• Aucun résultat trouvé

Contribution of various techniques to U(VI) and Pu(IV) mass transfer kinetics in liquid-liquid extraction

N/A
N/A
Protected

Academic year: 2021

Partager "Contribution of various techniques to U(VI) and Pu(IV) mass transfer kinetics in liquid-liquid extraction"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: cea-02509776

https://hal-cea.archives-ouvertes.fr/cea-02509776

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Contribution of various techniques to U(VI) and Pu(IV) mass transfer kinetics in liquid-liquid extraction

A. Lelias, R. Berlemont, B. Dinh, M. Montuir, M. Miguirditchian, J.-P. Simonin

To cite this version:

A. Lelias, R. Berlemont, B. Dinh, M. Montuir, M. Miguirditchian, et al.. Contribution of various techniques to U(VI) and Pu(IV) mass transfer kinetics in liquid-liquid extraction: towards the kinetics regime determination thanks to 3 technics. ATALANTE 2016 - Nuclear Chemistry for Sustainable Fuel Cycles, Jun 2016, Montpellier, France. �cea-02509776�

(2)

CEA Marcoule, Nuclear Energy Division Radiochemistry & Processes Department Modelling and Process Chemistry Separation Service

Conception of Extraction Processes Laboratory

Extraction kinetics of uranium(VI) and

plutonium(IV) by N,N-dialkylamide

towards the kinetics regime determination

thanks to 3 technics

| PAGE 1

R. Berlemont

1

, A. Lélias

1

, M. Miguirditchian

1

,

J.-P. Simonin

2

1- CEA Marcoule, 2- UPMC

Intitulé du congrès,

ou de la réunion

(3)

| PAGE 2

Innovative processes for Plutonium multi-recycling based on a monoamide extractant [1-3]

Thermodynamical data acquired

Hydrodynamic and hot tests carried out

Simulation of counter-current test in mixer-settlers or pulsed columns

 Determination of mass transfer coefficients of U(VI) and Pu(IV) extraction

 Determination of the kinetics regime

Mass transfer theory applied to liquid-liquid extraction

Introduction

[1]: C. Musikas, P. Zorz, Process for the extraction of uranium (VI) and/or plutonium (IV), US 5132092, 1992 [2]: Prabhu, D.R., et al., J. Radioanal. Nucl. Chem., 1997, 224(1-2) 113-117.

[3]: Pathak, P.N., et al., Solvent Extr. Ion Exch., 2009, 27(5-6) 683-694.

N,N dialkylamide R N O R' R'' J = ko(Coi-C o) = ka(Ca-Cai) = kfCai – krCoi

ko, ka: diffusion rate constants kf, kr: chemical rate constants D: distribution ratio

(4)

| PAGE 3

Indication of the transfer resistance location Determination of the kinetics regime

Comparison of 3 technics

[4]: Hanna, G.J. and Noble, R.D., Chem. Rev., 1985, 85(6) 583-598.

Single

drop

RMC

Nitsch

cell

Determination of kf

Transfer resistance location

Kg and kf

Techniques with constant interfacial area [4]

Kg

(5)

Constant aq. Phase Constant Org. phase

EXTRACTION KINETICS WITH U(VI): NITSCH CELL

| PAGE 4

 Restricted stirring speed within the solvent : Chemical plateau unreached

Diffusion Chemistry ω(rpm) K (m .s -1 )

 Location of the transfer resistance

 stirrers speed adjusted separately to keep a fixed Reynolds number in one phase

Organic phase: N,N-dialkylamide/TPH, HNO3 1M Aqueous phase: 40 g.L-1U(VI) HNO

3 5M

Temperature: 25°C  Variation in aqueous phase low effect: K

gaq ≈ 1.3 ± 0.3 10-6 m.s-1  Variation in organic phase

 High Impact: Kgaq ≈ 6.5 ± 0.3 10-6 m.s-1

 Resistance of the U(VI) transfer located in the

solvent 0,0E+00 5,0E-07 1,0E-06 1,5E-06 2,0E-06 2,5E-06 100 200 300 400 Kg Aq (m. s -1 ) Re

