• Aucun résultat trouvé

This logial formalismis rather unommon sine it makes use of seond order variables

N/A
N/A
Protected

Academic year: 2022

Partager "This logial formalismis rather unommon sine it makes use of seond order variables"

Copied!
17
0
0

Texte intégral

(1)

An exursion into logi

1 Introdution.

Thishapterisdevotedtothepresentationofthelinksb etweenniteautomata

and logi. B uhi was therst to set upalogiallanguageequivalentto nite

automata. This logial formalismis rather unommon sine it makes use of

seond order variables. The reader will nd in the notes at the end of this

hapterthemotivationsthatdroveB uhiintothisdiretionandadesriptionof

thegenesisofthisasp etofthetheoryofautomata. Weshallsimplyemphasize

heretwoasp etsof thisquestion.

Itisremarkablethatallthelogialtheories o urringinthisframeworkare

deidabletheories. Thisisaonstantofthetheoryofniteautomatainwhih

mostoftheusual problemsarenotonlydeidable but evenoflowomplexity.

Showing o a deidable logial theory equivalent to nite automata is, in a

sense,aonrmationofthisgeneral priniple.

Furthermore,thelogialformalismisthesamefornitewordsandforinnite

words. Theonlyswitho ursintheinterpretationofformulas,inontrastwith

theformalismof automataor rationalexpressions, inwhih thenite and the

innitease have to b e distinguished. In asense, thematerialof this hapter

onstitutes ajustiation ofthe unity ofthe theories of automataonnite or

innitewords.

We rstpresent in Setion 2the elementsof formallogi neessary to un-

derstand the sequel. It onsists essentially of very elementary notionswhih

anb e skipp edby areader havingsomebakgroundinlogi. Weintro due in

partiularmonadiseond orderlogi,whihisthelogiallanguageequivalent

withautomata,asisshownfurtheron. Wedetailtheinterpretationofformulas

onwords. It amountsmainlyto onsiderawordasastruture byasso iating

toeahindexitheletterinp ositioni. Therelationsthatareusedaretheorder

relationb etween theindexesandtherelationa(i) expressingthat theletterin

p ositioniisana.

InSetion3,weprovetheequivaleneb etweenniteautomataandmonadi

seondorderlogi(B uhi'stheorem). Weprove thisresultfornitewordsand

forinnitewords. One oftheonsequenes of this result isthedeidabilityof

themonadiseondorderlogionnaturalintegers(alsoalled monadiseond

orderlogi ofone suessor). Besides, thepro of of thislatterresult is one the

(2)

motivationof the work of B uhi. The extension of B uhi's deidabilityresult

to two suessors is Rabin's theorem, whih will b e presented in Chapter X

(TheoremX.4.3).

The onversion fromautomata to logi an b e made by writinga formula

statingthatawordisthelab elofasuessfulpathinanautomaton.Thispro of

brings us a supplementary lue: every formulaof monadi seond order logi

is equivalentto aformulaoflowomplexityintermsofquantieralternation.

Inpartiular,thehierarhybased onthenumb erofquantieralternationsol-

lapses. We shallsee later on that this is amajordierene b etween rstand

seondorder.

Wealsoinvestigatetheexpressivep owerofthelogiallanguageobtainedby

replaingtheorderrelationonintegersbythesuessor funtion. We shallsee

that,forinnitewords,themonadiseondorderlogisofthese twolanguages

areequivalent. Itshouldnotb easurprisetothereaderfamiliarwithlogi,sine

the order relation is denable in monadiseond order logi of the suessor

funtion.

Furthermore, we show that monadi seond orderlogi is, on theintegers,

equivalentwith weak monadiseond order logi. Theweak logiutilizes the

same formulasas the \strong" one but the interpretation is morerestritive:

set variables are alwaysinterpreted as nite sets of integers. The equivalene

b etween weakandstronglogiisaonsequene ofMNaughton'stheorem. In-

deed, one an dedue from this theorem that eah rational set X A

!

is a

b o oleanombinationofsubsets oftheform

!

Y withY A

. Andsuh aset is

denablebytheformula

8x9y (y>x^'(y ))

where '(y ) is the formula expressing that the y 's rst letters of a word are

inY. Sine Y isa set of nite words,we an restrit ourselves to weak logi

to interpret '(y ). This interdep endene of results expressible in logi and in

termsofautomataisthemarkofthedeepandrealonnetionb etweenthetwo

approahes. Weshall seeotherexamplesinthesequel whenwe shalldealwith

rstorderlogi.

In Setion 4,we present the orresp ondingtheory forrst orderlogi. We

start byrst order theory of the linearorder sine, and it is arst dierene

with the monadiase, the logiof the linear order andthat of the suessor

arenolongerequivalent.

Therstorderlogiofthelinearorderisshowntob eequivalenttoap erio di

automataor,as we have seen inChapter VI,tostar-free sets. Thisis true for

nitewordsandforinnitewords.

InSetion4.2,we desrib ethehierarhyoftherstorderlogiofthelinear

order,orresp ondingtothealternateuseofexistentialanduniversalquantiers.

We showthat thishierarhyorresp onds,onwords,totheonatenation hier-

arhydesrib ed inChapterVI.Thisleads toadoublysatisfyingsituation: rst

order formulasnotonly orresp ondgloballyto anaturallass of reognizable

sets(the star-free sets),butthisorresp ondene holdslevelbylevel.

In Setion 5, we study amore restrited language, the rst order logi of

thesuessor. Wegive aneetive haraterizationofthesetsofinnitewords

denable in this logi: they are the threshold lo allytestable sets (dened in

Chapter VI I) whih are in the lass

2

(dened inChapter I I I. We shall in-

(3)

andwe shalluseitfor provingtheharaterization theorem.

