• Aucun résultat trouvé

Auger et les rayons cosmiques ultra-énergétiquesAuger et les rayons cosmiques ultra-énergétiques

N/A
N/A
Protected

Academic year: 2022

Partager "Auger et les rayons cosmiques ultra-énergétiquesAuger et les rayons cosmiques ultra-énergétiques"

Copied!
111
0
0

Texte intégral

(1)

Auger et les rayons cosmiques ultra-énergétiques

Auger et les rayons cosmiques ultra-énergétiques

Etienne Parizot

APC & Université Paris 7 (France)

resultats et perspectives

(2)

Cosmic rays: “CRs”

Cosmic rays: “CRs”

Key subject in astrophysics!

Still very poorly understood

 CRs regulate star formation

 One of the main components of the Galaxy (> 1 eV/cm

3

)

 CRs control the ionization of the interstellar medium

+ heating + turbulent magnetic field + astro-chemistry!

+ Herschel and price of wheat in England!

Role in Earth climate and species evolution

+ legitimate hopes for significant progress soon Why?

+ LiBeB nucleosynthesis

(3)

100 years  40 000 years

photon astronomy CR physics

Year ZERO of CR

astronomy?

(4)

Photon astronomy

started millenaries ago

with this instrument:

(5)

Cosmic ray physics

started one century ago

with this instrument:

(6)

“Spontaneous” discharge!

1901: Wilson notices that discharge is identical on the ground and underground (~7 div/hour)

1910: Theodore Wulf (Jesuit and amateur physicist who builds the best electrometers) works on the top of the Eiffel tower

Rutherford shows that

natural radioactivity (ground and contaminated apparatus) is responsible

6 ions/cm

3

3.5 ions/cm

3

(instead of

0.4 ions/cm

3

expected)

(7)

Viktor Hess: 7 August 1912

12h15 : landing close to de Pieskow (Brandenburg)

10h45 : maximum

altitude (5350 m)

(8)

0 km 2 km 4 km 6 km 8 km 10 km

0 20 40 60 80

Synthèse des mesures de Hess et de Kolhörster

(1912 - 1914)

Increase of the radiation

Increase of the radiation

(9)

Then a long story begins…

17 years to recognize that CRs are charged!

1932: Anderson

discovers the positron (predicted in 1930 by Dirac) in a CR track

1936: Neddermeyer and Anderson discover the muon

1947: Powel discovers

the pion (predicted in

(10)

Particle production

particle “showers”

1 energetic particle 1 energetic particle

many much less energetic particles!

many much less

energetic particles!

(11)

CR-induced atmospheric showers

Pierre Auger

discovers atmospheric

(12)

particle physics particle physics

astrophysics astrophysics

At the crossroads…

Study of cosmic rays

Study of cosmic rays

1953

(13)

CRs are (also)

interesting for themselves!

What are the primaries?

Where do they come from?

How do they get their energy?

What do they reveal about our universe?

Can they be used as tools for astrophysics?

May they be valuable “messengers” from

distant sources?

(14)

Fundamental observables

Angular spectrum

Mass spectrum

Energy spectrum

arrival directions composition differential flux

1 2 3

(15)

Fundamental observables

Angular spectrum

Mass spectrum

Energy spectrum

arrival directions composition differential flux

1 2 3

(16)

Angular distribution

 Isotropic!

( no information about sources)

(17)
(18)

LUTH (8 Octobre 2007) — Auger et les rayons cosmiques ultra-énergétiques — E. Parizot (APC / Univ. Paris 7)

Interaction with B inhomogeneities

Magnetic inhomogeneities ≈ perturbed field lines

r

g

~  r

g

>> r

g

<<

Scattering of EPs in

irregular B fields

depends on gyroradius and thus rigidity, and on the energy present at

scale  ~ rg in the spectrum Scattering of EPs in

irregular B fields

depends on gyroradius and thus rigidity, and on the energy present at

scale  ~ rg in

the spectrum

(19)

Propagation is not rectilinear!

Galactic magnetic field : ~ a few G (10

-10

T)

1 pc 1 kpc 1 Mpc

B = 1 G

B

B

Gyro-radius (protons):

(20)

Propagation is not rectilinear!

Galactic magnetic field : ~ a few G (10

-10

T)

10

15

eV 1 pc

10

18

eV 1 kpc

10

21

eV

1 Gpc B = 1 G

B

B

Supernova remnant Galactic disk + halo >> galaxy

Gyro-radius (protons):

in a 1 nanoGauss field!

