• Aucun résultat trouvé

Basic theory of rapid transit-tunnel ventilation

N/A
N/A
Protected

Academic year: 2021

Partager "Basic theory of rapid transit-tunnel ventilation"

Copied!
15
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Basic theory of rapid transit-tunnel ventilation

Brown, W. G.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=a9dc621d-983f-44e0-a72b-9f4e5c5bd419

https://publications-cnrc.canada.ca/fra/voir/objet/?id=a9dc621d-983f-44e0-a72b-9f4e5c5bd419

(2)
(3)
(4)

Basic Theory of Rapid Transit-Tunnel Ventilation

W. G. BROWN

Research Officer, Building Services Section, Division of Building Research, National Research Council, Ottawa, Canada.

An analysis has been carried out for the basic mechanism of rapid-transit tunnel ven- tilation due to train piston action and for the temperatures resulting in the system. Theory i s in general agreement with experimental results, indicating air velocities in tunnels of the order of 1/5 of the train velocity even though trains occupy only 1/4 to 1/3 of the cross-sectional area of the tunnel. Little o f the heat load owing to trains, brakes, passengers and machinery i s conducted through the ground about the tunnel, but the ground serves as a heat reservoir causing the amplitude of the diurnal subway temperature variation to be about half that of the ambient air temperature, and caus- ing a phase shift of several hours. With the help of a partly empirical theory com- bined with experiment i t was possible to indicate approximately the temperatures to b e expected in a tunnel under differing climate conditions. The effect of train scheduling on ventilation rate i s discussed, as i s the possibility o f using models to obtain more precise design data.

Contributed by the Railroad Division of The American Society of Mechanical Engineers for presentation at the ASME-IEEE Railroad Conference, Pittsburgh, Pa., April 7-8, 1965. Manu- script received at ASME Headquarters, December 21, 1964.

Written discussion on this paper will be accepted up to May 10, 1965. Copies will be available until February 1, 1966.

(5)

Basic Theory of Rapid Transit-Tunnel Ventilation

W. G.

BROWN

I U n t i l t h e l a t e 1 9 3 0 r s underground r a i l w a y s o r r a p i d - t r a n s i t systems were g e n e r a l l y d e s i g n e d w i t h o u t a t t e n t i o n t o v e n t i l a t i o n , w i t h t h e r e s u l t t h a t h i g h t e m p e r a t u r e s sometimes o c c u r r e d , neces- s i t a t i n g c o s t l y c o n s t r u c t i o n changes t o a l l e v i a t e p a s s e n g e r d i s c o m f o r t . I n t h e London Underground, 1 f o r example, Mount

(1)

r e p o r t s t h a t a g r a d u a l i n - c r e a s e over t h e y e a r s i n number of p a s s e n g e r s , t o - g e t h e r w i t h h e a v i e r t r a i n s and g r e a t e r h e a t l o a d s , caused c o n t i n u a l l y r i s i n g t e m p e r a t u r e s u n t i l , f i n - a l l y , a system of f a n s had t o be i n s t a l l e d t o b r i n g t e m p e r a t u r e s t o a r e a s o n a b l e l e v e l f o r t h e comfort of p a s s e n g e r s . A t t h e same t i m e , i n some s t a t i o n s , p a s s e n g e r s and p e r s o n n e l s u f f e r e d d i s - comfort from v e r y h i g h a i r v e l o c i t i e s i n r e s t r i c t - ed p a s s a g e s a t s t a t i o n s and on s t a t i o n p l a t f o r m s .

A s a n o t h e r example, Brock

(2)

r e p o r t s over- h e a t i n g i n t h e New York Subway and s u b s e q u e n t abandonment of a h u r r i e d l y i n s t a l l e d r e f r i g e r a t i o n p l a n t . Rasmus

( 2 ) ,

i n d e s c r i b i n g t h e v e n t i l a t i o n of t h e Chicago Subway, r e p o r t s t h a t i n e a r l i e r underground r a i l w a y s s t e a d y t e m p e r a t u r e s of over 90 F were n o t uncommon i n Summer, even when t h e o u t s i d e o r s t r e e t l e v e l t e m p e r a t u r e s dropped t o t h e 601s and 7 0 1 s .

It c a n be shown e a s i l y t h a t i n t h e t o t a l ab- sence of v e n t i l a t i o n t h e t e m p e r a t u r e i n a subway would r e a c h p e r h a p s 350 F , owing t o a h e a t l o a d from t r a i n s and p a s s e n g e r s a v e r a g i n g about 800 Btu/hr p e r f t of t u n n e l . Obviously no e x i s t i n g r a p i d - t r a n s i t system h a s t e m p e r a t u r e s even ap- p r o a c h i n g t h i s o r d e r of magnitude. On t h e o t h e r hand many, i f n o t most, of t h e e x i s t i n g subways e x p e r i e n c e d i f f i c u l t y a t some l o c a t i o n s i n mid- summer a l t h o u g h a t o t h e r l o c a t i o n s t h e v e n t i l a - t i o n i s more t h a n s u f f i c i e n t t o m a i n t a i n r e a s o n - a b l e t e m p e r a t u r e s .

The Chicago Subway a p p e a r s t o have been t h e f i r s t f o r which a r a t i o n a l a n a l y s i s was a t t e m p t e d , b e f o r e c o n s t r u c t i o n , of b o t h t h e v e n t i l a t i n g e f f e c t of t r a i n p i s t o n a c t i o n and t h e h e a t l o a d from motors, p a s s e n g e r s and l i g h t i n g t o be d i s s i p a t e d . This a n a l y s i s was c a r r i e d o u t by Brock

( Z ) ,

who developed e q u a t i o n s f o r t h e p i s t o n e f f e c t based on s t e a d y - s t a t e assumptions and c o n s i d e r e d t h e h e a t - s t o r a g e c a p a c i t y of t h e ground i n d i s s i p a t i n g t h e h e a t l o a d . It w i l l be shown i n t h e p r e s e n t paper t h a t s t e a d y - s t a t e assumptions a r e i n a d e q u a t e f o r 1 Underlined numbers i n p a r e n t h e s e s d e s i g n a t e R e f e r e n c e s a t t h e end of t h e p a p e r . t h e d e s c r i p t i o n of underground r a i l w a y v e n t i l a t i o n . ( A S f a r a s i s known t h e n o n s t e a d y - s t a t e procedure t o be used h e r e has not been a p p l i e d p r e v i o u s l y t o underground r a i l w a y s . ) N e v e r t h e l e s s , t h e work done i n c o n n e c t i o n w i t h t h e Chicago Subway r e s u l t e d i n r e c o g n i t i o n of most of t h e f a c t o r s i n v o l v e d . The i n f o r m a t i o n o b t a i n e d from t h i s s t u d y , combined w i t h e x p e r i e n c e g a i n e d i n e a r l i e r subway systems l e d t o a g e n e r a l l y a d e q u a t e v e n t i l a t i o n system f o r t h e Chicago Subway, a s was e v i d e n t i n f o l l o w - u p meas- urements of a c t u a l a i r f l o w r a t e s and t e m p e r a t u r e s , Rasmus and Brock

( 3 ) .

