• Aucun résultat trouvé

ff=r(l- ak-* k**, E(r)-* that F): (1.2) *-; * : (1.1) ft*-. A

N/A
N/A
Protected

Academic year: 2022

Partager "ff=r(l- ak-* k**, E(r)-* that F): (1.2) *-; * : (1.1) ft*-. A"

Copied!
4
0
0

Texte intégral

(1)

Annales Academire Scientiarum Fennica Series A. f. Mathematica

Volumen 9, 1984,89-92

ON A RESULT OF WINKLER

SAKARI TOPPILA

1. Introduction and results

I

thank Professor O. Lehto for suggesting this subject to me.

We shall use the usual notations of the Nevanlinna theory.

Let

qbe

a sequence of non-zero complex numbers such that

ay+a

as

ft*-.

We denote

by n(r)

the number

of

points ao satisfying lool=-r.

It

is well known that there exists an entire function of the form

(1.1) F(z):

1o-=rEnuQla*), where

E oo(r)

:

(I

-

u)exp

(z+(fl

uz

*

...

*

(L I py)uo), such that

F

has exactly the zeros ao.

Let [x] be the integer part of a non-negative real number x. Winkler [2] proved the following tåeorem.

Theorem A.

Let aobe as aboue and suppose that

o>1.

Then the entirefunction

F of

the form

(l.l)

with

pr,:

llogn" (lc,kDl satisfies

(1.2)

log

M(r, F):

O(N(yr,O, lr)o{r+tos')) 1"

*-;

for any

?>exp

(/TiA.

There arise the following two questions. Does the rapid growth of n(r) imply

that

\

we must tzke a rapidly growing sequence pyin (1.1), and does the rapid growth

of r(r)

imply that, for any entire function F of the form (1.1), log

M(r,f)

is essentially larger than N(r,O,f)?

We shall give

a

negative answer

to

both

of

these questions. We prove the following

Theorem. Giaen any increasing function

EQ)

such that

E(r)-*

as

r+6,

there exists a sequmce ak,

ak-*

es

k**,

such that the product

ff=r(l-

zlak)

doi:10.5186/aasfm.1984.0913

(2)

satisfies (1.3)

and (1.4)

90 Saram Toppna

cowerges unifurmly on bounded subsets of the complex plane and that the entire func- tion

1Q)

- rc=l

(1

-

zlat)

E?) - o(r(r,0,/)) (r *..)

log M (r,

f) -

I,{ (r, 0, -f)+ O

(1) (r

-* oo).

2. Proof of the Theorem

Let zn be the following sequence constructed by Erdös [1, Problem

4'l]:Let zr:1, zz: -1,

and

tf

znhas already been defined

fot

1=p=-2k, then we define for

l=p=2k,

zo+zk: zrexP(2-kni).

Lemma. Let z, be as aboae, 0=d<1'f8, and suppose that

s>l

is an integer.

Then

Q.D

llog.[""=r

(l-zlz,)l=

4d

on lzl=d,

where

logw

is chosen so

that

log

1:0.

Proof.It

follows from the choice of

z,that

for any integers

p>0

and

k>l

there exists

a

real

E

such that

Q.2) n?:å:i,(-zlz):

r-(zeie)'"

and

that E:0 if P:0.

Letkbe

chosen so

that

2k=s<2t'+t. TA"n

where t e(t

-

t

)-

Q ror any o,

",'i- ::: !l;

(2.2) lrhat

ir

tzl= d,then

llog II;=1 (1

- ,ldl =

2ZX=otpdzu-p

=

2Z;=Ldp

-

4d,

which proves the Lemma.

Proof

of

the Theorem.

Let q(r)

be as in the Theorem. We choose a positive integer

ftt

such that

n1: )\ > E(6)

and set

an: 42, for

n

: !r2,

,,., flL,

(3)

On a result of Winkler

and tf a, has already been defined

fot n: l,

. . .,

no-t,

we choose a positive integer

k,

such that

(2.3) and set

Let and

Clearly

f"(z)*f(z)

uniformly on bounded subsets of the complex plane. From (2.3)

it

follows that

f

satisfies (1.3).

We define

.f"(t)

: Ili":r(t-rla)

for any,r, and we deduce from the Lemma that

if lzl=M

and

n"<t<n"*r,

then

Itos(1rl|QD

II:=,(r -'lo))l =

ltos (f,(z)lfQ))l+itoe

III=,.*,(t -

zla)t

= o(I)+O(Ml4) : o(1) (l *-),

which implies that

I:='(t-

zla,)

* f(z)

uniformly on bounded subsets of the complex plane.

Suppose

that

4"12=r<4"+112. We get log

M(r,f)- N(r,0,J)

=

Z;1

los(t + (rl4e1zt')-Z;-r2on tog* ?Fn)

= Z;:l

tog (r + (4e1r1zt") +tog (r + @l+12x")

-

2k" log* (rl4')+ o (1)

-

o (1) + min {log (t + (, l4')ro"), log (t + (4' lr1zt")}

:

o

(t) (r

-.* oo).

This implies that

(2.4) log

M(r,f) = I,{(r,0,f)+O(1) (r

-'"o).

From the first main theorem of the Nevanlinna theory we deduce that

N(r,0,f)

= T(r,f)+O(I):

log

M(r,f)+O(I)

(r--*"o), which together with (2.4) proves (1.4). The Theorem is proved.

91

flp: np-t*2kn > E(40+t1

an : 4o rn-np_, for n - np-r*1r,.., hp.

f,(r) - II;=,

(1

-

(4-o z)zkn1

f (') -

Jlg

f,(').

(4)

92 SarenI Topprra

References

[1] Hevulw, W. K. : Research problems in function theory. - The Athlone Press, University of London, 1967.

[2] WrNrr.rn, J.: Uber minimale Maximalbeträge kanonischer Weierstrassprodukte unendlicher Ordnung. - Resultate Math. 4, 1980, 102-116.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10

Finland

Received 13 October 1983

Références

Documents relatifs

Ï Rang d’une famille de vecteurs : définition, rang et familles libres, méthode du pivot de Gauss pour le calcul du rang, application à la détermination de relations de liaisons

The Earth Observation Data and Information System (EOIS) is a user front-end system that offers the Earth Observation Satellite Data Catalog Information Service as well as the

avant que la mort vieiwe mettre fin à leurs tourments. Après un séjour de plus de deux mois à Sac- latoo, notre voyageur désirant retourner à Kouka pour y rejoindre

Vérifier que le signal à la sortie du filtre n’est plus rectangulaire et qu’il se rapproche d’un signal sinusoïdal à la fréquence f = f o (le signal serait

We next observe two interesting facts about Baire sets that hold for some impor- tant, but special, spaces.. Example 3.4 shows that both conclusions may fail in a

Some further general remarks on algebras with a Hilbert space structure are given in this paper (sec.. The verifications are left to the reader.. ARKIV FOR

I1 faut d'abord recapituler certains faits sur les corps biquadratiques, ce qui aura lieu dans le paragraphe 3.. Dans le dernier paragraphe nous allons

The following criterion, usually referred to as Dynkin's criterion, will satisfy in the cases we shall consider... ARKIV FfR