We intro due inthe last setion the formalismof temporal logi and show

thatthislogiisequivalenttorstorderlogi.Finally,wedesrib e theexpres-

sive p owerof thetemp orallogiwithouttheuntilop erator.

InChaptersIXandX, we shallseehowthelogialframeworkpresented in

thishapter extends to themoregeneral ases ofbi-innite words and innite

trees.

2 The formalism of logi.

In this setion, we review the basi denitions of logi that will b e used in

thisb o ok. We shalldenesuessively rstorderlogi,seond order, monadi

seondorderandweakmonadiseondorder logi.

2.1 Syntax.

We shall rstdene thesyntax oflogial formulas. Letus start by rstorder

logi.

The basi ingredients are the logial symbols whih enompass the logial

onnetives: ^(and),_(or), :(not),! (implies),theequalitysymb ol=,the

quantiers9(thereexists)and8(forall),aninnitesetofvariables(mostoften

denotedbyx,y ,z,orx

0 ,x

1 ,x

2

,...) andparenthesis(toensurelegibilityofthe

formulas).

In addition to these logial symb ols, we make use of a set L of non logi-

al symb ols. These auxiliarysymb olsan b e of three typ es: relationsymb ols

(forinstane<),funtionsymb ols(forinstanemin),oronstant symb ols(for

instane 0, 1). Expressions are built from the symb ols of L by ob eying the

usualrules ofthesyntax,thenrst orderformulasarebuiltbyusing thelogi-

al symb ols,and aredenoted byF

1

(L). We nowgive adetailed desription of

thesyntaxi rulestoobtainthelogialformulasinthree steps, passingsues-

sively, followingthestandard terminology,fromterms to atomiformulasand

subsequentlyto formulas.

We shallillustratetheformationrulesbytakingas anexample

L=f<;min;0g

inwhih <is abinary relationsymb ol,minis atwo-variablefuntionsymb ol

and0isaonstant.

WerstdenethesetofL-terms. Itistheleastsetofexpressionsontaining

thevariables,theonstantsymb olsofL(iftherearesome)whihislosedunder

the following formation rule: if t

1

;t

2

;:::;t

n

are terms and if f is a funtion

symb ol with n arguments, then the expression f(t

1

;t

2

;:::;t

n

) is a term. In

partiular, if L do es notontain any funtionsymb ol,the onlyterms are the

variablesand theonstantsymb ols. Inour example,thefollowingexpressions

areterms:

x

0

min(0;0) min(x

1

;min(0;x

2

)) min(min(x

0

;x

1

);min(x

1

;x

2 ))

Theatomiformulasareformulaseitheroftheform

(t =t )

(4)

wheret

1 andt

2

areterms,or oftheform

R(t

1

;:::;t

n )

wheret

1

;:::;t

n

aretermsandwhereRisan-aryrelationsymb olofL. Onour

example,thefollowingexpressionsare atomiformulas:

(min(x

1

;min(0;x

2 ))=x

1

) (min(0;0)<0)

(min(min(x

0

;x

1

);min(x

1

;x

2

))<min(x

3

;x

1 ))

Notiethat,inordertoimprovelegibility,we didn'ttakeliterallythedenition

of atomiformulas: indeed, sine <isasymb olofbinary relation,one should

write<(t

1

;t

2

)instead oft

1

<t

2 .

Finally,therstorder formulasonL formtheleastsetof expressions on-

taining the emptyformulaand the atomiformulasand losed under thefol-

lowingformationrules:

(i) If('

i )

i2I

isanite familyofrstorderformulas,so aretheexpressions

(

^

i2I '

i

) and ( _

i2I '

i )

(ii) If'and are rstorderformulas,so aretheexpressions

:' and ('! )

(iii) If'isarstorderformulaandifxisavariable,thentheexpressions

(9x') and (8x')

arerstorderformulas.

Tomakenotationseasier,weset

true=

^

i2;

'

i

and false= _

i2;

'

i

Thefollowingexpressions arerstorderformulasof ourexamplelanguage:

(9x(8y ((y<min(z;0))^(x<0)))) (8x(y=x))

Again,it is onvenientto simplifynotationbysuppressing someof theparen-

thesis andwe shallwritethepreviousformulasundertheform

9x8y (y<min(x;0))^(z<0) 8xy=x

In arst orderformula, somevariableso ur after aquantier(existentialor

universal): the o urrenes of these variables are said to b e bounded and the

othero urrenes aresaidtob e free. Forexample,intheformula

9x(y<h(x;0))^8y (z<y)

thesimplyunderlinedo urrenes ofxandy areb oundedandtheo urrenes

of z and y doubly underlined are free. A variable is free ifat leastone of its

o urrenes is free. The set FV(') of free variables of a formula ' an b e

(5)

(1) If'isanatomiformula,FV(') istheset ofvariableso urringin',

(2) FV(:')=FV(')

(3) FV( V

i2I '

i

)=FV( W

i2I '

i )=

S

i2I FV('

i )

(4) FV('! )=FV(')[FV( )

(5) FV(9x')=FV(8x')=FV(')nfxg

Astatementisaformulainwhihallo urrenes ofvariablesareb ounded. For

example,theformula

9x8y (y<min(x;0))

isastatement.

Weshalldenoteby'(x

1

;x

2

;:::;x

n

)aformula'inwhihthesetoffreevari-

ablesisontainedinfx

1

;:::;x

n

g(but isnotneessarilyequaltofx

1

;:::;x

n g).