Experience w i t h t h e Chicago Subway was t h e n r e l i e d upon h e a v i l y , some t e n y e a r s l a t e r , and i n t h e d e s i g n of t h e Yonge S t r e e t s e c t i o n of t h e Toronto Rapid T r a n s i t System.

Although r e c e n t subways can g e n e r a l l y be de- s c r i b e d a s " a d e q u a t e " from a v e n t i l a t i o n and tem- p e r a t u r e s t a n d p o i n t , t h e y a r e s o few i n number a s t o g i v e e s s e n t i a l l y no i n d i c a t i o n of whether i m -

proved d e s i g n i s p o s s i b l e . It i s n o t c l e a r , f o r example, whether c o n s t r u c t i o n economies may be p o s s i b l e o r whether t e m p e r a t u r e and comfort condi- t i o n s c a n be improved perhaps by s i m p l e changes i n t h e aerodynamic c h a r a c t e r i s t i c s of t r a i n s , t u n n e l s , and v e n t i l a t i o n openings from t u n n e l s t o t h e

s t r e e t , o r even by s m a l l changes i n t r a i n s c h e d u l - i n g .

By way of g e n e r a l o r i e n t a t i o n , F i g . 1 shows a t y p i c a l d o u b l e - t r a c k underground r a i l w a y s e c t i o n drawn a p p r o x i m a t e l y t o s c a l e . I n t r a v e r s i n g t h e t u n n e l , t r a i n s f o r c e a i r ahead of themselves and o u t v e n t i l a t i o n s h a f t s and p a s s e n g e r e x i t s , drawing a i r i n t o t h e t u n n e l t h r o u g h s i m i l a r openings be- h i n d them. Vent ( o r b l a s t ) s h a f t s a t t h e ends of s t a t i o n s s e r v e t h e two-fold purpose of p r o v i d i n g v e n t i l a t i o n and r e d u c i n g a i r v e l o c i t i e s o v e r t h e p l a t f o r m a r e a i n o r d e r t o m a i n t a i n r e a s o n a b l e com- f o r t . F a n s , p r i m a r i l y f o r emergency u s e , a r e usu- a l l y i n s t a l l e d i n f a n s h a f t s between s t a t i o n s . With f a n s i n o p e r a t i v e t h e s h a f t s s e r v e s i m p l y a s v e n t i l a t i o n o u t l e t s . The h e a t g e n e r a t e d by t r a i n d r i v e s , passen- g e r s and l i g h t i n g i s removed by v e n t i l a t i o n a i r ; t h e r e s u l t i s a n average subway t e m p e r a t u r e h i g h e r t h a n t h e average ambient t e m p e r a t u r e by a n amount depending on t h e v e n t i l a t i o n r a t e . Only a s m a l l f r a c t i o n of t h e h e a t g e n e r a t e d i s conducted t h r o u g h t h e ground above t h e subway, b u t t h e ground does s e r v e a s a h e a t r e s e r v o i r and h a s t h e e f f e c t of p a r t i a l l y damping t e m p e r a t u r e f l u c t u a t i o n s gener- a t e d by t h e d i u r n a l and a n n u a l ambient a i r c y c l e s .

(6)

STATION EXIT -ENTRANCE

T

FAN SHAFTS VENT SHAFTS

7

VENT SHAFTS

TFAN

SHAFTS

la) L . . . ~ . ~ , ~ . -0 100 2 0 0 3 0 0 4 W 5 0 0 6 0 0 7 0 0 1 0 0 9 0 0 1 W O FT SCALE I A P P R O X I STREET LEVEL

,

P

(b) (c) 0 I 0 2 0 3 0 4 0 3 0 FT SCALE (APPROXI

Fig. 1 Typical ullderground rapid-transit construction (double track). (a) plan view; (b) tunnel section, including ventilation shafts;

(c) station section, showi~lg platforin

L

1

J

Fig. 2

(a)

Schematic representatio~l of a train in

a

single length of tunnel

--(u-V) pb

)

Pa

-

(U-V)

TRAIN --U

Fig.2 (b) Air velocities as observed from the train

The s u b j e c t m a t t e r of underground r a i l w a y v e n t i l a t i o n d i v i d e s i t s e l f n a t u r a l l y i n t o t h e two s e p a r a t e components of a i r - f l o w r a t e s and t h e tem- p e r a t u r e s t h a t r e s u l t . It i s t h e p u r p o s e of t h i s p a p e r t o carr: development of t h e t h e o r y t o i t s p r a c t i c a l l i m i t and t o i n d i c a t e t h e a p p l i c a b i l i t y of o t h e r methods f o r o b t a i n i n g f i n a l d e s i g n i n f o r - m a t i o n .

MECHANISM OF TRAIN PISTON ACTION

A l t h o u g h t h e s i t u a t i o n w i l l seldom a r i s e i n a c t u a l p r a c t i c e , t h e a n a l y s i s w i l l f i r s t be con- f i n e d t o t h e s i m p l e c a s e of a t u n n e l w i t h o u t open- i n g s , b u t d i s c h a r g i n g f r e e l y i n t o t h e atmosphere a t b o t h e n d s , F i g . 2 ( a ) . A t r a i n of l e n g t h t r a v e l s a t v e l o c i t y

U

i n a t u n n e l o f l e n g t h L . With a i r f l o w i n g t o t h e r i g h t w i t h v e l o c i t y v , a momentum b a l a n c e g i v e s and where p a n d p a r e t h e s t a t i c p r e s s u r e s ahead of a b and b e h i n d t h e t r a i n , f i s D a r c y l s f r i c t i o n f a c t o r , d i s t h e h y d r a u l i c d i a m e t e r of t h e t u n n e l a n d Ke

(7)

i s t h e p r e s s u r e l o s s c o e f f i c i e n t a t t u n n e l en- t r a n c e . s l i s t h e s i g n of v . It has been i n c l u d - e d i n e q u a t i o n ( 3 ) b e c a u s e v and t h e f r i c t i o n may b o t h be n e g a t i v e when t r a i n s t r a v e l i n b o t h d i r e c - t i o n s . C o n s i d e r i n g , now, t h e t r a i n t o be a t r e s t and t h e t u n n e l w a l l s and a i r t o be i n motion t o t h e l e f t , a s i n F i g . 2 ( b ) , we have E q u a t i o n ( 9 ) c a n be r e a r r a n g e d i n t o t h e dimension- l e s s f o r m dv* = -dt* a t bv* t cv* where v* = v/U,

t*

=

t/r (r

i s a c h a r a c t e r i s t i c t i m e , e . g . , t h e t r a i n headway), and Here v i s t h e a p p a r e n t v e l o c i t y of a i r b e s i d e t h e i

t r a i n , a s viewed from t h e t r a i n , and Kc and Kx a r e c o n t r a c t i o n and e x p a n s i o n p r e s s u r e l o s s c o e f f i - c i e n t s . The s u b s c r i p t i r e f e r s t o c o n d i t i o n s be- tween t h e t r a i n and t u n n e l . The f r i c t i o n p r e s s u r e l o s s Fi

i s

p o s i t i v e o r n e g a t i v e d e p e n d i n g upon t h e r e l a t i v e magnitudes of vi and U. A s i m p l e e x p r e s - s i o n f o r Fi i s o b t a i n e d w i t h t h e a p p r o x i m a t i o n Here, t h e f r i c t i o n a l d r a g a l o n g t h e w a l l , c e i l i n g and f l o o r ( s u b s c r i p t

w )

i s s u b t r a c t e d f r o m t h e f r i c t i o n a l o n g t h e s i d e of t h e t r a i n ( s u b s c r i p t

t ) .