(21)

Fundamental observables

Angular spectrum

Mass spectrum

Energy spectrum

arrival directions composition differential flux

1 2 3

(22)

Cosmic-ray composition

10% of He 1% of heavy nuclei

89% of H 99% of nuclei

1% of electrons

(not neutral!)

(23)

CR vs solar system

Composition compatible with a solar-like source, with secondary nuclei…

solar system

GCR

re la tiv e a bo n da nc e

(24)

CR-induced spallation

Direct spallation:

light projectile  heavy target

Inverse spallation:

heavy projectile  light target

LiBeB nucleo- synthesis

CR

transport

(25)

Fruitful composition studies

Secondary/primary ratios  CRs have gone through a grammage of X

RC

= 6–10 g/cm

2

on average, from their sources to the Earth

Cosmic-ray clocks (radioactive secondaries)

 CRs have spent t

RC

~ 2 10

7

years on their way

Thus, they propagated in a medium of average density n = X

RC

/ct

RC

~ 0.2 part. cm

-3

Thus, they must have spent most of their time in

the halo!

(26)

Galactic cosmic-ray confinement

Magnetic confinement of cosmic rays in a much larger volume than the standard interstellar gas

halo disk

bulge sources?

 energy-dependent amplification of the CR density!

 steepening of the spectrum

(27)

Fundamental observables

Angular spectrum

Mass spectrum

Energy spectrum

arrival directions composition differential flux

1 2 3

(28)

One of the 7 wonders of physical world

(29)

One of the 7 wonders of physical world

(30)

1 part/m

2

/year

1 /km

2

/century ! 1 part/m

2

/s

ankle

knee

non thermal

Limit for satellites

4 CR/cm

2

/s  1 kg/year

One of the 7 wonders of physical world

(31)

[CR flux] x E 3

GZK

ankle

Second knee?

knee

(32)

The Pierre Auger Observatory

Southern site Northern site

Participating Countries

Argentina

Australia

Brazil

Czech Republic

France (+ Vietnam)

Germany

Italy

Mexico (+ Bolivia)

Netherlands

Poland

Slovenia

Spain

United Kingdom

USA

50 Institutions, 400 Scientists

3 000 km

2

10 000 km

2

(33)

38° South, Argentina, Mendoza, Malargue 1.4 km altitude, 850

g/cm 2

Australia Bolivia

*

Brasil Czech Republic

France Germany

Italy Poland Mexico Slovenia

Spain United Kingdom

USA Vietnam

*

The Pierre Auger Observatory

(34)

¡ Bienvenida en la tierra cósmica !

(35)

Particle cascades and showers

One

very energetic particle

Many

less energetic

particles

(36)
(37)

1600 "surface detectors"

(38)

(Cherenkov water tank)

One Auger station

PMT

Plastic tank 12 m3 of clean water

Solar pannel Comms antenna

GPS antenna

battery

Diffusive white “liner”

(39)

Hexagonal array (1.5 km spacing, 3000 km )

(40)

SD deployment

9th July 2007

1438 deployed 1400 filled

1364 taking data

AIM: 1600 tanks

(41)

SD deployment: 6th November 2007

(42)

The fluorescence technique

Cosmic rays ionize the air (that’s how they were discovered!)  fluorescence light

UV light detectable on dark moonless nights

10

20

eV shower

 over 100 billion particles!

(43)

Aerial view of Los Leones fluorescence station

(44)

4 times 6 telescopes overlooking the site

(45)

Fluorescence detector (FD)

Drum for uniform illumination of each fluorescence camera – part of end to end calibration .

Lidar at each Fluorescence building

(46)
(47)

E = 5.3 10

19

eV

E = 4.8 10

19

eV E = 4.9 10

19

eV

Independent analyses of

stereo events

(48)

1st 4-fold hybrid event!

(49)

Time, t

Χ°

R

p

km

(50)
(51)

Example Event

A moderate angle event - 762238 Zenith angle ~ 48º, Energy ~ 70 EeV

Lateral density

distribution

(52)

LUTH (8 Octobre 2007) — Auger et les rayons cosmiques ultra-énergétiques — E. Parizot (APC / Univ. Paris 7)

No.4

Theta = 59.9 [degree]

E = 86 [EeV]

SD energy estimator: interpolated signal in a tank at 1000 meters and 38°

Energy reconstruction

(53)

Cross-calibration of detectors

FD energy SD energy

estimator

(54)

Cross-calibration of detectors

Fractional dispersion of FD/SD energy estimates

Very good

estimator !