Thevariablesusedinrstorderlogi,orrst order)areinterpreted, aswe

shallsee,astheelementsofaset. Inseondorderlogi,onemakesuseofanother

typ eofvariables,alledseondordervariables,whihrepresentrelations. These

variablesaredenotedtraditionallybyapitalletters: X

0 ,X

1

,et.. Onebuiltin

this waythe set ofseond orderformulasonL,denoted by F

2

(L). The setof

termsisthesameasforrstorder. Theatomiformulasareeither oftheform

(t

1

=t

2 )

wheret

1 andt

2

areterms,oroftheform

R(t

1

;:::;t

n

) or X(t

1

;:::;t

n )

wheret

1

;:::;t

n

areterms,Risan-aryrelationsymb olofLandX isavariable

representingan-aryrelation.

Finally, seond order formulas on L formthe least set of expressions on-

tainingtheatomiformulasandlosedunderthefollowingformationrules:

(i) If'and areseondorder formulas,thenso are

:'; ('^ ); ('_ ); ('! )

(ii) If 'isaseondorder formula,if xisavariableand ifX isavariableof

relation,thentheexpressions

(9x') (8x') (9X') (8X')

areseondorder formulas.

Weallmonadiseond orderlogithefragmentofseondorderlogiinwhih

theonlyrelationvariablesareunaryrelationvariables,inotherwords,variables

representing subsets of the domain. By onveniene, they are alled set vari-

ables. We denotebyMF

2

(L)theset of monadiseond order logionL. We

shallalsousethenotationx2X insteadofX(x).

2.2 Semantis.

We have adopted so far a syntati p oint of view to dene formulaswith no

referene to semantis. But of ourse, formulaswould b e uninterestingif they

weremeaningless. Givingapreisemeaningtoformulasrequirestosp eify the

domainon whih we want tointerpret eah ofthe symb olsof thelanguageL.

Formally,astrutureS onL isgivenbyanonemptyset D ,alleddomainand

(6)

(1) toeahn-aryrelationsymb olofL,an-aryrelationdened onD ,

(2) toeahn-aryfuntionsymb olf ofL,an-aryfuntiondenedonD ,

(3) toeahonstantsymb olofL,anelementof D .

Todeongest notations, we shall use thesame notationfor therelation (resp.

funtion, onstant) symb ols and forthe relations (resp. funtions, onstants)

represented by these symb ols. The ontext willallow us to determine easily

what thenotationstands for. Forexample,we shallalwaysemploythesymb ol

< to designate the usual order relation on aset of integers, indep endently of

thedomain(N,Z,orasubsetof N).

We still have to interpret variables. Let us start by rst order variables.

Given a xed struture S on L, with domainD , a valuation on S is a map

from theset of variables into the set D . It is then easy to extend into a

funtionofthesetoftermsofL intoD ,byindutionontheformationrulesof

terms:

(1) If isaonstant symb ol,we put()=,

(2) iff isan-aryfuntionsymb oland ift

1 ,...,t

n

areterms,

f(t

1

;:::;t

n )

=f((t

1 ):::(t

n ))

If isavaluationanda anelementofD , we denoteby a

x

thevaluation 0

dened by

0

(y )= (

(y ) ify6=x

a ify=x

The notion of interpretation an b e now easily formalized. Dene, for eah

rstorderformula'andforeah valuation,theexpressions\thevaluation

satises'inS",or\S satises'[℄",denoted byS j='[℄,asfollows:

(1)Sj=(t

1

=t

2

)[℄ ifandonlyif(t

1 )=(t

2 )

(2)Sj=R(t

1

;:::;t

n

)[℄ifandonlyif (t

1

);:::;(t

n )

2R

(3)Sj=:'[℄ ifandonlyifnotSj='[℄

(4)Sj=(

^

i2I

')[℄ ifandonlyifforeah i2I; Sj='

i [℄

(5)Sj=( _

i2I

')[℄ ifandonlyifthereexistsi2I; Sj='

i [℄

(6)Sj=('! )[℄ ifandonlyifSj=6 '[℄orS j= [℄

(7)Sj=(9x')[℄ ifandonlyifSj='[

a

x

℄forsomea2D

(8)Sj=(8x')[℄ ifandonlyifSj='[

a

x

℄foreah a2D

Note that,atually, thetruth of theexpression \the valuation satises 'in

S"only dep ends onthevalues takenbythe free variables of'. In partiular,

if'isastatement,thehoieofthevaluationisirrelevant. Therefore,if'isa

statement,one saysthat'issatised byS (orthatS satises'),anddenote

bySj=',if,foreah valuation,S j='[℄.

Nextwemovetotheinterpretationofseondorderformulas. Givenastruture

S on L, with domain D , a seond order valuation on S is a map whih

asso iatestoeahrstordervariableanelementofDandtoeahn-aryrelation

n

(7)

IfisavaluationandRasubset ofD n

, R

X

denotesthevaluation 0

dened

by

0

(x)=(x)ifxisarstordervariable

0

(Y)= (

(Y) ifY 6=X

R ifY =X

Thenotionofinterpretation,alreadydenedforrstorder,issupplementedby

thefollowingrules:

(9) S j=(X(t

1

;:::;t

n

))[℄ifandonlyif (t

1

);:::;(t

n )

2(X)

(10)S j=(9X')[℄ ifandonlyifthere existsRD n

; Sj='[

R

X

(11)S j=(8X')[℄ ifandonlyiffor eahRD n

; Sj='[

R

X

Weak monadi seond order logi is omp osed with the same formulas than

monadiseondorderlogi,buttheinterpretation isevenmorerestrited: are

onlyonsideredvaluationswhih asso iatetosetvariablesnite subsetsof the

domainD .