W

i s

t h e w i d t h of o p e n i n g between t h e t r a i n and t h e w a l l and H

i s

t u n n e l h e i g h t .

s 2 i s

t h e s i g n of

( U

-

v i ) . The h y d r a u l i c d i a m e t e r s of t h e t r a i n s i d e and r e m a i n i n g s u r f a c e s a r e 4WH/H and 4WH/(2W

+

H),

r e s p e c t i v e l y . Assuming f o r s i m p l i c i t y t h a t f t s=l f w = f , e q u a t i o n

( 5 )

becomes I t w i l l a l s o be n o t e d t h a t where A

i s

t h e t u n n e l c r o s s - s e c t i o n a l a r e a , and S u b s t i t u t i n g e q u a t i o n s ( 6 ) and

( 8 )

i n t o e q u a t i o n ( 4 ) and e q u a t i n g ( 4 ) t o ( 3 ) now y i e l d s A K t K

-m{.

x Here P i s t h e t u n n e l p e r i m e t e r . There a r e two s o l u t i o n s t o e q u a t i o n

( l o ) ,

d e p e n d i n g upon w h e t h e r q = 4ac

-

b2

i s

p o s i t i v e o r n e g a t i v e . These a r e 2 tan

-

1 (2cv*

+

b) =

-

t*

r

r

( 1 2 ) A f t e r t h e t r a i n l e a v e s t h e t u n n e l t h e v e l o c i t y c o n d i t i o n s a r e d e f i n e d by e q u a t i o n ( 3 ) w i t h p

-

a Pb = 0 and w i t h ( L

- A )

r e p l a c e d b y L; t h u s dv* =

-

dt* T U 2

(13)

From h y d r a u l i c e x p e r i m e n t s

i t

i s known t h a t

(8)

TIME, MINUTES

Fig. 3 Tunnel air velocities for a single traverse of trains of different lengths in tunnels of different lengths; train velocity= 3090 fpm (35 mph) ; L = tunnel length;

l

= train length

K = 0 . 5 ( f o r s q u a r e - e d g e d e n t r y i n t o t h e tunnel) K c

-

0 . 5

-

T ]

( c o n t r a c t i o n o v e r f r o n t of t r a i n ) ( e x p a n s i o n o v e r r e a r of t r a i n ) f ~ 0 . 0 3 The v e n t i l a t i o n i n d u c e d by t r a i n s f o r v a r i o u s v a l u e s of L, 1

,

W , H and A c a n now be e v a l u a t e d . G e n e r a l l y , t h e c r o s s - s e c t i o n a l a r e a of t r a i n s w i l l be c o n s t a n t a t a b o u t 100 s q f t , hence

WH

= (A-100) s q f t . A s t a n d a r d t r a i n s t a n d s 1 2 f t h i g h and r e - q u i r e s 11 f t w i d t h f o r c l e a r a n c e ; c o n s e q u e n t l y t h e minimum p o s s i b l e a r e a of a d o u b l e - t r a c k t u n n e l i s a b o u t 300 s q f t .

or

t h e Toronto Rapid T r a n s i t System, A = 358 s q f t .) The l e n g t h of newer s u b - way c a r s i s 75 f t , and u s u a l l y a minimum of

3

o r 4 c a r s ( t r a i n l e n g t h = 225 t o 300 f t ) c o n s t i t u t e s a t r a i n . The maximum t r a i n l e n g t h i s governed by t h e l e n g t h of s t a t i o n p l a t f o r m s ( a b o u t 500 f t )

.

The t r a i n headway, o r f r e q u e n c y of t r a i n s i n e a c h d i r e c t i o n , v a r i e s from a b o u t z1/4 min d u r i n g r u s h h o u r s t o 6 min f o r n i g h t - t i m e o p e r a t i o n . Normal daytime o p e r a t i o n g e n e r a l l y r e q u i r e s a headway of about j1/2 t o 4 min. T r a i n s u s u a l l y move a t 30 t o 40 mph i n t r a v e r s i n g a t u n n e l s e c t i o n .

or

t h e

TIME. MINUTES

net air flow to left no net air flow Fig. 4 Two examples of two-way traffic in a 2500- ft tunnel; (train length = 500 ft, train headway = 3. 67 min). (a) Train enters tunnel from left; (b) train leaves tunnel a t right; (c) train enters tunnel froin right; (d) train leaves tunnel a t left

t h e a i r v e l o c i t y i n t u n n e l s of d i f f e r e n t l e n g t h s f o r two c o n d i t i o n s of t r a i n l e n g t h , t h e t r a i n mak- i n g o n l y a s i n g l e p a s s t h r o u g h t h e t u n n e l . It w i l l be s e e n t h a t t h e maximum a i r v e l o c i t y a t t a i n e d a s t h e t r a i n l e a v e s t h e t u n n e l i s a p p r o x i m a t e l y t h e same, i r r e s p e c t i v e of t u n n e l l e n g t h . F o r t r a i n s of 250 f t and 500 f t l e n g t h t h e maximum v e l o c i t i e s o b t a i n e d a r e about 0.16 and 0 . 2 0 of t h e t r a i n ve- l o c i t y . The t o t a l v e n t i l a t i o n o b t a i n e d d o e s . n o t v a r y g r e a t l y w i t h t u n n e l l e n g t h .

The f o r e g o i n g r e s u l t s c o r r e s p o n d t o r a i l w a y t u n n e l s r a t h e r t h a n t o r a p i d - t r a n s i t s y s t e m s be- c a u s e of t h e l a r g e d i f f e r e n c e s i n t r a i n f r e q u e n c y between t h e two s y s t e m s . E a r l i e r methods of e v a l u a t i n g t h e v e n t i l a t i o n r a t e s f o r b o t h r a i l w a y and r a p i d - t r a n s i t s y s t e m s c o n t a i n s e r i o u s e r r o r s by n e g l e c t i n g t i m e dependence

( 2 ) ;

t h i s i s e q u i v a - l e n t t o h a v i n g t r a i n s f o l l o w one a n o t h e r i n t o t h e t u n n e l i n d e f i n i t e l y a t s h o r t i n t e r v a l s of t i m e . Although t h i s c o n c e p t i s i n a p p l i c a b l e f o r t r a i n s ,

i t

i s a p p r o p r i a t e f o r h e a v i l y t r a v e l l e d a u t o m o b i l e t u n n e l s

( 2 ) .