(55)

“Inter-zenithal calibration”

FD energy SD energy

estimator

S

1000

: signal 1000 m away from the shower axis

 depends on energy AND zenith angle

 constant intensity method relate S

1000

() to the value

(56)

“Attenuation curve”

Integral flux above a given value of S

1000

 zenith angle

equal flux  equal energy

Attenuation curve: at a given energy,

lower signal at larger zenith angle

(57)

Energy reconstruction

1 Determination of the signal 1000 m away from shower axis

2 Conversion into the signal that would have been measured at a 38° zenith angle

3 Convertion into an FD-equivalent energy

(58)

(improvements expected soon…)

Uncertainty on the energy scale

source systematic uncertainty

Fluorescence yield

P, T and humidity effects Calibration

Atmosphere Reconstruction Invisible energy

14%

7%

9.5%

4%

10%

4%

Total: 22%

(59)

Auger results and their context

(60)

Energy spectrum

Differential flux

1

Cosmic-ray primary observables

Mass spectrum

Angular spectrum

Composition Arrival direction

2 3

(61)

The GZK effect

Greisen (1966) + Zatsepin & Kuz’min (1966)

Energy losses through e

+

/e

-

pair and pions production!

Threshold : E

 2 m

e

c

2

in the proton rest frame

 p

e

+

e

-

Proton rest frame

p  p

“Cosmic frame”

E

> 1 MeV

(62)

10-6 10-5 0,0001

0,001 0,01 0,1 1

106 107 108 109 1010

σκ (barn)

E (en eV)

roduction de ions

roduction de aires e+/e-

[cross section] x [inelasticity]

(63)

100 1000 104

λ

att

(Mc)

roton attenuation enth (in CMB)

Attenuation length – horizons

1000 Mpc

100 Mpc

(64)

Evolution of the CR energy

(65)

10-11

Flux E×

a

z = 0.01, i.e. D ∼ 60 Mc

"Propagated" spectrum

accumulation

Source spectrum:

E

-2.3

up to infinity...

GZK cutoff

(66)

10-12 10-11

1017 1018 1019 1020 1021

Flux

a

Enerie (en eV)

z = 0.01 z = 0.1

D 60 Mc≈ D 530 Mc≈

accumulation

pions prod.

pair prod.

accumulation

GZK cutoff

(67)

0,1 1 10

Φ (E) × E

2.3

(eV

2

-2

s

-1

sr

-1

)

Sectre roaé

(source uniue au redshift z s)

zs = 0.01 zs = 0.1

zs = 0.3

zs = 0.5 zs=0.65

zs = 1

(68)

1023 1024 1025 1026

1017 1018 1019 1020 1021

AGASA

Stereo Fly's Eye Akeno 1 km2

distribution uniforme de sources de z=0.001 à z=1

(spectre source en E-2.5)

Φ (E) ×

3

E (eV

2

-2

s

-1

sr

-1

)

Uniform source distribution

GZK cutoff

(69)

calib. uncert. 10%

FD syst. unc. 22%

5165 km

2

sr yr ~ 0.8 full Auger year

(70)

Slope = -2.62 ± 0.03

calib. uncert. 10%

FD syst. unc. 22%

5165 km

2

sr yr ~ 0.8 full Auger year

(71)

5165 km

2

sr yr ~ 0.8 full Auger year

Exp. Obs.

>10

19.6

eV 132 ± 9 51

> 10

20

eV 30 ± 2.5 2

calib. uncert. 10%

FD syst. unc. 22%

Slope = -2.62 ± 0.03

significance = 6s

(72)

60° ≤  ≤ 80°

inclined events:

29% of the nominal data set

1510 km

2

sr yr

(> AGASA)

(73)

Spectrum facts Spectrum facts

There is an ankle

How to interpret it?

Galactic/Extragalactic transition?

Spectral feature from pair-production energy losses of pure-proton UHECRs?

or

There is a “cut-off”

How to interpret it?

GZK suppression?

Limit of the acceleration process?

or

(74)

Energy spectrum

Differential flux

1

Cosmic-ray primary observables

Mass spectrum

Angular spectrum

Composition Arrival direction

2 3

(75)

Photo-disintegration of nuclei

(76)

2D nuclear scheme

(77)

New cross sections

(78)

10

8

10

9

10

10

10

20

10

21

Φ (E) x E

3

(arb. units) B = 1 nG D = 10 Mc

source in E

-2.3

secondaries Δθ = 2.5°

4

He

primaries

protons protons

all particles

CNO

12 ≤ Z < 20

20 ≤ Z ≤ 26

E

max

= 3 10

20

eV

Individual sources

(79)

10

4

10

5

UHECR flux (arb. units)

protons only

E

max

(p) = 3 10

19

eV

E

max

(p) = 3 10

20

eV N(≥10

19

eV) = 866

Examples of "propagated" spectra

(80)

0,1 1 10

17 17,5 18 18,5 19 19,5 20 20,5

Φ(E) ×

3E (10

24 eV

2m

-2s

-1sr

-1)

log10 E (eV) mixed composition

(uniform source distribution) Q(E) ~ E - 2.3

HiRes 1 (mono) HiRes 2 (mono)

inferred Galactic component

Mixed composition (Allard et al.)