Twoformulas'and aresaidtob elogiallyequivalentif,foreahstruture

S onL,wehave Sj='ifandonlyifS j= .

Itiseasy toseethatthefollowingformulasarelogiallyequivalent:

(1) '^ and :(:'_: )

(2) '! and :'_

(3) 8x' and :(9x:')

(4) '_ and _'

(5) '^ and ^'

(6) '^fal se and fal se

(7) '_fal se and '

Consequently, upto logialequivalene, we mayassumethat theformulasare

builtwithoutthesymb ols^,!and8.

Logialequivalenealsop ermitstogiveamorestruturedformtoformulas.

A formula is said to b e under disjuntive normal form if it an b e written

as disjuntion of onjuntions of atomi formulas or of negations of atomi

formulas,inotherwordsundertheform

_

i2I

^

j2Ji ('

ij _:

ij )

where I and the J

i

are nite sets, and where the '

ij

and the

ij

are atomi

formulas. Thenext resultisstandard andeasilyproved.

Prop osition2.1 Every quantier free formula is logially equivalent with a

quantierfreeformulain disjuntive normalform.

Oneansetupahierarhyinsiderstorderformulasasfollows. Let

0

=

0

thesetquantier-freeformulas. Next,foreahn0,denoteby

n+1

theleast

(8)

(1) ontainstheb o oleanombinationsofformulasof

n ,

(2) islosedunderdisjuntionsandniteonjuntions,

(3) if'2andifxisavariable,9x'2.

Similarly,denoteby

n+1

theleastset offormulassuh that

(1) ontainstheb o oleanombinationsofformulasof

n ,

(2) islosedunderdisjuntionsandniteonjuntions,

(3) if'2 andifxisavariable,8x'2 .

Inpartiular,

1

isthesetof existentialformulas|thatisoftheform

9x

1 9x

2 ::: 9x

k '

where'isquantier-free.

Finally,we denotebyB

n

thesetofb o oleanombinationsofformulasof

n .

Arstorderformulaissaidtob einprenex normalformifitisoftheform

=Q

1 x

1 Q

2 x

2 ::: Q

n x

n '

wheretheQ

i

areexistentialoruniversalquantiers(9or8)and'isquantier-

free. Thesequene Q

1 x

1 Q

2 x

2 ::: Q

n x

n

, whih an b e onsidered as aword

onthealphab et

f9x

1

;9x

2

;:::;8x

1

;8x

2

;:::g;

isalledthequantiationprexof . Theinterestoftheseformulasinprenex

normalformomesfromthefollowingresult.

Prop osition2.2 Every rst orderformula islogiallyequivalenttoa formula

inprenexnormalform.

Pro of. ItsuÆes toverifythatifthevariablexdo es noto ur intheformula

then

9x('^ )(9x')^

9x('_ )(9x')_

andthesameformulasholdforthequantier8. Heneitisp ossible,byrenaming

thevariables,tothrowbakthequantiers totheoutside.

Prop osition2.2anb eimprovedtotakeintoaounttheleveloftheformula

inthe

n

hierarhy.

Prop osition2.3 Foreah integern0,

(1) Every formulaof

n

islogiallyequivalenttoaformulainprenexnormal

forminwhihthe quantiation prexisasequene ofn(possibly empty)

alternating bloks of existentialand universalquantiers,starting with a

blokof existentialquantiers.

(2) Every formulaof

n

islogiallyequivalenttoaformulainprenexnormal

forminwhihthe quantiation prexisasequene ofn(possibly empty)

alternating bloks of existentialand universalquantiers,starting with a

(9)

For example,theformula

9x

1 9x

2 9x

3

| {z }

blo k1 8x

4 8x

5

| {z }

blo k2 9x

6 9x

7

| {z }

blo k3 '(x

1

;:::;x

6 )

b elongsto

3

(andalsotoall

n

'ssuh thatn3). Similarlytheformula

|{z}

blo k1 8x

4 8x

5

| {z }

blo k2 9x

6 9x

7

| {z }

blo k3 '(x

1

;:::;x

7 )

b elongsto

3

andto

2

, but notto

2

, sine theounting ofblo ksof a

n -

formulashouldalwaysb eginbyap ossiblyemptyblo kofexistentialquantiers.

One an intro due normalformsand ahierarhyforseond order monadi

formulas. Thus, one an show that every monadi seond order formula is

logiallyequivalentto aformulaoftheform

=Q

1 X

1 Q

2 X

2 ::: Q

n X

n '

wheretheQ

i

areexistentialoruniversalquantiersand'isarstorderformula.

2.3 Logi on words.

The logial language that we shall use now was intro dued by B uhi under

thenameof\sequentialalulus". Itp ermitsto formalizeertainprop ertiesof

words. Tointerpretformulasonwords,weshallonsiderawordu=u(0)u(1):::

as amap asso iating a letter to eah index. The set of indexes will itself b e

onsideredasasubset oftheset

N =N[f1g

thesetofnaturalnumb erswithanewmaximalelement,denotedby1.

LetAb eanalphab et. Foraninnitewordu2A

!

,wesetjuj=1,sothat

thelengthofawordisalwaysanelementofthesetN. Foreahwordu2A 1

,

onedenesthedomainofu,denotedbyDom(u)as

Dom(u)=fi2N j0ijujg

So, if u is a nite word, Dom(u) = f0;:::;jujg and if u is an innite word,

Dom(u)=N. Deneforeahlettera2Aaunaryrelationaonthedomainof

uby

a=fi<jujju(i)=ag:

Finally,letusasso iatetoeahworduthestruture

M

u

= Dom(u);(a)

a2A

;

Beware that, with these denitions, the domain of a nite or innite word

omprises a supplementary p osition at the end. One an imagine that this

p ositioniso upiedbyanend symb ol(the$prizedbylexialanalyzers...).