VENTILATION PRODUCED BY TRAINS MOVING I N BOTH DIRECTIONS AT UNIFORM TIME INTERVALS

f o l l o w i n g examples a t r a i n s p e e d of 35 mph i s a s -

sumed. ) With t r a i n s moving i n b o t h d i r e c t i o n s i n t h e t u n n e l , b o t h t h e f r e q u e n c y (headway) and p o s i t i o n VENTILATION PRODUCED BY SINGLE TRAINS when p a s s i n g o b v i o u s l y w i l l a f f e c t t h e n e t v e n t i l a -

t i o n r a t e . F o r example, l i t t l e v e n t i l a t i o n i s p r o - Using t h e . f o r e g o i n g e q u a t i o n s and d a t a and duced i f t r a i n s e n t e r b o t h ends of t h e t u n n e l s i - w i t h A = 358 s q f t , examples a r e g i v e n i n F i g . 3 of m u l t a n e o u s l y , whereas maximum v e n t i l a t i o n o c c u r s

(9)

tem of t u n n e l and openings i n t h e a c t u a l subway.

-800

1

I I t I

,

I I I

I

0 1 2 3 4 5 6 7 8 9

TIME, MINUTES

Fig.5 Measured air velocities in a vent shaft of a rapid- transit system (north-east vent shaft, College Street Sta-

tion, Toronto Rapid-Transit System)

i f t h e y p a s s one a n o t h e r o u t s i d e t h e t u n n e l . Be- tween t h e s e two extremes t h e v e n t i l a t i o n may have any value depending on t h e t r a i n s c h e d u l i n g . Two examples of v e l o c i t y d i s t r i b u t i o n , a s dependent on t r a i n s c h e d u l i n g , a r e g i v e n i n F i g . 4 . These have been c a l c u l a t e d w i t h t h e h e l p of t h e p r e v i o u s e q u a t i o n s , based on a t r a i n l e n g t h of 500 f t , tun- n e l l e n g t h of 2500 f t and w i t h t r a i n headway of 3.67 min (normal daytime headway i n t h e Toronto Rapid T r a n s i t System). Account was t a k e n of t h e p e r f o r a t e d c e n t e r w a l l by assuming i t s o n l y e f f e c t t o be a n i n c r e a s e i n p e r i m e t e r P by t h e amount 2H i n parameter c and i n e q u a t i o n s ( l l ) , ( 1 2 ) and ( 1 4 ) . I n one c a s e a t r a i n e n t e r s t h e t u n n e l j u s t a s t h e t r a i n from t h e o p p o s i t e d i r e c t i o n l e a v e s and r e s u l t s i n a n e t through-flow of a i r i n one d i r e c t i o n a l o n g t h e t u n n e l . I n t h e second example t h e r e i s no n e t a i r f l o w through t h e t u n n e l , t h e t r a i n s being scheduled t o e n t e r t h e t u n n e l a t time i n t e r v a l s of one h a l f of t h e headway.

For purposes of comparison a n example of ve- l o c i t i e s measured i n a v e n t s h a f t of t h e Toronto Rapid T r a n s i t System i s g i v e n i n F i g . 5 . It i s n o t t o be implied t h a t t h e c a l c u l a t e d r e s u l t s i n F i g . 4 a r e i n agreement w i t h t h o s e of F i g . 5 , but only t h a t t h e g e n e r a l behavior and magnitufies a r e s i m i - l a r . The d i f f e r e n c e s i n shape and xlagnitude of t h e v e l o c i t y p r o f i l e s a r e due t o rne complex s y s -

6

F i g . 4 i n d i c a t e s average a i r v e l o c i t i e s i n t h e t u n n e l of about 200 t o 300 fpm, corresponding t o flow r a t e s i n t h e t u n n e l of 70,000 t o 100,000 cfm. The average v e l o c i t y range f o r t h e vent s h a f t i n F i g . 5 i s about t h e same a s t h a t i n F i g . 4 , but t h e s h a f t c r o s s - s e c t i o n a l a r e a i s 217 s q f t

(compared w i t h t h e t u n n e l c r o s s s e c t i o n of 384 s q f t ) .

DESIGN METHODS FOR TUNNELS WITH VENTILATION SHAFTS AND OPENINGS

The f o r e g o i n g c o n s i d e r a t i o n s have shown t h e g e n e r a l magnitude of t h e v e n t i l a t i o n t h a t can be expected i n t u n n e l s without openings. The a n a l y - s i s cannot be c o n s i d e r e d t o be e x a c t because f r i c - t i o n and p r e s s u r e - l o s s c o e f f i c i e n t s were e s t i m a t e d from s i m i l a r h y d r a u l i c s i t u a t i o n s . Considerable d i f f i c u l t y a r i s e s even i n a t t e m p t i n g t o account f o r t h e p e r f o r a t e d c e n t e r w a l l of a double-track system. I n a c t u a l f a c t , t h e a i r moving ahead of and behind t h e t r a i n would r e q u i r e a d i s t a n c e of s e v e r a l hundred f e e t b e f o r e i t s v e l o c i t y would be uniform on both s i d e s of t h e c e n t e r w a l l .

I n a n a c t u a l subway t h e r e a r e passenger open- i n g s a t s t a t i o n s and v e n t i l a t i o n s h a f t s a t i n t e r - v a l s a l o n g t h e t u n n e l . These openings i n no way can be c o n s i d e r e d a s demarking s e p a r a t e l e n g t h s of t u n n e l r e q u i r i n g only t h e p r e v i o u s method of a n a l y - s i s . R a t h e r , t h e openings s e p a r a t e t h e a i r f l o w , some of t h e a i r l e a v i n g through t h e opening and t h e remainder c o n t i n u i n g i n t h e t u n n e l . The r e - s i s t a n c e t o a i r flow through b o t h branches a t such a j u n c t u r e depends n o t only on t h e geometry of t h e c o n s t r u c t i o n , b u t a l s o on t h e r a t i o of t h e v e l o c i - t y i n t h e branch t o t h a t upstream of t h e branch.

It must be emphasized t h a t t h e s e r e s i s t a n c e s can o n l y be o b t a i n e d by experiment e i t h e r i n t h e f i e l d o r on s c a l e models.

Equations can be d e r i v e d f o r t h e s i t u a t i o n of m u l t i p l e openings by t h e same p r o c e s s used i n o b t a i n i n g e q u a t i o n s (11) and ( 1 4 ) . The r e s u l t , however, i s a s e t of simultaneous n o n l i n e a r d i f - f e r e n t i a l e q u a t i o n s w i t h nonconstant c o e f f i c i e n t s . The o n l y p r a c t i c a l way t o s o l v e t h e s e would be w i t h t h e h e l p of a n a n a l o g computer, whose f a c i l i - t i e s c o u l d handle a t most only

3

o r

4

t u n n e l open- i n g s . As g e o m e t r i c a l models of t h e v a r i o u s open- i n g s a r e r e q u i r e d t o o b t a i n f r i c t i o n c o e f f i c i e n t s ,

i t

i s only a s m a l l s t e p f u r t h e r t o c o n s i d e r a com- p l e t e model of a subway s e c t i o n . Resort t o models i s not n e c e s s a r y , of c o u r s e , i n planning conven- t i o n a l subways i n moderate c l i m a t e s ;

i t

i s o n l y n e c e s s a r y t o d e s i g n on t h e b a s i s of p a s t e x p e r i - ence. For s p e c i a l c o n d i t i o n s such a s i n warm c l i - mates o r where novel v e n t i l a t i o n schemes a r e pro-

(10)

posed, t h e method of models may prove u s e f u l i n e v a l u a t i n g a system p r i o r t o a c t u a l c o n s t r u c t i o n . Models w i l l be d i s c u s s e d l a t e r i n c o n n e c t i o n w i t h subway t e m p e r a t u r e s .