(6)

| PAGE 5

EXTRACTION KINETICS WITH U(VI) AND PU(IV):

ROTATING MEMBRANE CELL

Direct determination of the chemical constant, kf: Measure of the proportion (P) of the solute

transferred from A to B

 Extraction of U(VI) at 300 and 600 rpm

kf (m.s-1)= 1.9 ± 0,5 x10-5

Molecular diffusion seems to control the U(VI) transfer

 Pu(IV) under study but D(Pu(IV)) to be acquired

Organic phase: N,N-dialkylamide/TPH, HNO31M Aqueous phase 1: 40 g.L-1U(VI) HNO

3 5M

Aqueous phase 2: 50 mg.L-1Pu(IV) HNO 3 5M

Temperature: 25°C

(7)

| PAGE 6

EXTRACTION KINETICS WITH U(VI) AND PU(IV):

SINGLE-DROP TECHNIQUE

 Determination of Kg(Aq or Org) depending on

 the continuous phase

 the drop diameter

1.0 1.5 2.0 2.5 3.0 3.5 5.0x10-6 1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5 4.5x10-5 K aq Pu(IV) COP Kaq U(VI) COP K (m. s -1 ) ddrop (mm) 1.0 1.5 2.0 2.5 3.0 3.5 5.0x10-6 1.0x10-5 1.5x10-5 2.0x10-5 2.5x10-5 3.0x10-5 3.5x10-5 4.0x10-5 4.5x10-5 K aq Pu(IV) COP Korg Pu(IV) CAP Kaq U(VI) COP Korg U(VI) CAP

K

(m.

s

-1 )

ddrop (mm)

Falling drop configuration (COP)

 Increase of the KgU(VI), Pu(IV) with the

drop size

internal circulation inside the aqueous droplets supposed

Rising drop configuration (CAP)

 Lower effect on Kg U(VI), Pu(IV) of the

Organic drop size

 High resistance to the transfer

 Similar transfer of U(VI) and Pu(IV) during extraction

 Diffusional resistance in organic phase

 Diffusional control supposed

Aqueous phase 1: 40 g.L-1U(VI) HNO

35M

Aqueous phase 2: 50 mg.L-1Pu(IV) HNO

3 5M

Organic phase: N,N-dialkylamide/TPH, HNO3 1M

(8)

| PAGE 7 Influence of the solvent viscosity on global transfer coefficient

Continuous organic phase (Falling drop) at 25°C

Aqueous drop 1: 40 g.L-1U(VI) HNO

3 5M

Aqueous drop 2: 50 mg.L-1 Pu(IV) HNO

3 5M

Drop size : 2.3 ± 0.1mm

 Similar trend of the mass transfer constants:

the higher the organic uranium concentration, the lower the Kg of U(VI) and Pu(IV)

 Increase of the boundary layer of the organic phase (drop interface) with the organic phase viscosity (7 to 33 µm)

diffusional transfer

EXTRACTION KINETICS WITH U(VI) AND PU(IV): SINGLE DROP

 Solvent loaded with [U(VI)] in macro-concentration (40, 80 and 100g.L-1)

(9)

| PAGE 8

 Transfer resistance located into the organic phase

 Nitsch cell unsuitable technique for the monoamide solvent

 Molecular diffusion seems to control the transfer

 Value of kf of U(VI) on the same order of magnitude than the Single drop one

 Mixed regime or data to be confirmed?