Forexample, ifu=abbaab,then Dom(u)=f0;1;:::;6g,a=f0;3;4gand

b=f1;2;5g. Ifu=(aba)

!

,then

a=fn2Njn0 mo d3or n2 mo d3gand

b=fn2Njn1 mo d3g

(10)

Fromnow and on, we shall interpret logial formulas onwords, that is, on a

strutureoftheformM

u

asexplainedab ove. Let'b eastatement. Aniteor

innitewordu2A 1

satises'ifthestrutureM

u

satises'. Thisisdenoted

byuj='. We alsosaythatuisamo delof'. Denethespetrumof'as the

set

S(')=fu2A 1

jusatises'g

We alsosetS

(')=S(')\A

,S +

(')=S(')\A +

andS

!

(')=S(')\A

!

.

Fromnowandon,allthevariableswillb einterpretedasnaturalintegersor

1. Therefore, we shall use logialequivalene restrited to interpretations of

domainN.

The various logial languages that we shall onsider all ontain, for eah

a2A, aunaryrelationsymb oldenoted(a)whennoonfusionarises. Weshall

also use two other non logial symb ols, < and S, that willb e interpreted as

theusualorderand asthesuessor relationonDom(u): S(x;y ) ifandonlyif

y = x+1. In thesequel, we shall mainlyonsider twologiallanguages: the

language

L

<

=f<g[faja2Ag

willb e alledthelanguageof thelinear orderandthelanguage

L

S

=fSg[faja2Ag

willb ealledthelanguageofthesuessor. Theatomiformulasofthelanguage

ofthelinearorder areoftheform

a(x); x=y ; x<y

andthoseofthelanguageofthesuessor areoftheform

a(x); x=y ; S(x;y ):

Weshalldenoteresp etivelybyF

1

(<)andMF

2

(<)thesetofrstorderand

monadiseond order formulasof signaturef<;(a)

a2A

g. Similarly,wedenote

byF

1

(S)andMF

2

(S)thesamesetsofformulasofsignaturefS;(a)

a2A

g. Inside

F

1

(<)(resp. F

1

(S)),the

n

(<)(resp.

n

(S))hierarhyisbasedonthenumb er

ofquantieralternations.

Weshallnowstarttheomparisonb etweenthevariouslogiallanguageswe

have intro dued. First of all,the distintionb etween thesignatures S and <

is onlyrelevantfor rstorder inview ofthe followingprop osition. A relation

R(x

1

;;x

n

)on theintegers is saidto b e dened bya formula'(x

1

;:::;x

n )

if,foreahi

1

;:::;i

n

0,R(i

1

;:::;i

n

)ifand onlyif'(i

1

;:::;i

n

)istrue.

Prop osition2.4 ThesuessorrelationanbedenedinF

1

(<),andtheorder

relationonintegersanbe denedinMF

2 (S).

Pro of. Thesuessor relationanb e denedbytheformula

(i<j)^8k

(i<k )!((j=k )_(j<k ))

whih states that j = i+1 if i is smaller than j and there exist no element

b etween iandj. Conversely,i<j an b eexpressed inMF

2

(S) asfollows:

9X

8x8y

(x2X)^S(x;y )

!(y2X)

^(j2X)^(i2=X)

(11)

whih intuitivelymeans that there exists anintervalof theform[k ;+1[on-

tainingjbut noti.

On theontrary, we shallsee later on(Corollary 5.10)that therelation <

annotb edened inF

1 (S).

GiventwosetsofformulasF andG,we usethenotationFGifforeah

formula of F, there exists an equivalent formula inG (we remind the reader

that the variables are alwaysinterpreted as integers). Denote by F G the

asso iatedequivaleneandbyF <GtherelationF GbutF 6G. Thenext

result summarizestheexpressive p owerofthevariouslogiallanguages.

Prop osition2.5 The followingrelationshold:

F

1

(S)<F

1

(<)<MF

2

(S)=MF

2 (<)

Pro of. Prop osition2.4showsthedoubleinequalityF

1

(S)F

1

(<)MF

2 (S).

Thefatthattheseinequalitiesarestritfollowresp etivelyfromCorollary5.10

andCorollary4.4,whihwillb e provedlateron.

Finally, we have MF

2

(S) MF

2

(<) sine S an b e expressed in F

1 (<),

whih inturn is ontainedinMF

2

(<). But we also have MF

2

(<) MF

2 (S)

sine,byProp osition2.4,therelation<an b edened inMF

2 (S).

It will b e onvenient to enrih our logial languages by adding auxiliary

formulaswhih anb e onsideredas abbreviations. We shallseeanexamplea

fewlinesb elowwiththeprediateFinite(X)whihexpressesthefatthataset

(ofintegers)isnite.

If xis a variable, it is onvenient to write x+1 (resp. x 1) to replae

avariable y submitted to the onditionS(x;y ) (resp. S(y ;x)). However, the

readershouldb ewareofthefatthatx+yisnotdenableinMF

2

(<)(Exerise

3).

Weanalsousethesymb olsand6=withtheirusualinterpretations: xy

stands for(x<y )_(x=y ) andx6=yfor:(x=y ).