HEAT BALANCE AND SUBWAY A I R TEMPERATURE

I n t h e f o l l o w i n g development a s i m p l i f i e d and p a r t l y e m p i r i c a l procedure w i l l be used t h a t w i l l i n d i c a t e t h e mechanism by which h e a t i s ex- changed and a l l o w approximate c a l c u l a t i o n of sub- way a i r t e m p e r a t u r e . ( I n t h i s c o n n e c t i o n

i t

should be p o i n t e d out t h a t t h e f u l l t h e o r y p r e - s e n t s no e s s e n t i a l mathematical d i f f i c u l t i e s , but i s s u f f i c i e n t l y complex t h a t i t s development i s unwarranted f o r t h e p r e s e n t p u r p o s e s . ) P e r f e c t mixing of t h e a i r i n t h e t u n n e l w i l l be assumed. It t h e n becomes i m m a t e r i a l whether t h e a i r ex- change t a k e s p l a c e by a l t e r n a t e i n j e c t i o n and e j e c t i o n t h r o u g h v e n t i l a t i o n openings o r by con- t i n u o u s i n j e c t i o n a t one l o c a t i o n and e j e c t i o n a t a n o t h e r . Under t h i s c o n d i t i o n t h e t u n n e l a i r tem- p e r a t u r e i s everywhere e q u a l . It w i l l be a p p r e c i a t e d t h a t t h e f o r e g o i n g assumption p l a c e s s e v e r e r e s t r i c t i o n s on r e l a t i n g t h e v e n t i l a t i o n r a t e s t o t h e r e s u l t i n g tempera- t u r e s . Consequently, i n t h e f o l l o w i n g d e r i v a t i o n s e m p i r i c a l c o e f f i c i e n t s w i l l be a t t a c h e d t o t h e s i m p l i f i e d t h e o r y t o account f o r d e v i a t i o n s . To o b t a i n t h e s e c o e f f i c i e n t s t h e t e m p e r a t u r e s measured i n a n a c t u a l s t a t i o n w i l l be r e l a t e d t o average v e n t i l a t i o n r a t e s and h e a t l o a d s f o r b o t h t u n n e l and s t a t i o n . I n a l e n g t h of underground r a i l w a y whose t o t a l volume i s V and whose s u r f a c e a r e a i s

A s ,

t h e h e a t e n t e r i n g t h e t u n n e l by v e n t i l a t i o n (when t h e o u t s i d e a i r t e m p e r a t u r e i s h i g h e r t h a n t h e t u n n e l a i r t e m p e r a t u r e ) and from t r a i n s and pas- s e n g e r s i s absorbed i n t o t h e ground s u r r o u n d i n g t h e t u n n e l and by t h e a i r ( i n t h e t u n n e l ) , which t h e n changes t e m p e r a t u r e . T h i s h e a t b a l a n c e may be w r i t t e n a s : d T i P c E l Q(TO

-

T i ) + E 2 qL L = q G A s + P c

V

-

P P

,,

( 1 5 ) where p cp = s p e c i f i c h e a t p e r u n i t volume of a i r El = r a t i o of a p p a r e n t v e n t i l a t i o n i n a s t a t i o n t o average f o r s t a t i o n p l u s

t

unne 1 E2 = r a t i o of a p p a r e n t h e a t l o a d i n a s t a - t i o n t o a v e r a g e f o r s t a t i o n p l u s

t

unne 1 Q = v e n t i l a t i o n r a t e ( a v e r a g e f o r s t a t i o n p l u s t u n n e l ) T , T . = o u t s i d e a i r and t u n n e l a i r tempera- 0 1 , t u r e s , r e s p e c t i v e l y qLL = h e a t l o a d on t h e subway from t r a i n s , p a s s e n g e r s , l i g h t i n g and machinery (L i s t u n n e l l e n g t h ) qGAs = h e a t f l o w i n g i n t o t h e ground dT.

1=

r a t e of change of t u n n e l a i r tempera- d t t u r e w i t h time Temperature V a r i a t i o n

The ambient a i r t e m p e r a t u r e i s assumed t o be e x p r e s s e d , a p p r o x i m a t e l y , by

T ~ = T

o

+ C A sin(w t t e ) t c D s i n ( w t t e A A D D ) ( 1 6 ) and t h e subway a i r t e m p e r a t u r e by - T . = T. t BA sin w t t BD sin w t 1 1 A D

-

where T

,

Fi

a r e t h e mean a n n u a l v a l u e s of t h e am- b i e n t and t u n n e l a i r t e m p e r a t u r e s , C i s t h e ampli- t u d e of v a r i a t i o n . o f ambient a i r t e m p e r a t u r e , and B i s t h e amplitude of t u n n e l a i r t e m p e r a t u r e v a r i a - t i o n . S u b s c r i p t A d e n o t e s a n n u a l , and D d e n o t e s d a i l y c o n d i t i o n s .

w = B / Y , whereY i s the period

t

i s t i m e and e i s t h e phase s h i f t .

With t h e subway a i r t e m p e r a t u r e v a r y i n g s i - n u s o i d a l l y , t h e f o l l o w i n g e x p r e s s i o n i s a v a i l a b l e f o r t h e h e a t flow i n t o t h e ground about t h e t u n n e l

(6

pages 65-67):

qG=kGpA

(2

( s i n w A t i c o s w A t ) t t c o s w t ) t S

(Ti

-

To)]

(18)

D Here kG i s t h e ground t h e r m a l c o n d u c t i v i t y , a i t s d i f f u s i v i t y , and S t h e shape f a c t o r f o r c o n d u c t i o n from t h e t u n n e l t o t h e ground above. (Tunnel w a l l and a i r t e m p e r a t u r e s a r e assumed e q u a l . )

E q u a t i o n

(18)

assumes a l l c y c l i c a l h e a t flow t o be p e r p e n d i c u l a r t o w a l l s , c e i l i n g and f l o o r and i s approximate i n t h a t

i t

does not account f o r d i s - t o r t i o n a t c o r n e r s . Furthermore, i f t h e t u n n e l c e i l i n g i s l e s s t h a n about 10 t o 1 5 f t deep, t h e e q u a t i o n must be a l t e r e d t o account f o r t h e f a c t t h a t t h e d e p t h i s f i n i t e ( f o r t h e c a l c u l a t i o n method i n t h i s case ( r e f e r e n c e 6 , page 1 1 0 ) .

