• Aucun résultat trouvé

Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton–proton collisions collected at √s = 13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Partager "Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton–proton collisions collected at √s = 13 TeV with the ATLAS detector"

Copied!
22
0
0

Texte intégral

(1)

Article

Reference

Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton–proton collisions collected at √s = 13 TeV with the

ATLAS detector

ATLAS Collaboration AKILLI, Ece (Collab.), et al .

Abstract

Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb −1 at a centre-of-mass energy s=13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed.

Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.

ATLAS Collaboration, AKILLI, Ece (Collab.), et al . Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton–proton collisions collected at √s = 13 TeV with the ATLAS detector. Physics Letters. B , 2017, vol. 775, p. 105-125

DOI : 10.1016/j.physletb.2017.10.039

Available at:

http://archive-ouverte.unige.ch/unige:98342

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Search for new phenomena in high-mass diphoton final states using 37 fb

1

of proton–proton collisions collected at √

s = 13 TeV with the ATLAS detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received14July2017

Receivedinrevisedform19October2017 Accepted20October2017

Availableonlinexxxx Editor:L.Rolandi

Searchesfornewphenomenainhigh-massdiphotonfinalstateswiththeATLASexperimentattheLHC are presented.Theanalysisisbasedonpp collisiondatacorrespondingtoanintegratedluminosity of 36.7 fb1atacentre-of-massenergys

=13 TeV recordedin2015and2016.Searchesareperformed forresonanceswithspin0,aspredictedbytheorieswithanextendedHiggssector,andforresonances withspin2,usingawarpedextra-dimensionmodelasabenchmarkmodel,aswellasfornon-resonant signals,assumingalargeextra-dimensionscenario.NosignificantdeviationfromtheStandardModelis observed.Upperlimitsareplacedontheproductioncrosssectiontimesbranchingratiototwophotons asafunctionoftheresonancemass.Inaddition,lowerlimitsaresetontheultravioletcutoffscaleinthe largeextra-dimensionsmodel.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Newhigh-massstatesdecayingintotwophotonsarepredicted inextensionsoftheStandardModel(SM).Thediphotonfinalstate provides aclean experimental signature with excellent invariant- mass resolution and moderate backgrounds. This Letter presents anupdateofthesearchesfornewhigh-mass statesdecayinginto two photons, usingboth 2015 and2016proton–proton(pp) col- lisiondatasets recorded at a centre-of-mass energy

s=13 TeV by the ATLAS detector atthe CERN Large Hadron Collider (LHC), corresponding to a total integrated luminosity of 36.7 fb1. The analysis closely follows that described in Ref. [1], and includes small improvements in the photon reconstruction, selection and energycalibration.FromthemanyextensionsoftheSM thatpre- dict new high-mass resonances decaying into two photons, the two benchmarksignal models studied inRef. [1] are considered:

aspin-0resonance(X) aspredictedintheorieswithan extended Higgssector [2–8], andthe lightest Kaluza–Klein (KK) [9]spin-2 graviton excitation (G) of a Randall–Sundrum [10] model with one warpedextra dimension,later referred to asRS1. The ATLAS andCMScollaborationsreportedamodestexcessinthediphoton invariant-mass spectra with respect to the SM continuum back- groundnearamassvalueof750 GeV[1,11],using3.2–3.3 fb1of pp collision data recorded in 2015at theLHC. The ATLAS result correspondstoaglobalsignificanceof2.1 standarddeviations (σ).

E-mailaddress:atlas.publications@cern.ch.

The CMS result corresponds to a global significance of 1.6σ. No significantexcessisobservedbyCMSin12.9 fb1 ofdatacollected in2016[12].

In addition to searching for a resonant signal, data are inter- preted using the model proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD)[13]. Motivatedby the weakness ofgravity, the ADDmodelpredictstheexistenceofnextradimensionsofspace- time where only gravity can propagate. If the ultraviolet cutoff scale(MS) oftheKaluza–Kleinspectrumislowerthanthe Planck scaleinthe(4+n)-dimensionalspace-time,theextradimensions may be detected via virtual KK graviton exchange before being observed viadirect KK graviton emission. Thestrength ofgravity inthepresence ofextradimensionsistypicallyparameterizedby