Source spectrum in E -2.3

Ankle = gal./extragal. transition

0,1 1 10

17 17,5 18 18,5 19 19,5 20 20,5

Φ(E) ×

3E (10

24 eV

2m

-2s

-1sr

-1)

log10 E (eV) protons only

(uniform source distribution) Q(E) ~ E - 2.6

HiRes 1 (mono) HiRes 2 (mono)

inferred Galactic components with cut

with low E cut

Pure protons (cf. Berezinsky et al.)

Source spectrum in E -2.6

Ankle = "pair production dip"

Are there nuclei among EGCRs?

(81)

Composition studies with a FD

Composition studies with a FD

(82)

Composition observable: shower maximum Composition observable: shower maximum

+ fluctuations in X smaller for heavier nuclei

Expectations from different hadronic models

(83)

Mixed composition (Allard et al.)

650 700 750 800

17,5 18 18,5 19 19,5

Fly's eye Yakutsk

log E (eV)

QGSJet-01

SIBYLL model A

QGSJet-II

< X

max

> (g/cm

2)

Pure protons (cf. Berezinsky et al.)

650 700 750 800

17,5 18 18,5 19 19,5

HiRes Fly's eye Yakutsk QGSJet-01

SIBYLL QGSJet-II

log E (eV) model B

< X

max

> (g/cm

2)

Composition observables

(Galactic/Extragalactic transition)

(84)

Shower maximum

measured over 2 decades in E

+ fluctuations in X to be exploited

(85)

111 69 25 12 426

326

Comparison with previous studies

Comparison with previous studies

(86)

Photon limit

Photon-induced showers look very different

Showers at E = 10

19

eV, θ = 0º :

Top-down models predict abundant fluxes of UHE photons

SHDM models: decay of super- heavy dark matter accumulated in Galactic halo

TD models: supermassive particle

decay from topological defect

interaction or annihilation

(87)

Photon limit

Larger X : photon showers delayed by > 200 g/cm

2

at 10

19

eV

LPM effect

(88)

Constraints on super-heavy dark matter

models for the source of UHECRs

(89)

Super heavy dark matter (SHDM)

models are excluded as UHECR sources!

Auger results (photon limit)

Auger results (photon limit)

(90)

Constraints on topological defects models

for the source of UHECRs

(91)

Auger results (photon limit) Auger results (photon limit)

Topological defects

(TD) are still possible

UHECR sources

(92)

Auger results

Auger results be constrained by

Auger neutrino limits

(93)

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image.

Auger as a neutrino detector

(94)

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image.

Auger neutrino flux limit

(95)

Fundamental observables

Energy spectrum

Differential flux

1

Mass spectrum

Angular spectrum

Composition Arrival direction

2 3

(96)

There is a strong suppression of the UHECR flux in the last observed decade of energy

But what does it mean? GZK or acceleration cut-off?

Can we see “GZK in action”, i.e. a cut-off at lower energy for more distant sources?

YES ! Auger reports tomorrow on a correlation of the

highest energy CRs with nearby matter (i.e. with an

upper limit on redshift)!

(97)

Auger anisotropy results Auger anisotropy results

Angular resolution of ~1°: good enough!

No large-scale signal (dipole) at any energy above 1 EeV

No significant emission from Galactic center

No signal from BL-Lacs as possibly seen by HiRes

e.g. a < 0.7% for 1 EeV ≤ E ≤ 3 EeV

(98)

Results on source correlations Results on source correlations

Paper in Science to appear on the 9th of Nov. 2007 (front page)

First evidence that proton astronomy is possible indeed!

Correlation with the most nearby AGNs in the Veron- Cetty/Veron catalogue

Opening of a new era: the future is bright!

(99)

UHECR anisotropy UHECR anisotropy

QuickTime™ et un

décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Position of the 27 highest energy events on an equal exposure map

(100)

UHECR anisotropy UHECR anisotropy

Position of the 27 highest energy events on an equal exposure map

QuickTime™ et un

décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Galactic and supergalactic planes

(101)

UHECR anisotropy UHECR anisotropy

QuickTime™ and a TIFF (Uncompressed) decompressor

are needed to see this picture.