A f t e r s u b s t i t u t i n g e q u a t i o n s ( 1 6 ) , ( 1 7 ) and

(18)

i n t o e q u a t i o n (151, expanding s i n

( w t

+

e )

,

e q u a t i n g t h e c o e f f i c i e n t s of s i n

w t

and of cos

w t ,

(11)

and where and m C c o s e - m C s i n e B = l t r n l t n ( 2 0 ' ~ q u a t i o n s ( l 9 ) , ( 2 2 ) , ( 2 3 ) now become e = t a n -1 (&) ( I + rr3

Because t h e geometry of underground t u n n e l s

w i l l n o t u s u a l l y v a r y g r e a t l y , t h e f o r e g o i n g r e l a - t i o n s h i p s may be s i m p l i f i e d by s u b s t i t u t i n g r e p r e - s e n t a t i v e v a l u e s f o r a l l v a r i a b l e s e x c e p t qL,

Q,

El, E2. F u r t h e r m o r e , t h e v a r i a b l e s f o r s t a t i o n s and t u n n e l a r e n e a r l y t h e same; hence, o n l y s t a t i o n c o n d i t i o n s w i l l be c o n s i d e r e d , t h e s e b e i n g t h e more i m p o r t a n t . The f o l l o w i n g v a l u e s a r e assumed:

With t h e f o r e g o i n g s u b s t i t u t i o n s t h e equa- t i o n f o r t h e subway t e m p e r a t u r e becomes 1 . 6 5 x 10-'E Q C s i n ( 0 . 2 6 2 t ) t 2 D

( 2 4 )

2 ( 1 . 1 3 4 ) t ( 1 t 1 . 6 5 ~ 1 0 - ~ E ~ Q ) 2 kc = 0 . 6 B t u / h r

-

OF - f t I n o r d e r t o e l i m i n a t e , a s much a s p o s s i b l e , 2

a = 0 . 0 2 f t / h r e r r o r s due t o d e v i a t i o n of t h e a n n u a l ambient tem- p e r a t u r e v a r i a t i o n from a s i n e wave, s u b s t i t u t i o n i s made f o r

?

from e q u a t i o n ( 1 6 ) . Thus

0 -4 3 . 1 5 ~ 1 0 - ~ ~ Q s i n ( 7 . 1 8 x 10 ) 2 2

-

s i n ( 7 . 1 8 ~ 1 0 - ~ t + e ( 1 . 0 0 7 ) t ( l t 3 . 1 5 x ~ o - ~ E ~ Q ) 2 7

L.

6 5 x 1 0 - E - Q s i n ( 0 . 2 6 2 t ) 1

Comparison w i t h Measured Temperatures

F i g . 6 g i v e s measured t e m p e r a t u r e s f o r t h e

V

= 310,000 cu f t f o r a s t a t i o n 500 f t long f i r s t t h r e e weeks i n October i n a s t a t i o n of t h e

D a t a f o r T o r o n t o Toronto Rapid T r a n s i t System. To be n o t e d i s t h e

A = 6 1 , 0 0 0 sq f t f o r a s t a t i o n 500 f t long

u n i f o r m i t y o f weekly b e h a v i o r compared w i t h t h e Rapid T r a n s i t

(12)

60

MON TUE W E D T H R F R I SAT SUN MON TUE WED THR F R I SAT SUN

L E G E N D

-

11 10162

...

15110162

--

8110162

Fig. 7 Ambient air temperature (Bloor Street Meteorological Office, Toronto) October

1962

Fig.

6

Air temperatures i n the College Street Station,

I

Toronto Rapid-Transit System, October 1962

I

T a b l e 1 Data for Calculation of Subway T e q p e r a t u r e s Station Section (L = 500ft)

TABLE 1

DATA FOR CALCULATION OF SUBWAY TEMPERATURES

STATION SECTION ( L = 500ft) 6 Example: Q = 1 . 5 x 10 cu ft/hr, qL = B O O ~ t u / h r - f t = 5 0 ° F , C A = 2 0 F d e g , C = B F d e g D T . (maximum) = 5 0 + ( 1 8 + 2 0 x 0 . 9 3 + B x 0 . 3 6 ) = 8 9 . 5 " F

(13)

5 2 12 2 4 6 8 10 12 14 16 18 2 0 2 2 2 4 M I D N I G H T NOON M I D N I G H T

I

1

COLLEGE STN SOUTH

-

-

AVG 7 0 . 9 "F

-

-

- - A M B I E N T AIR

-

-

AVG 5 9 . 7 "F

-

-

I

I

Fig. 8 Average air temperatures for weekday operation, Toronto Rapid- Transit System

Fhis p a r t i c u l a r s e c t i o n of subway had a measured v e n t i l a t i o n r a t e of 2,400,000 c f h d u r i n g normal daytime o p e r a t i o n , Monday t o F r i d a y . An e s t i m a t e of t h e f a c t o r s E, and E2 c a n now be o b t a i n e d by comparing t h e a v e r a g e subway and ambient a i r tem- p e r a t u r e s . It w i l l be noted t h a t some of t h e r e c o r d s a r e m i s s i n g from F i g . 6 ; hence t e m p e r a t u r e s were averaged o n l y f o r Wednesday, Thursday and F r i d a y of t h e three-week p e r i o d . These average r e s u l t s a r e g i v e n i n F i g . 8 , from which t h e mean d a i l y subway a i r t e m p e r a t u r e , Wednesday t o F r i d a y ,

i s 70.9 F , w h i l e t h e average o u t s i d e a i r tempera- t u r e i s 59.7 F. The s t a t i o n t e m p e r a t u r e t h u s a v e r a g e s 1 1 . 2 deg F h i g h e r t h a n t h e ambient a i r t e m p e r a t u r e . The a m p l i t u d e of t h e d i u r n a l s t a t i o n t e m p e r a t u r e wave ( h a l f t h e d i f f e r e n c e between max- imum and minimum t e m p e r a t u r e ) i s 2.7 d e g r e e s F and t h e ambient a i r t e m p e r a t u r e a m p l i t u d e i s 5.5 d e g r e e s F. The c o e f f i c i e n t of s i n ( 0 . 2 6 2 t ) i n e q u a t i o n

( 2 4 )

i s t h e amplitude of t h e d i u r n a l subway a i r - t e m p e r a t u r e wave. E q u a t i n g t h i s t o t h e observed v a l u e of 2.7 deg F f o r Q = 2,400,000 g i v e s a v a l u e f o r

Ei

of 3 . 1 .

h he

f a c t t h a t t h i s v a l u e i s s o h i g h s h o u l d n o t be cause f o r c o n c e r n a s

i t

r e p r e - s e n t s o n l y e m p i r i c a l i n c o r p o r a t i o n of t h e v a r i o u s t h e o r e t i c a l a p p r o x i m a t i o n s . ) The c o r r e s p o n d i n g v a l u e of eD i s 0.47 r a d i a n s , c o r r e s p o n d i n g t o a l a g of 1 . 8

hr

behind t h e ambient a i r c y c l e . From F i g . 8 t h e observed l a g i s a b o u t 2.5 hr. With E2 e s t a b l i s h e d

i t

w i l l b e ' f o u n d t h a t e A i s o n l y 0.035 r a d i a n ; i . e

.

t h e subway a i r t e m p e r a t u r e l a g s be- h i n d t h e a n n u a l o u t s i d e a i r t e m p e r a t u r e c y c l e b y o n l y about two d a y s . A s

i t

t u r n s o u t , t h e second term i n e q u a t i o n ( 2 5 ) i s n e g l i g i b l e f o r t h e Octo- b e r p e r i o d i n t h e Toronto Rapid T r a n s i t System, s o t h a t t h e f i r s t term r e p r e s e n t s t h e mean a n n u a l d i f - f e r e n c e i n t e m p e r a t u r e between t h e o u t s i d e a i r and t h e subway. S e t t i n g

Ti

-

To

= 1 1 . 2 deg F , t h e v a l u e f o r E i s found t o be 3.8.