Anotherexample,tob eusedb elow,arethesymb olsmin,max,whihdesig-

natetherstandthelastelementofthedomain.Thesesymb olsanb edened

inF

1

(S)withtwoalternationsofquantiers:

min: 9min 8x:S(x;min)

max: 9max 8x:S(max;x)

Thesesymb olsp ermittoexpressthatuistheemptyword(max=min)orthat

uisnite((max=min)_9xS(x;max)). WeshalldenotebyFINITEthelatter

formula.

We shall sometimesneedaparametrized,or relative,notionof satisfation

for aformula. Let indeed '(x;y ) b e aformulawithonly twofree variables x

and y . Let u2A 1

b ea wordand i;j 2Dom(u). A wordu2A 1

is saidto

satisfythe formula' b etween i and j if u

i :::u

j 1

j=' (or u

i u

i+1

:::j=' if

j=1).

Prop osition2.6 Foreahstatement',thereexistsaformula'(x;y ) withthe

(12)

same level in the hierarhy

n

), having x and y as unique free variables and

whihsatisesthe following property: foreah niteor inniteworduand for

eah s;t2Dom(u), uj='(s;t) ifand onlyif usatises'between sand t.

Pro of. Theformulas'(x;y ) are built byindutionon theformation rulesas

follows: if'isanatomiformula,weset '(x;y )='. Otherwise,weset

(:')(x;y )=:'(x;y )

('_ )(x;y )='(x;y )_ (x;y )

(9z')(x;y )=9z ((xz)^(z<y )^'(x;y ))

(9X')(x;y )=9X ((8z(X(z)!(xz)^(z<y ))^'(x;y ))

Itiseasytoverifythattheformulas'(x;y ) builtinthiswayhavetherequired

prop erties.

Weonludethissetionbyexaminingtheplaeoftheweaktheoriesofthe

linear order and the suessor. First of all, one an verify that the formulas

usedinthepro ofofProp osition2.4atuallydenetherelation<inWMF

2 (S)

(Exerise 1). Itfollowsthat

WMF

2

(S)=WMF

2 (<)

andthattheweakmonaditheoriesofthesuessor andofthelinearorderare

thesame.

Weshallseeontheotherhandthat

WMF

2

(<)=MF

2 (<)

so that theweak andstrongtheories of thelinearorderoinide. We an also

noteimmediatelythenext result,whihistrue inamuhmoregeneral setting

(atuallyasso onasonean writeaformulaexpressingthat aset isnite).

Prop osition2.7 The formula WMF

2

(<)MF

2

(<) holds.

Pro of. OneanwriteinMF

2

(<)aformulaFinite(X)expressingthatasetX

isnite. Forinstane

Finite(X)=9x(8y X(y )!y<x)

EveryformulaofWMF

2

(<)isequivalenttoaformulaoftheform

=Q

1 X

1 :::Q

n X

n '

where'isarstorderformula.Theformula isthenequivalenttotheformula

Q

1 X

1 :::Q

n X

n '^

^

1in

Finite(X

i )

ofMF

2 (<).

The formulas in whih the prediates a do not o ur p ertain uniquely to

integers. We shallseeinthenext setionthat thewords have nevertheless the

(13)

3 Monadi seond order logi on words.

Thissetionisdevotedtothepro ofofaresultofB uhistatingthatthesubsets

of A 1

denable inmonadi seond order logi are exatly the rational (resp.

! -rational)sets.

Theorem3.1 LetX A 1

bea set of niteor innite words. The following

onditionsareequivalent:

(1) X isdenable byaformula of MF

2 (<),

(2) X isreognizable.

The pro of of this result an b e deomp osed into two parts: passing from

words toformulas,andfromformulastowords.

Topassfromwordstoformulas,wesimulatetheb ehaviourofanautomaton

byaformula.

Prop osition3.2 For eah B uhi automaton A = (Q;A;E;I;F), there exist

formulas'

+

;'

! ofMF

2

(<)suh thatS +

('

+ )=L

+

(A),S

!

('

! )=L

!

(A) and

L 1

(A)=S('

+ _'

! ).

Pro of. Supp osethatQ=f1;:::;ng. Werstwriteaformula expressingthe

existene ofa pathof lab elu. Tothis purp ose, we asso iate to eah state q a

set variableX

q

whiheno des theset ofp ositionsinwhihagiven pathvisits

thestate q . Theformulastates thatthe X

q

'sare pairwisedisjointand that if

apath is instate q inp osition x,in state q 0

inp osition x+1and ifthe x-th

letterisana, then(q ;a;q 0

)2E. Thisgives

=

^

q 6=q 0

:9x(X

q

(x)^X

q 0

(x))

^

8x8yS(x;y )! _

(q ;a;q 0

)2E X

q

(x)^a(x)^X

q 0

(y )

It remainsto state that the pathis suessful. For anite path, itsuÆes to

knowthat 0b elongsto one oftheX

q

'ssuh that q2I and that maxb elongs

tooneoftheX

q

'ssuh thatq2F. Therefore,weset

+

= ^FINITE^

_

q 2I X

q (0)

^

_

q 2F X

q (max)

Aninnitepathissuessfulif0b elongstooneoftheX

q

'ssuhthatq2I and

if,for eah p ositionx, thereexists ap osition y>xinwhih thepath visitsa

nalstate. Insummary,weset:

!

= ^

_

q 2I X

q (0)

^

_

q 2F

8x9y (x<y ^ X

q (y ))

Theformulas

'

+

=9X

1 9X

2 :::9X

n (

+ )

' =9X 9X :::9X ( )

(14)

nowentirelyeno de theautomaton.