(102)

UHECR anisotropy UHECR anisotropy

QuickTime™ and a TIFF (Uncompressed) decompressor

are needed to see this picture.

D ≤ 3.1°

D ≤ 3.1° z ≤ 0.018 z ≤ 0.018 (D ≤ 75 Mpc) (D ≤ 75 Mpc)

E ≥ 56 EeV

E ≥ 56 EeV

(103)

UHECR anisotropy UHECR anisotropy

QuickTime™ and a

TIFF (Uncompressed) decompressor are needed to see this picture.

(104)

UHECR anisotropy UHECR anisotropy

QuickTime™ et un

décompresseur TIFF (LZW)

sont requis pour visionner cette image.

(105)

UHECR anisotropy

UHECR anisotropy

(106)

Résumé : résultats majeurs d’Auger

masse énergie direction

Conforme aux attentes astrophysiques

Résout certains problèmes liés à la

transition gal./extragal.

Unité avec le reste de la science des rayons

cosmiques et des sources Richesse supplémentaire pour le domaine

des noyaux, peu de photons

cheville + coupure GZK

Excellente nouvelle ! Prédiction de 40 ans !

 sources proches

 « astronomie proton » ! + isolement des sources ! + physique à haute énergie

étude des gerbes (muons, modèles hadroniques,

échelle d’énergie…)

ciel anisotrope

Résultat le plus important depuis 100 ans !

 « l’astronomie rayons cosmiques » est possible (elle vient de débuter !)

 rayons cosmiques

intégrés au corpus

scientifique de

l’astrophysique

(107)

Rayons cosmiques, année zéro !

Ouverture historique d’une astronomie non photonique !

À terme, identification et étude de sources individuelles

Nombreuses questions

sources, origine des RC, mécanisme d’accélération, fonctionnement des sources énergétiques de l’univers, écologie galactique, équilibre des composantes (champ magnétique, rayonnement, phases du milieu interstellaire, formation d’étoiles, chimie interstellaire…), lien avec les autres rayonnements (radio, X, gamma, neutrinos…)

Nécessité d’augmenter la puissance de collection à haute énergie

Auger Nord (Lamar, Colorado)

(les sources sont là : allons les chercher !)

(108)

Some conclusions… (1/3)

1

All 3 “spectral dimensions” must be considered together

Energy spectrum

Angular distribution and diffusion

Mass composition

2

Magnetic fields are important!

Can change the energy spectrum

Can change the composition at low E

Anisotropies

Magnetic horizons

useful constraints on EGMF and GMF!

(109)

3

A major question: CR source composition!

Changes a lot the phenomenology of CRs and of the GCR/EGCR transition

4

Individual sources

GZK cutoff not so meaningful/important

Measuring the overall spectrum is the past!

Individual source spectra are astrophysically rich!

 definite predictions for primary observables!

 importance of composition measurements…

Some conclusions… (2/3)

A s t r o n o

The ankle is the key!

NB: Auger enhancements

(110)

5

Multi-messenger studies

Neutrinos and gamma-rays

in the source

cosmogenic (associated with CR propagation)

6

GZK horizons and high-energy physics

Correlation of high-energy CRs with nearby sources:

another way to detect the GZK effect!

+ direct shower studies…

Constraints on the experimental energy scales!

Important goal!

Some conclusions… (3/3)

 bring astroparticle physicist and astrophysicists closer!

(111)

Merci !

Références

Documents relatifs

2014 Les coïncidences entre des compteurs de Geiger-Muller, placés à des distances de plusieurs mètres ont pu être décelées et ont conduit à mettre en

Du fait de leur faible section efficace d’interaction avec la matière, les plus énergétiques d’entre eux peuvent même traverser des couches de roche importantes

rayons cosmiques leur origine, accélérateurs cosmiques neutrinos processus de très haute énergie.. ondes gravitationnelles &#34;ballets&#34; et &#34;spirales&#34; de

Ce n’est pas qu’il soit difficile de détecter les gerbes atmosphériques géantes induites par les rayons cosmiques de très haute énergie : c’est même

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image. QuickTime™ et un décompresseur TIFF (LZW) ont requis pour visionner

Les principaux enjeux expérimentaux actuels dans le domaine des rayons cosmiques de haute énergie sont la mesure précise de la masse, du spectre vers la cheville et l’accumulation

Pour des rayons cosmiques de même énergie mais de compositions différentes, le nombre total de muons N μ diffère significativement et constitue donc aussi, en principe, un bon

L’acceptance géométrique du détecteur est le pourcentage de photon émis par fluorescence qui arrive sur la surface photosensible des PM. On estime cette efficacité en simulant la