• Aucun résultat trouvé

Clebsch-Gordan coefficients for X x X and R x R in beta tungsten

N/A
N/A
Protected

Academic year: 2021

Partager "Clebsch-Gordan coefficients for X x X and R x R in beta tungsten"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00208858

https://hal.archives-ouvertes.fr/jpa-00208858

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Clebsch-Gordan coefficients for X x X and R x R in beta tungsten

M. Suffczynski, H. Kunert

To cite this version:

M. Suffczynski, H. Kunert. Clebsch-Gordan coefficients for X x X and R x R in beta tungsten. Journal

de Physique, 1978, 39 (11), pp.1187-1192. �10.1051/jphys:0197800390110118700�. �jpa-00208858�

(2)

CLEBSCH-GORDAN COEFFICIENTS FOR X x X

AND R x R IN BETA TUNGSTEN

M. SUFFCZYNSKI

Instytut Fizyki PAN, Al Lotników 32/46, 02-668 Warszawa, Poland

and H. KUNERT

Instytut Fizyki Politechniki Pozna0144skiej, ul. Piotrowo 3, 60-965 Pozna0144, Poland

(Reçu le 6 décembre 1977, révisé le 9 mars 1978, accepté le 20 mars 1978)

Résumé.

2014

Les coefficients de Clebsch-Gordan sont calculés pour les représentations irréductibles X x X, R x R de la structure bêta-tungstène.

Abstract.

2014

The Clebsch-Gordan coefficients are calculated for irreducible representations

X x X and R x R in beta tungsten structure.

Classification

Physics Abstracts

61. 50E

1. Introduction.

-

The binary intermetallic com-

pounds having A3B composition and the p-tungsten

A-15 structure are of great theoretical interest and

outstanding practical importance. They include mate-

rials with the highest temperatures of transition to the

superconducting state that have been observed, such

as Nb3Ge, Nb3Sn, Nb3Al, V3Ga, V3Si, etc.

It is known that the A-15 structure is liable to lattice instabilities, defects, etc. and that the effects of disorder

along the chains in the A-15 structure dominate its

superconducting properties [1-4].

A simplified theory of symmetry changes in second-

order phase transitions, lattice instabilities, etc. applied

to V3Si was proposed by Birman [5] and Gorkov [6]

and discussed in [7, 8]. Expérimental results relating

structural instability and superconductivity have been compiled in several papers [4, 9].

In several compounds of the A-15 structure the phonons become soft at the M point leading to the

lattice instability and eventually to a distortive phase

transition [10].

Recently Jaric and Birman [11], using group theore- tical methods, considered second-order phase transi-

tions in A-15 compounds.

Recently also much attention has been directed to

the Clebsch-Gordan (CG) coefficients of the space group representations. The computation of CG

coefficients for space groups can be done by several

methods [12-22]. In particular Birman and Beren-

son [23] and Birman [1 S] have shown that the elements of the first order scattering tensor are precisely certain

CG coefficients or prescribed linear combinations of them, and the elements of the second order tensor are

particular sums of products of CG coefficients. The matrix elements of the effective Hamiltonian are

products of appropriate CG coefficients multiplied by symmetrized tensorial field quantities, as shown by

Birman and Ting-Kuo Lee [24].

For a calculation of the Clebsch-Gordan coeffi- cients or scattering tensors, an elaboration of the selection rules is a necessary first step. The selection rules for the double space group Of of the 03B2-tungsten

or A-15 structure are determined in [25].

This paper deals with the problem of constructing

basis functions for the representations whiclr are

contained in the Kronecker product of two irreducible space group representations. We compute here the CG coefficients of the representations X Q X and R p R for the space group 0’(Pm3n). The CG

coefficients for M (D M in 03B2-tungsten structure have

yet to be published.

2. Method using matrix éléments of small repre- sentations.

-

For the irreducible representations of

the crystallographic space group defined by wave

vectors kt1’ k03C3, k§,, satisfying wave vector selection

rules

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0197800390110118700

(3)

1188

the CG coefficients

are defined as coefficients between the basis fonctions

pv03C3..,,, and 03C8kYâ a‘ Yâ °’l ‘ of the representations of

dimensions 1" and 1 x l’ respectively :

Berenson and Birman [17] and Berenson et crl. [ 8]

have shown that the CG coefficients for space groups

can be calculated from the small irreducible repre- sentations dkl , dk’l‘, dk"1" of the little wave vector groups.