To pass from statements to sets of words, a natural idea is to argue by

indutionontheformationrulesofformulas. TheproblemisthatthesetS(')

is only dened when ' is a statement. The traditional solution in this ase

onsistsofaddingonstantstointerpret freevariablestothestruture inwhih

the formulas are interpreted. For the sake of homogeneity, we pro eed in a

slightlydierentway,sothatthese strutures remainwords.

Theideaistouseanextendedalphab etoftheform

B

p;q

=Af0;1g p

f0;1g q

suh thatp(resp. q )isgreater thanorequaltothenumb erofrstorder(resp.

seond order) variables of '. An innite word on the alphab et B

p;q

an b e

identiedwiththesequene

(u

0

;u

1

;:::;u

p

;u

p+1

;:::;u

p+q )

whereu

0 2A

!

andu

1

;:::;u

p

;u

p+1

;:::;u

p+q

2f0;1g

!

. Weareatuallyinter-

estedinthesetK

p;q

ofwordsofB 1

p;q

inwhiheahoftheomp onentsu

1

;:::;u

p

ontainexatlyoneo urrene of1. Iftheontextp ermits,we shallnoteB in-

steadofB

p;q

andK insteadofK

p;q

. We alsoset

K

=K\B

; K

!

=K\B

!

Forexample,ifA=fa;bg,awordofB

!

3;2

isrepresented inFigure3.1.

u

0

a b a a b a b

u

1

0 1 0 0 0 0 0

u

2

0 0 0 0 1 0 0

u

3

1 0 0 0 0 0 0

u

4

0 1 1 0 0 1 1

u

5

1 1 0 1 0 1 0

Figure3.1. AwordofB

!

3;2 .

Theelementsof K arealled marked wordsonA. This terminologyexpresses

the fat that the elements of K are (nite or innite) words in whih lab els

markingertainp ositionshaveb eenadded. Eahoftheprstrowsonlymarks

onep ositionandthelastq onesanarbitrarynumb erofp ositions.

Reall thatthestar-freesubsets of B 1

are obtainedfromthesets B 1

and

;byusingtheb o oleanop erationsandthemarkedprodut

(X ;b;Y)!XbY

whihasso iates toXA

,b2BandY B 1

,thesubset XbY ofB 1

. Star-

free sets areinpartiular rationalsubsets ofB 1

. Thenwe have the following

prop erty.

Prop osition3.3 For eah p;q0, the set K

p;q

is a star-free,and hene ra-

tional,subsetof B 1

.

(15)

Pro of. Set,for1ip,

C

i

=f(b

0

;b

1

;:::;b

p+q

)2Bjb

i

=1g

ThenK istheset ofwords ofB 1

ontainingexatlyone letterofeahC

i , for

1ip. Nowtheformula

K=

\

1ip B

C

i B

1

n [

1ip B

C

i B

C

i B

1

:

showsthatK isastar-free subset ofB 1

.

TheinterpretationofformulasonthewordsofB 1

p;q

followsthemainlinesof

theinterpretationdesrib edinSetion2.3,buttheinterpretationofaisslightly

mo diedbysetting

a=fi<jujju

0

(i)=ag:

Let '(x

1

;:::;x

r

;X

1

;:::;X

s

) b e a formula in whih the rst (resp. seond)

orderfreevariablesarex

1

;:::;x

r

(resp. X

1

;:::;X

s

),withrpandsq . Let

u=(u

0

;u

1

;:::;u

p+q

) b e awordof K

p;q

and, for1i p, denote byn

i the

p ositionoftheunique1ofthewordu

i

. Ontheexampleab ove,onewouldhave

n

1

=1, n

2

= 4and n

3

=0. A worduis said to satisfy' ifu

0

satises '[℄,

whereisthevaluationdened by

(x

j )=n

j

(1jr )

(X

j

)=fi2Nju

p+j;i

=1g (1js)

Inotherwords,eahX

j

isinterpretedasthesetofp ositionsof1'sinu

p+j ,and

eah x

j

as theuniquep ositionof 1inu

j

. Note thatfor p=q=0,we reover

theustomaryinterpretationofstatements.

Set

S

p;q

(')=fu2K

p;q

jusatises'(x

1

;:::;x

p

;X

1

;:::;X

q )g

Again,weshallsometimessimplyusethenotationS(')instead ofS

p;q

('). We

alsonote that S

(')=S(')\A

and S

!

(')=S(')\A

!

. Conjuntionsand

disjuntionsareeasily onvertedintob o oleanop erations.

Prop osition3.4 Foreahnitefamilyofformulas('

i )

i2I

,thefollowingequal-

itieshold:

(1) S(

W

i2I '

i )=

S

i2I S('

i ),

(2) S(

V

i2I '

i )=

T

i2I S('

i ),

(3) S(:')=K

p;q nS(')

Pro of. Thisisanimmediateonsequene ofthedenitions.

Toonludethepro of ofTheorem3.1,itremains toprove byindutionon

the formation rules of formulas that the sets S(') are rational. Let us start

with theatomiformulas. As forthe set K, we prove a slightly morepreise

(16)

Prop osition3.5 For eah variablex;y , for eah set variableX and for eah

lettera2A,thesetsofthe formS(a(x)),S(x=y ), S(x<y ) andS(X(x))are

star-free,and hene rational, subsetsof B 1

.

Pro of. Set,fori;j2f1;:::;p+q g

C

j;a

=fb2B

p;q jb

j

=1andb

0

=ag

C

i;j

=fb2B

p;q jb

i

=b

j

=1g

C

i

=fb2B

p;q jb

i

=1g

Thenwe have,bysetting B=B

p;q

S(a(x

i

))=K\B

C

i;a B

1

S(x

i

=x

j

)=K\B

C

i;j B

1

S(x

i

<x

j

)=K\B

C

i B

C

j B

1

S(X

i (x

j

))=K\B

C

i+p;j B

1

whihestablishestheprop osition.

