispersion

RMSE of p

MOD

=

kp

MOD

p

REF

k

A

RMSE of

MOD

=

k

MOD

REF

k

A

,

= (p

p)

2

Measures

Values Accuracy

+

+

+

+

+

(17)

0

0.2

0.4

0.6

0.8

1

40

80

120

0

100

200

300

400

500

40

80

120

0

50

100

150

200

250

300

40

80

120

Long-term

statistics

0

0.1

0.2

0.3

0.4

0.5

40

80

120

0

0.2

0.4

0.6

0.8

1

1.2

40

80

120

Comparison of statistical

measures (integrated

vertically) for pressures

provided by different coarse

models (Exp.2)

(18)

10

0

10

2

10

1

10

2

10

3

Exp.2

(with SST)

10

-6

10

-5

10

0

10

1

10

2

10

-6

10

-5

10

1

10

2

Exp.1

(without SST)

Comparison of

KE spectral

density

averaged in

time (60-75 yrs)

and in layers

for different

coarse models

Energy analysis

(19)

EKE

k

=

0

H

k

2

ku

k

k

2

A

+

0

H

k

2

ku

0

k

k

2

A

KE decomposition

Standing

EKE

Transient

EKE

0

50

100

150

0

200

400

600

800

1000

0

50

100

150

0

500

1000

1500

Comparison of EKE

(integrated over

layers) for different

coarse models

(Solid lines —

standing EKE,

Dashed lines —

transient EKE)

Low-pass filtering

Energy analysis

u

k

= u

k

+ u

0

k

(20)

+⇢

0

hu

1

, ⌧

i

A

0

f

0 ek

2

ku

N

k

2

A

+

N

X

k=1

0

H

k

hu

k

, A

2

r

2

u

k

A

4

r

4

u

k

i

A

@

t

N

X

k=1

0

H

k

2

ku

k

k

2

A

=

@

t

N

X

1

k=1

0

g

k

0

2

k⌘

k

k

2

A

N

X

1

k=1

0

g

k

0

h⌘

k

, w

k

i

A

Z Z

KE contributions

KE

PE

Buoyancy

forcing

( = 0 in Exp.1)

Dissipation

Wind

forcing

Bottom

drag

Energy analysis

(21)

0

50

100

150

0

5

10

15

10

-5

0

50

100

150

0

5

10

15

10

-5

0

50

100

150

0

5

10

15

10

-5

0

50

100

150

0

5

10

15

10

-5

0

50

100

150

0

5

10

15

10

-5

0

50

100

150

0

5

10

15

10

-5

Comparison of contributions to the rate of KE for different coarse models (Exp.1)

(22)

0

50

100

150

-5

0

5

10

15

20

10

-4

0

50

100

150

-5

0

5

10

15

20

10

-4

0

50

100

150

-5

0

5

10

15

20

10

-4

0

50

100

150

-5

0

5

10

15

10

-4

0

50

100

150

-5

0

5

10

15

10

-4

0

50

100

150

-5

0

5

10

15

10

-4

Energy analysis

(23)

Conclusion

The correction drift is found to be important in reproducing the meandering

jet on coarse mesh.

The non-stationary noise based on the projection method enables us to

(24)

Working on …

1

2

3

4

1

3

4

Coupled model

(25)

Références

Documents relatifs

The oceanic impact of the wind stress modulation by the surface current has been first examined

self-consistent electromagnetic fields generated by three- dimensional hybrid simulations of the solar wind/Mars interaction is used to evaluate the removal of solar wind

a plausible model for the observed temporal correlations in the absence of spatial ones, since the mechanism leading to the power law time decay is the wandenng of nucleation events

the interannual SSS variability during and right after the summer monsoon (around 1 pss amplitude) is indeed largely driven by interannual variations of the GB river

The current feedback induces a positive (negative) stress curl (wind curl) in the eddy’s center... Schematic representation of the current feedback considering a uniform southward

Using phase time differences from ground target radar echoes, the delay due to refractivity changes along the beam path can be retrieve if the hypothesis of

Le concept de semence dans les théories de la matière à la Renaissance – De Marsile Ficin à Pierre Gassendi par Hiro

Regardless of the sources and geochemical cycle of lithium in hydrogeological systems, an understanding of its thermodynamic properties and its geochemical behavior is