ηG=F/MS4,where F isadimensionlessparameteroforderunity reflecting thedependenceofthe virtualKK graviton exchange on the number of extra dimensions. Several theoretical formalisms existin theliterature [14–16].While thedefinitionof ηG iscon- sistent, each formalism uses a different convention for F, which consequentlyleadstoadifferentdefinitionofMS.TheKKgraviton exchange creates a set of finely spaced resonances, which man- ifests itself as a non-resonant deviation from the expected SM background inthe diphotonmass distribution dueto limitedex- perimental resolution.The effectivediphoton cross section is the result of the SM and ADD amplitudes, as well as their interfer- ence. Theinterferencetermintheeffectivecrosssection islinear in ηG andthepureKK gravitonexchangetermisquadraticin ηG. Theinterferenceeffectisassumedtobeconstructiveinformalisms considered in this Letter. Previous searches for an ADD graviton https://doi.org/10.1016/j.physletb.2017.10.039

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

signalinthediphotondecaychannelwere carriedoutby theAT- LAS[17]andCMS[18]experimentsbasedonLHCRun 1data.The substantial increase in the centre-of-mass energy in LHC Run 2 greatlyenhancesthesensitivitytotheADDscenarioathighermass scales[19].

2. ATLASdetector

TheATLAS detector[20,21]isa multi-purposedetectorwitha forward–backward symmetric cylindrical geometry.1 The systems most relevant for the presented searches are the inner detec- tor (ID), immersed in a 2 T magnetic field produced by a thin superconducting solenoid, and the calorimeters. The ID consists offine-granularity silicon pixeland microstrip detectorscovering the pseudorapidity range|η|<2.5 complementedby a gas-filled straw-tubetransitionradiationtracker(TRT)atlarger radiiwhich covers the region |η|<2.0 and provides electron identification capabilities.Theelectromagnetic(EM)calorimeterisalead/liquid- argonsamplingcalorimeterwithaccordiongeometry.Itisdivided intoabarrelsectioncovering|η|<1.475 andtwoend-capsections covering 1.375<|η|<3.2. For |η|<2.5, it is divided intothree layers in depth, which are finely segmented in η and φ. A thin presampler layer, covering |η|<1.8, is used to correct for fluc- tuations in upstream energy losses. Hadronic calorimetry in the region |η|<1.7 uses steel absorbers andscintillator tiles asthe activemedium.Liquid-argon calorimetrywithcopperabsorbersis usedinthehadronicend-capcalorimeters,whichcovertheregion 1.5<|η|<3.2.A forwardcalorimeterusingcopperandtungsten absorberswithliquidargoncompletesthecalorimetercoverageup to|η|=4.9.Themuonspectrometer,locatedbeyondthecalorime- ters,consistsofthreelargeair-coresuperconductingtoroidsystems withprecision trackingchambersproviding accurate muontrack- ingfor|η|<2.7 andfastdetectorsfortriggeringfor|η|<2.4.

Events are selected using a first-level trigger implemented in customelectronics,whichreducestheeventratetoadesignvalue of atmost 100 kHz using a subset of detectorinformation [22].

Software algorithms with access to the full detector information arethenusedinthehigh-leveltriggertoyieldanaveragerecorded eventrateofabout1 kHz.

3. Dataandsimulatedeventsamples

Data were collected in 2015 and 2016using pp collisions at acentre-of-mass energyof

s=13 TeV with abunch spacingof 25 ns. The average number of pp interactions per bunch cross- ing is 13 in 2015 and 25 in 2016, with a peak instantaneous luminosity up to 1.4×1034 cm2s1. Events from pp collisions arerecordedusinga diphotontriggerwithtransverseenergy(ET) thresholdsof35 GeV and25 GeV forthe ET-orderedleading and subleadingphoton candidates,respectively. Inthe high-level trig- ger, the shapesof the energy depositions in the EM calorimeter are required to match those expected forelectromagnetic show- ersinitiatedbyphotons.Thetriggerhasasignalefficiencycloseto 100%foreventsfulfillingthefinal eventselection, withan uncer- tainty below 0.4%. After applying data-quality requirements, the data sample corresponds to an integrated luminosity of 3.2 fb1

1 TheATLASexperimentusesaright-handedcoordinatesystemwithitsoriginat thenominalinteractionpoint(IP)inthecentreofthedetectorandthez-axisalong thebeampipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,and the y-axispointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverse plane,φbeingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefined intermsofthepolarangleθasη= −ln tan(θ/2).Thetransverseenergyisdefined asET=Esin(θ ).

forthe2015dataand33.5 fb1 forthe2016data.Themeasure- ment of theintegrated luminosity hasan uncertainty of2.1% for the 2015 data and 3.4% for the 2016 data. The uncertainties in the 2015 and2016 integratedluminosities are derived following a methodology similar to that detailed in Ref. [23], from a cali- brationoftheluminosity scaleusingax–y beam-separationscan performed inAugust 2015, and a preliminarycalibration using a scanperformedinMay2016,respectively.Thecorrelationbetween thetwoyears’luminosityuncertaintiesistakenintoaccount.