 Values in agreement with the extraction model

U(VI) Nitsch cell RMC Single

drop KgAq (m.s-1) 1.3 - 6,5 x10-6 / 1.0 – 2.9 x10-5 kf (m.s-1) / 1.9 ± 0,5 x10-5

COMPARISON OF THE 3 TECHNICS

1,0 1,5 2,0 2,5 3,0 3,5 5,0x10-6 1,0x10-5 1,5x10-5 2,0x10-5 2,5x10-5 3,0x10-5 3,5x10-5

4,0x10-5 Kaq FAC (DU(VI).Korg) Kaq FOC K aq (m. s -1 ) dgoutte (mm) 1,0 1,5 2,0 2,5 3,0 3,5 5,0x10-6 1,0x10-5 1,5x10-5 2,0x10-5 2,5x10-5 3,0x10-5 3,5x10-5 4,0x10-5 k f déterminée par la RMC kmaxf = 2,6x10-5 m.s-1 kminf = 1,2x10-5 m.s-1

Kaq FAC (DU(VI).Korg)

Kaq FOC Kaq (m. s -1 ) dgoutte (mm) <kf> = 1,9x10-5 m.s-1

(10)

| PAGE 9 Application to hot test

Continuous organic phase (Falling drop) at 25°C

80 g.L-1 U(VI), 40 mg.L-1 Pu(IV) HNO

30.15M

Aqueous drop: HNO3 0.1M; d=3.4 ± 0.1mm

 U(VI) transfer 10 times faster

Consistency with counter-current test observations (CBP facility)

 More information with the Atal2016 – 236 and 241 presentations

STRIPPING KINETICS WITH H

+

, U(VI) AND PU(IV): SINGLE DROP

 Pulsed column + mixer-settler tests in stripping conditions: U(VI) faster than Pu(IV)

U(VI) Pu(IV) H+

KgAq

(11)

| PAGE 10

CONCLUSION AND OUTLOOKS

Single drop method: most complete study

U(VI) and Pu(IV) seem to have similar behavior during the extraction process but new experiments have to confirm that trend

Mass transfer probably controlled by the diffusional resistance in organic phase

Data reliable enough to implement the model

(12)

| PAGE 11

CEA | 10 AVRIL 2012

Nuclear Energy Division

Radiochemistry and Processes Department Separation Process Chemistry & Modelling Service Elaboration of Separation Process Laboratory Commissariat à l’énergie atomique et aux énergies alternatives

Centre de Marcoule| BP17171| 30207 Bagnols-sur-Cèze Cedex T. +33 (0)4 66 79 66 48 |F. +33 (0)4 66 79 60 27

Etablissement public à caractère industriel et commercial |RCS Paris B 775 685 019

24 JUIN 2016 | PAGE 11 CEA | 10 AVRIL 2012

Conclusion

Acknowledgements

Romain Berlemont Justine Cambe

AREVA for financial support

Jean Pierre Simonin and Binh Dinh for helpful discussions

DTEC/SGCS/LGCI

Références

Documents relatifs

Tableau 3.6 : Quatre méthodes de prévention « nationales » face aux réalités locales Méthodes de prévention Principe de la méthode et position défendue par l’Etat

The limited values of Tafel slopes measured at low overpotential (LO) for the small particle based electrodes suggest the electrodesorption (Heyrowsky step (4)) as the limiting

Such an indexing approach of the video content has several interesting properties: the low-level description provides a rich and compact de- scription, while labels of behaviour

Le tout premier exemple de fonction LISP de haut niveau donné par Mc Carthy lui-même était faux à cause du dynamic scoping. (defun funcall-on-list (func list) (let

Unite´ de recherche INRIA Lorraine, Technopoˆle de Nancy-Brabois, Campus scientifique, 615 rue du Jardin Botanique, BP 101, 54600 VILLERS LE` S NANCY Unite´ de recherche INRIA

Ainsi dans l’espace dédié au musée sur le site de notre collectivité, une page internet est consacrée aux liens vers les col- lections du musée Alfred-Danicourt en ligne sur

pertes fœtales induites semblent de moins en moins acceptables aux yeux du corps médical et des couples. Deuxièmement, le progrès de la recherche et de la nouvelle

Title : Motor symptom asymmetry in Parkinson's disease predicts emotional outcome following subthalamic nucleus deep brain stimulation. Author list : Philippe Voruz,