(14)

Maximum Subway Temperatures A t t a i n e d i n Midsummer With t h e h e l p of t h e f i g u r e s o b t a i n e d , t h e a p p r o x i m a t e t e n l p e r a t u r e s a s t h e y would o c c u r i n any c l i m a t e c a n now be e s t i m a t e d . I n Table 1 a r e g i v e n t h e mean a n n u a l d i f f e r e n c e s i n t e m p e r a t u r e between subway a i r and ambient a i r f o r d i f f e r e n t v a l u e s of qL, and t h e d i u r n a l and a n n u a l subway a i r - t e m p e r a t u r e a m p l i t u d e i n t e r m s of t h e ambient a m p l i t u d e f o r v a r i o u s v a l u e s of Q. V a l u e s f o r To, CA and CD c a n be o b t a i n e d from m e t e o r o l o g i c a l r e c o r d s . The v a l u e qL = 800 B t u / h r - f t i s t h e p r e s e n t l o a d on t h e T o r o n t o , Yonge S t r e e t , Rapid T r a n s i t System, qL = 1200 ~ t u / h r - f t i s a p o s s i b l e f u t u r e l o a d , and qL = 400 B t u / h r - f t h a s b e e n s u g - g e s t e d a s t h e p o s s i b l e l o a d f o r t r a i n s w i t h r e g e n - e r a t i v e r a t h e r t h a n r h e o s t a t i c b r a k e s .

DISCUSSION AND CONCLUSION

The a n a l y s i s of subway t e m p e r a t u r e s h a s shown t h a t i n s t e a d y o p e r a t i o n t h e v e n t i l a t i o n r a t e d e t e r m i n e s n o t o n l y maximal t e m p e r a t u r e s r e a c h e d i n summer, b u t a l s o t h e a m p l i t u d e of v a r i - a t i o n of t h e d a i l y t e m p e r a t u r e and t h e a n n u a l tem- p e r a t u r e wave. By a s i m p l e comparison w i t h meas- u r e d t e m p e r a t u r e s and v e n t i l a t i o n r a t e s

i t

h a s been found p o s s i b l e t o e s t i m a t e t e m p e r a t u r e s f o r o t h e r c l i m a t e s and f o r o t h e r v e n t i l a t i o n r a t e s . The e s t i m a t e s would a p p l y , of c o u r s e , o n l y t o t u n - n e l s s i m i l a r t o t h a t i n v e s t i g a t e d . The d a t a g i v e n i n T a b l e 1 s h o u l d be t r e a t e d w i t h c o n s i t i e r a b l e c a u t i o n , and a r e i n t e n d e d p r i n c i p a l l y f o r a p p r o x i - m a t i o n s i n t h e absence of more d e f i n i t i v e i n f o r m a - t i o n . I n a c t u a l f a c t , t h e t e m p e r a t u r e i n a t u n n e l v a r i e s from p o i n t t o p o i n t , b e i n g c l o s e t o ambient a i r t e m p e r a t u r e n e a r v e n t i l a t i o n o p e n i n g s and p a s - s e n g e r e x i t s . I n a d d i t i o n , t h e v a r i o u s s e c t i o n s of a t u n n e l have b o t h reciprocating a i r f l o w and some f l o w i n one d i r e c t i o n . Under t h e s e c o n d i t i o n s t h e r e i s a t e n d e n c y f o r t h e l o c a t i o n of t h e h i g h e s t t e m p e r a t u r e s t o be d i s p l a c e d i n t h e d i r e c t i o n of n e t f l o w .

A n a l y s i s h a s shown t h a t v e r y l i t t l e h e a t i s

conducted away i n t o t h e ground a b o u t t h e subway. The ground d o e s s e r v e a s a p a r t i a l h e a t r e s e r v o i r , however, d u r i n g t h e d i u r n a l t e m p e r a t u r e c y c l e , a s

i t

r e d u c e s t h e a m p l i t u d e of t h e t e m p e r a t u r e wave and c a u s e s t h e subway t e m p e r a t u r e t o be a b o u t 2.5 hr o u t of phase w i t h t h e ambient t e m p e r a t u r e . The ground s e r v e s o n l y a s a weak h e a t r e s e r v o i r w i t h r e g a r d t o t h e a n n u a l t e m p e r a t u r e wave, t h e phase s h i f t b e i n g a b o u t two d a y s .

There h a s b e e n some s p e c u l a t i o n t h a t t h e tem- p e r a t u r e s i n a subway s y s t e m w i l l t e n d t o r i s e o v e r t h e y e a r s , even i n t h e a b s e n c e of a n i n c r e a s e i n h e a t l o a d . A s i m p l e c a l c u l a t i o n shows, however, t h a t l e s s t h a n one y e a r i s r e q u i r e d f o r t h e s t e a d y p e r i o d i c s t a t e t o be r e a c h e d . It s h o u l d be p o s s i b l e t o e v a l u a t e tempera- t u r e s more a c c u r a t e l y by employing t h e f u l l t h e o r y . C o n s i d e r a b l e t i m e would be r e q u i r e d t o make t h e c a l c u l a t i o n s , however, and a d e t a i l e d knowledge of t h e f l o w c h a r a c t e r i s t i c s i n t h e t u n n e l and e x i t s s h o u l d f i r s t be a v a i l a b l e f o r t h i s p u r p o s e . I n t h i s c o n n e c t i o n

i t

would p r o b a b l y prove s i m p l e r , f o r s p e c i a l s i t u a t i o n s , t o b u i l d a h e a t e d model a t a s c a l e of p e r h a p s 1 : 2 0 ; t e m p e r a t u r e s c o u l d t h e n be o b t a i n e d by measurement r a t h e r t h a n c a l c u l a t i o n . A s t h e p r i n c i p a l component of t h e t e m p e r a t u r e i s