SimulatedMonteCarlo(MC)eventsareusedforoptimizingthe search strategy[23],andforthesignalandbackgroundmodelling studies detailedinSections5 and6,respectively.Interference ef- fects between the resonant signal and the background processes areneglected.

The spin-0 signal MC samples were generated using the effective-field-theory approach implemented in MadGraph5_

aMC@NLO [24] version 2.3.3 at next-to-leading order (NLO) in quantum chromodynamics (QCD). From the Higgs characteriza- tion framework [25], CP-even dimension-five operators coupling thenewresonancetogluonsandphotonswereincluded.Samples were generatedwiththeNNPDF3.0NLO partondistributionfunc- tions (PDFs) [26], using the A14 set of tuned parameters (tune) of Pythia 8.186[27,28] for the parton-showerand hadronization simulation. Simulatedsamples were produced forfixed valuesof themassandwidthoftheassumedresonance,spanningtherange 200–2400 GeV for themass,andtherangefrom4 MeV to10%of themassforthedecaywidth.Choosinganimprovedsignalmodel with an event generator different from the one used in Ref. [1]

providesadescriptionofthesignalwhichislesssensitivetomod- ellingeffects fromthe off-shellregion.Theimpact ofthischange is onlyvisible inscenarios witha large signal decaywidth, with massvaluesattheTeV scale.

Spin-2signal samplesfortheRS1modelweregeneratedusing Pythia8.186,withtheNNPDF23LOPDFset[29]andtheA14tune.

Only the lightest KK graviton excitation was generated. Its mass mG was varied in the range between 500 GeV and 5000 GeV.

The dimensionlesscoupling k/MPl,where MPl=MPl/

8π is the reducedPlanckscaleandkthecurvaturescaleoftheextradimen- sion, isassumedto be inthe range0.01 to 0.3. Fork/MPl<0.3, the KK gravitonis expectedtobe afairly narrowresonance [30], withawidthgivenby1.44(k/MPl)2mG.

The non-resonant KK graviton signal was simulatedusing the ADDmodelwiththerepresentationproposedbyGiudice,Rattazzi andWells(GRW)[14].TheSherpaeventgenerator(version2.1.1) wasusedtosimulateboththeSMandADDprocessesatthesame time, including their interference. The ultraviolet cutoffscale MS wasvariedbetween3500 GeV and6000 GeV inthesimulation.

Events containing two prompt photons, representing an ir- reducible background to the search, were simulated using the Sherpa [31] eventgenerator, version 2.1.1. Matrix elements were calculated with up to two additional partons at leading order (LO) in QCD and merged with the Sherpa parton-shower sim- ulation [32] using the ME+PS@LO prescription [33]. The gluon- induced box process was also included. The CT10 PDF set [34]

was used inconjunctionwitha dedicatedparton-showertune of Sherpa.Samplesofthephoton+jet reduciblebackgroundcompo- nent were also generated using Sherpa, version 2.1.1, with ma- trixelements calculatedatLOwithuptofouradditionalpartons.

The same PDF set, parton-shower tune andmerging prescription as forthe diphoton sample were used. Tostudythe dependence of data composition results (Section 4) on the event generator, Pythia8wasalsoused togenerateSM diphotonevents,basedon theLOquark–antiquarkt-channeldiagram andthegluon-induced boxprocess,andphoton+jetevents.ThesamePDFsetandparton- showertuneasfortheRS1modelsignalsampleswereused.

Références

Documents relatifs

Sur cette question de la pauvreté en milieu rural, dont tout le monde s’accorde à reconnaître l’importance, les analyses les plus clairvoyantes sont sans doute celles qui

U. Mitra is with the Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA, ubli@usc.edu.. Figure 1:

22.315J - Structural Mechanics in Nuclear Power Technology - Brief introduction to nuclear power engineering and nuclear reactor physics. Components and structures in

To define how the Convergence and Soft Landing quota allocation rules lead to various prices of carbon and welfare impacts depending on assumptions regarding carbon trading

étape : Création des fichiers de sorties et exploitation des résultats pour la vérification des éléments et calcul de ferraillage. IV.1 :Dimensions en plan salle

In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest

Les figures (3.32-3.33) représentent la trajectoire des rayons sur l’ensemble absorbeur et vitre sans erreurs optique Figure.3.31 ,et avec les erreurs Figure.3.31,

L’électrostimulation musculaire est le déclanchement de la contraction des muscles on utilisant les impulsions électriques, est utilisé généralement dans le domaine