We have according to Birman [14], Berenson and Birman [17]. Berenson, Itzkan and Birman [18] :

Here h is the order of the wave vector group of k"

and the summation runs over

i.e., the intersection of the wave vector groups of k, k’ and k" satisfying equation (1).

The CG coefficients defined in equation (4) consti-

tute the (111) block of coefficients. In equation (4)

we set a

=

à, a’ =.à’, a" = a", compute the righthand

side of equation (4) and, if it is non-zero, say for a.= ao" a’ = aÓ" a"

=

a’o’, we determine U1C101ClhlC1(’.

We choose its phase so as to have this U real. We now

fix à, «a-’, a" and let a, a’, a" range over all allowable values. Thus doing summations on the righthand side

of equation (4), we get the (111) block of the CG matrix. If y > 1, we have to select ao, a’, a" which

are different from the first set, yielding a différent non-

zero diagonal coefficient. Setting a

=

ao.. a’ = ab..

y

=

a§, and let a, a’, a" range over all allowed values,

we ,get a second set of CG coefficients which are

orthogonal to the first,set. The procedure is repeated

until all (111) blocks ofCG coefficients are determined.

The (66’ a") blocks of coefficients are determined by

matrix multiplication from the U 111 block :

where k + k’

=

k" are canonical wave vectors and

Here { çz 1 03A3} is one space group operation which

rotates the ( 111 ) block into the (uu’ a") block so that

3. Conclusions.

-

Recently much attention has been directed to the highest symmetry points of the

Brillouin zone for the A-15 structure. In particular,

Birman et al. [24] used the CG coefficients to calculate the matrix elements k.p of the effective Hamiltonian.

Ting-Kuo Lee et al. [26] introduced a three-dimen- sional k. p model for the electronic structures of.the A-15 compounds based upon a six-dimensional irreducible representation R4 of the space group 03

In order to determine energy band dispersion rela-

tions, they used a generalized k. p theory called the method of invariants by Bir and Picus [27]. The same

results can be obtained by calculating the CG coef-

ficients and determining KK"la’’ for R4 x R4.

According to Birman et al. [24] we have

where al’’ is independent of a, a’, and ,K k" are sym- metry-adapted components of tensorial field quanti-

ties.

4. Description of tables.

-

Table 1 lists coordinates of the symmetry points. Table Il presents the cano- nical wave vectors, LWVSRs [28], and intersections.

TABLE 1

TABLE II

(4)

TABLE III

TABLE IV

We present in tables III-VI the stars of the wave vectors and the symmetry operations for calculating

the CG coefficients. Tables VII-XI and XII list CG coefficients for X x X and R x R of space group

Of (Pn3m). In tables VII-XII we use the symbols

which have the following meanings :

The symmetrized, in square brackets, and antisym-

metrized squares of the ,irreducible representations

can be seen explicitly in the tables of CG coefficients.

TABLE V

TABLE VI

For all the cases in table VI we have :

TABLE VII

(5)

1190

To label the irreducible representations of the

group 0’ we use Miller and Love [291 labels and gene- rators of the corresponding representations, and their

numbers of the space group symmetry operators listed for cubic groups in table 1 on p. 123 [29]. In

tables VIII, X, XI, XII the entries not written expli- citly are zero.

One of the authors (H. K.) was working under Project No. 1.5.6.04 coordinated by Inst. Exper.

Phys. of Warsaw University.

TABLE VIII

TABLE IX

(6)

TABLE X

TARLE XI

(7)

1192

TABLE XII

References

[1] MATTHIAS, B. T., CORENZWIT, E., COOPER, A. S. and LONGI- NOTTI, L. D., Proc. Nat. Acad. Sci. U.S.A. 68 (1975) 56.

[2] MATTHIAS, B. T., Superconductivity in d- and f-Band Metals

(edited by D. H. Douglass, Amer. Inst. Phys., New York) 1972, p. 367.

[3] LABBÉ, J. and FRIEDEL, J., J. Physique 27 (1966) 153, 303, 708.

[4] TESTARDI, L. R., Rev. Mod. Phys. 47 (1975) 637.