Prop osition 3.4allowsone totreat logialonnetives. It remainsto treat

thease oftheformulasoftheform9x'and9X'. Denoteby

i

thefuntion

onsistingto \erase"thei-thomp onent,dened by

i (b

0

;b

1

;:::;b

p+q )=(b

0

;b

1

;:::;b

i 1

;b

i+1

;:::;b

p+q )

Thus

i

should b e onsidered asafuntionfromB

p;q into B

p 1;q

ifipand

intoB

p;q 1

ifp<ip+q .

Prop osition3.6 Foreah formula', the followingformulashold

(1) S

p 1;q (9x

p ')=

p (S

p;q ('))

(2) S

p;q 1 (9X

q ')=

p+q (S

p;q ('))

Pro of. Thisfollowsfromthedenitionofexistentialquantiers.

Weare nowreadyto showthatifS(') isrational,thenso areS(9x')and

S(9X'). Wemayassumethatx=x

p

andX =X

q

. Then,byProp osition3.6,

we have S(9x

p ') =

p

(S(')) and S(9X

q

') =

p+q

(S(')). Sine morphisms

preserve rationality,theresult follows.

This onludes thepro of ofB uhi'stheorem. Thereader willndinExer-

ise 4 the sketh of another pro of to pass fromwords to formulasbased on a

tradutionofrationalexpressions.

Wenowshow,asitwasannounedinSetion2.3thatstrongandweaklogi

oinideonwords.

Theorem3.7 The theoriesMF

2

(<) and WMF

2

(<) areequivalent onwords.

Pro of. Prop osition 2.7 shows that WMF

2

(<) MF

2

(<). To establish the

opp osite diretion,it suÆes, byB uhi's theorem, to show that eah rational

subset ofA 1

anb e dened byaformulaofWMF

2

(<). There isnoproblem

(17)

sets. ThereforeitsuÆestoonsidertheaseofareognizablesetX ofinnite

words.

By MNaughton'stheorem (TheoremI.9.1),X isab o oleanombinationof

sets of the form

!

Y . We laim that suh a set is denable in weak monadi

seond order logi. Indeed, let '(x;y ) b e a formula of WMF

2

(<) dening

Y (whih onsists of nite words). Then we have u j= '(0;n) if and only if

u

0 u

1 :::u

n 1

2Y byProp osition2.6andtheformula

=8x 9y (x<y )^'(0;y )

guaranties thatuhasinnitelymanyprexesinY. ThusS( )=

!

Y .

Another pro of of this result is given in Exerise 5. It onsists in o ding

diretly a Muller automaton by a weak monadi seond order formula. We

onludethissetionbymakingtwoobservationsoflogialnature.

First of all, B uhi's theorem allowsone to show that the monadi seond

ordertheoryofnonnegative integersisdeidable.

Theorem3.8 There is an algorithm to deide whether a given statement of

MF

2

(<) istrueon N.

Pro of. Let'2MF

2

(<). OneaneetivelyalulatethesetS(')anddeide

whetherS(')=A

!

or S(')=;.

Next, the pro of of Prop osition 3.2 shows that the hierarhy on formulas

of MF

2

(<) based on the numb er of alternations of seond order quantiers

ollapsesto therstlevel. Wehaveindeed thefollowingresult.

Prop osition3.9 Every formula of MF

2

(<) is equivalent to aformula of the

form

9X

1 :::9X

k '(X

1

;:::;X

k )

where'isarstorderformula.

Infat,one anevenshowthatevery formulaofMF

2

(<)isequivalenttoa

formulaoftheform9X'(X) where'is arstorderformula(Exerise 2).

4 First order logi of the linear order.

WenowstudythelanguageF

1

(<)oftherstorderlogiofthelinearorder. We

shall,inarststep,haraterizethesetsofwordsdenableinthislogi,whih

happ entob ethestar-freesets. Next,weshallseeinSetion4.2howthisresult

anb erenedtoestablishaorresp ondeneb etweenthelevelsthe

n

-hierarhy

ofrstorderlogiandtheonatenationhierarhyofstar-free sets.

4.1 First order and star-free sets.

We shallprove thefollowingkeyresult.

Theorem4.1 A set of nite or innite words is star-free if and only if it is

denable byaformula ofF (<).

Références

Documents relatifs

Below is the kinetic description of this device as shown in

a) Justifier comme méthode de résolution possible celle du discriminant.. b) Calculer en fonction de n le discriminant

paragraph. You need to adjust to the automatic return because, as you will see later, extra returns will cause unintended results. A typewriter space bar moves

29 April - 1 May: Facts and Events (with Terence Parsons and Stephen Neale) 6-8 May: Humean supervenience (with Frank Jackson and John Hawthorne). 1-3 July: Time and tense (with

It differs from the Control Experiment in that each game is followed by a second stage that allows targeted interactions (in this treatment, peer punishment opportunities) at

28 En aquest sentit, quant a Eduard Vallory, a través de l’anàlisi del cas, es pot considerar que ha dut a terme les funcions de boundary spanner, que segons Ball (2016:7) són:

La transición a la democracia que se intentó llevar en Egipto quedó frustrada en el momento que el brazo militar no quiso despojarse de sus privilegios para entregarlos al

L’objectiu principal és introduir l’art i el procés de creació artística de forma permanent dins l’escola, mitjançant la construcció d’un estudi artístic