t h a t which would o c c u r w i t h c o n s t a n t ambient a i r t e m p e r a t u r e , t h e model c o u l d be o p e r a t e d w i t h t h i s c o n d i t i o n . Su.ch a model c o u l d be b u i l t of s h e e t m e t a l and used s i m u l t a n e o u s l y t o d e t e r m i n e v e l o c i t y c o n d i t i o n s i n p a s s e n g e r a r e a s and a l s o i n d i c a t e n e c e s s a r y d e s i g n a l t e r a t i o n s p r i o r t o c o n s t r u c t i o n . An a n a l y s i s o f t h e v e n t i l a t i n g e f f e c t of t r a i n s i n t u n n e l s t h a t t a k e s a c c o u n t of t h e i n e r t i a of t h e a i r h a s shown t h a t t u n n e l a i r v e l o c i t i e s up t o 1/5 of t h e t r a i n v e l o c i t y o c c u r e v e n though t h e t r a i n c r o s s - s e c t i o n a l a r e a may be o n l y 1 / 4 t o 1/3 of t h e t u n n e l c r o s s - s e c t i o n . Both t h e t r a i n f r e - quency (headway) and t r a i n s c h e d u l i n g ( a s i t e s t a b - l i s h e s l o c a t i o n s where t r a i n s from o p p o s i t e d i r e c - t i o n s m e e t ) a f f e c t t h e v e n t i l a t i o n r a t e s of t h e t u n n e l s y s t e m . The v e n t i l a t i o n r a t e i n t u n n e l s w i t h o u t i n t e r m e d i a t e o p e n i n g s i s n o t s t r o n g l y a f - f e c t e d by t r a i n l e n g t h o r by moderate d i f f e r e n c e s i n f r i c t i o n a l r e s i s t a n c e and d r a g . A p a r t from t h e o b v i o u s methods of a s s u r i n g maximum v e n t i l a t i o n i n t u n n e l s by minimizing t h e f l o w r e s i s t a n c e i n o p e n i n g s , t h e b e h a v i o r of t u n - n e l s y s t e m s h a v i n g v e n t i l a t i o n o p e n i n g s and s t a - t i o n s a t i n t e r v a l s a l o n g t h e l e n g t h p r o v e s t o be e x t r a o r d i n a r i l y complex. F o r t h i s c a s e v e r y l i t t l e p r e c i s e i n f o r m a t i o n a b o u t v e n t i l a t i o n c a n be ob- t a i n e d a n a l y t i c a l l y , and f o r s p e c i a l s i t u a t i o n s o n l y t h e method of models c a n be e x p e c t e d t o g i v e r e a s o n a b l y p r e c i s e d e s i g n i n f o r m a t i o n . I n t h i s c o n n e c t i o n

i t

might be p o i n t e d o u t t h a t model t e s t s have b e e n c a r r i e d o u t r e c e n t l y i n c o n n e c t i o n w i t h a u t o m o b i l e t u n n e l s

(5,1,~),

b u t t o t h e a u t h o r ' s knowledge no work of t h i s k i n d h a s b e e n done f o r r a p i d - t r a n s i t s y s t e m s . When

i t

i s r e - c a l l e d t h a t t h e c o s t of subway c o n s t r u c t i o n i s

comparable t o t h a t of a i r c r a f t d e s i g n , where models a r e used e x t e n s i v e l y , t h e same method c o u l d b e a r c o n s i d e r a t i o n f o r subways.

ACKNOWLEDGMENT

The a u t h o r i s g r e a t l y i n d e b t e d t o Messrs. W. ti. P a t e r s o n , G e n e r a l Manager, J. T. Harvey, Chief E n g i n e e r , and F . C . P a t t i e , Mechanical E n g i n e e r ,

(15)

of t h e Subway C o n s t r u c t i o n Branch, Toronto T r a n s i t Commission, f o r t h e i r a s s i s t a n c e w i t h problems and d a t a p e r t a i n i n g t o subway v e n t i l a t i o n . T h i s paper i s a c o n t r i b u t i o n from t h e D i v i s i o n of B u i l d i n g R e s e a r c h of t h e N a t i o n a l R e s e a r c h C o u n c i l , Canada, and i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r of t h e D i v i s i o n . REFERENCES

1 S. C . Mount, " V e n t i l a t i o n and Cooling i n London's Tube ail ways , ' I I n s t i t u t i o n of Heating and. V e n t i l a t i n g E n g i n e e r s J o u r n a l , January-February 1947, pp. 354-374, 4-93.

2 E. Brock, "Development of Formulae f o r C a l c u l a t i n g V e n t i l a t i o n f o r t h e Chicago Subways," J o u r n a l of t h e Western S o c i e t y of E n g i n e e r s , v o l .

48,

no. 2 , June 1943, pp. 7'6-91.

3 W. E. Rasmus, " V e n t i l a t i n g t h e New

Chicago Subway," H e a t i n g , P i p i n g and A i r C o n d i t i o n - i n g , v o l . 1 5 , no.

8 ,

August 1943, pp. 393-399.

4 W. E . Rasmus and E . Brock, " T r a i n P i s t o n A c t i o n V e n t i l a t i o n and Atmospheric C o n d i t i o n s i n Chicago Subways," T r a n s . ASME, v o l . 50, 1944, pp. 385-4-94.

5 A . H a e r t e r , " T h e o r e t i s c h e and experimen- t e l l e Untersuchunger Gber d i e ~ z f t u n g s a n l a g e n von S t r a s s e n t u n n e l n , " D i s s e r t a t i o n No. 3024, Swiss F e d e r a l I n s t i t u t e of Technology, Z u r i c h 1961.

6 H. S. Carslaw and J . C . J a e g e r , "Conduc- t i o n of Heat i n S o l i d s , " 2nd e d i t i o n , Clarenden P r e s s , 1959.

7 A . L. O l i v e r and H. C . Gurner, "Water Model T e s t s on Road Tunnel V e n t i l a t i o n , " DSIR, Glasgow, F l u i d s Report no. 49, 1956.

8

L. H . B u t l e t , " L a b o r a t o r y Air-model T e s t s on Road-tunnel V e n t i l a t i o n , " DSIR, Glasgow, F l u i d s Report no. 64, 1958.

Figure

Fig. 2  (a)  Schematic representatio~l  of  a train  in  a  single length  of  tunnel
Fig.  3  Tunnel  air  velocities  for  a  single  traverse  of  trains  of  different  lengths in  tunnels  of  different  lengths;  train  velocity=
Fig.  6  Air  temperatures i n  the College Street Station,
Fig.  8  Average  air temperatures  for  weekday  operation,  Toronto Rapid-  Transit  System

Références

Documents relatifs

Considering a 48 m² cross-section tunnel with a ventilation velocity of 0.7 m/s, corresponding to the experimental velocity converted to real scale, the dispersion was modeled

A surprising result is that the regimes found with the PCA do not correspond to those given by the Fourier analysis. In particular, the sequences described by the main basis do

Participation in a regional energy recovery project usually means relinquishing considerable local control over solid waste management decisions (such as whether to

In order to be able to use the GC×GC-TOF/MS method to monitor toxic PCBs and PCDD/Fs in a high-fat complex matrix such as ground beef, a protocol of extraction of

Puisque seulement les ions chlorures qui restent en solution sont libres pour perturber directement la couche de passivation formée à la surface des armatures

Hence (by the cutfree subformula property) such predicative extension of PA proves that any given [P ∗ ]-free sequent is valid in PDL iff it is deducible in Seq pdl ω by a finite

Les deux méthodes de séparation AF4, optimisées avec les systèmes Postnova et Wyatt, ont donc permis d’étudier la distribution de la masse moléculaire de la MOD dans les

Nous avons adapt´e cette fonction de potentiel (en ne prenant en compte que l’´etat des processeurs 2-corrects alors que la fonction originale consid´erait l’ensemble des