[5] BIRMAN, J. L., Phys. Rev. Lett. 17 (1966) 1216; Chem. Phys.

Lett. 1 (1967) 343.

[6] GORKOV, L. P. and DOROKHOV, O. N., J. Low Temp. Phys.

22 (1976) 1.

[7] CRACKNELL, A. P., Adv. Phys. 23 (1974) 673.

[8] BHATT, R. N. and MCMILLAN, W. L., Phys. Rev. B 14 (1976)

1007.

[9] WEGER, M. and GOLDBERG, I. B., Solid State Phys. 28 (1973) 1 [10] ACHAR, B. N. N. and BARSCH, G. R., Phys. Status Solidi (b)

76 ( 1976) 133, 677.

[11] JARIC, M. V. and BIRMAN, J. L., Phys. Rev. B 16 (1977) 2564.

[12] LITVIN, D. L. and ZAK, J., J. Math. Phys. 9 (1968) 212.

[13] GARD, P., J. Phys. A 6 (1973) 1837.

[14] BIRMAN, J. L., Theory of Crystal Space Groups and Infrared

and Raman Lattice Processes of Insulating Crystals, in

Handbuch der Physik, Encyclopedia of Physics, vol. XXV/

2b, Light and Matter 1b (ed. : S. Flügge, Springer-Verlag, Berlin-Heidelberg-New York) 1974.

[15] BIRMAN, J. L., Phys. Rev. B 9 (1974) 4518.

[16] SAKATA, I., Math. Phys. 15 (1974) 1702, 1710.

[17] BERENSON, R. and BIRMAN, J. L., Math. Phys. 16 (1975) 227.

[18] BERENSON, R., ITZKAN, I. and BIRMAN, J. L., Math. Phys. 16 (1975) 236.

[19] KOPSKY, V., J. Phys. C 9 (1976) 3391, 3405.

[20] RUDRA, P. and SIKDAR, M. K., J. Phys. C. 9 (1976) 1.

[21] RUDRA, P. and SIKDAR, M. K., J. Phys. C.10 (1977) 75.

[22] RUDRA, P. and SIKDAR, M. K., J. Math. Phys. 17 (1976) 463.

[23] BIRMAN, J. and BERENSON, R., Phys. Rev. B 9 (1974) 4512.

[24] BIRMAN, J. L., TING-KUO LEE and BERENSON, R., Phys. Rev.

B 14 (1976) 318.

[25] NGUYEN VAN HUONG, PHAM DO TIEN, KUNERT, H. and SUFF- CZY0143SKI, M., J. Physique 38 (1977) 51.

[26] TING-KUO LEE, BIRMAN, J. L. and WILLIAMSON, S. J., Phys.

Rev. Lett. 39 (1977) 839.

[27] BIR, G. L. and PICUS, G. E., Symmetry and Strain-Induced

Effects in Semiconductors (Wiley, New York) 1974.

[28] LEWIS, D. H., J. Phys. A 6 (1973) 125.

[29] MILLER, S. C. and LovE, W. F., Tables of Irreducible Repre-

sentations of Space Groups and Co-Representations of Magnetic Space Groups (Pruett Press, Boulder, Colorado)

1976.

Références

Documents relatifs

Écris, en fonction de x , le prix en euros de deux croissants et d'une

Écris, en fonction de x , le prix en euros de deux croissants et d'une

Complète l'expression précédente avec des radicaux de manière à ce que le résultat du calcul soit égal à 9.. Fais de même pour que le résultat

Les conseils les plus fréquents sont « fermer le robinet pendant que vous vous lavez les dents et prendre une douche plutôt qu'un

Les conseils les plus fréquents sont « fermer le robinet pendant que vous vous lavez les dents et prendre une douche plutôt qu'un

Attention dans le calcul du discriminant, b² est toujours positif en effet (–13)²=169, il ne faut pas confondre avec -13²=-169.. 4 Résoudre les équations du second degré

Attention dans le calcul du discriminant, b² est toujours positif en effet (–13)²=169, il ne faut pas confondre avec -13²=-169.. 4 Résoudre les équations du second degré

Incidentally, the space (SI,B0 was used mainly to have a convenient way to see that the space X constructed in Theorem 3.2 (or in the preceding remark) is of