• Aucun résultat trouvé

STRUCTURES OF FCC METAL/FCC OXIDE INTERFACES

N/A
N/A
Protected

Academic year: 2022

Partager "STRUCTURES OF FCC METAL/FCC OXIDE INTERFACES"

Copied!
6
0
0

Texte intégral

(1)

JOURNAL DE PHYSIQUE

Colloque C4, supplément a u n04, Tome 46, avril 1985 page C4-141

R. Hoel, H.-U. ~ a b e r m e i e r + and M. Rühle

Max-PZanck-Institut f ü r MetaZZforschung, I n s t i t u t f ü r Werkstoffwissenschaften, S e e s t r a s s e 92, 0-7000 S t u t t g a r t 1, F.R.G.

+ ~ a x - ~ Z a n c k - l n s t i t u t für Festkti~-perforsehung, H e i s e n b e r g s t r a s s e 1, 0-7000 S t u t t g a r t 80, F . R . G.

Resume. On a f a i t c r o i t r e de fapon é p i t a x i a l e avec une o r i e n t a t i o n cube-cube des i l o t s d ' o r s u r nn s u b s t r a t de MgO. La t h d o r i e d a refseau-0 p r é v o i t l a formation p a r l e s d i s l o c a t i o n s de d i s c o r d a n c e , d'un r é s e a u c a r r é de d i s l o c a t i o n s c o i n s e s p a c é e s d e 9.9 nm e t aveo un v e c t e u r de Bnrgers de 112 Les images s u r fond c l a i r e t aveo f a i s c e a u x de f a i b l e i n t e n s i t é

~ 4 ~ ~ r h e l g l a présence de c e s d i s l o c a t i o n s . I n d i r e c t e m e n t . nlanmoins ~ 1 0 ~ ~ s l a c r é a t i o n d e s d i s l o c a t i o n s de d i s c o r d a n c e s e m a n i f e s t e p a r une f a i b l e d i s t o r t i o n en r o t a t i o n d e s i l o t s ; e t l ' i n t e r f a c e p e u t ê t r e c o n s i d e r é e comme constitne'e de zones c o h é r e n t e s l i é e s p a r d e s bandes i n c o h k r e n t e s .

A b s t r a c t . Gold i s l a n d s have been grown e p i t a x i a l l y on an Mg0 s u b s t r a t e i n a cube-cube o r i e n t a t i o n . Applying t h e O - l a t t i c e theory, m i s f i t d i s l o c a t i o n s a r e p r e d i c t e d t o form a square network of e d g e - d i s l o c a t i o n s spaced 9.9 nm a p a r t , and w i t h a Burgers v e c t o r of 112.a <110>. B r i g h t - f i e l d and weak-beam images d i d not r e v e a l t h e presence o f such d i s l o c a t i o n s . I n d i r e c t l y , however, t h e c r e a t i o n of m i s f i t d i s l o c a t i o n s i s shown t o m a n i f e s t i t s e l f throngh a s l i g h t r o t a t i o n a l d i s t o r t i o n of t h e i s l a n d s i and t h e i n t e r f a c e can be regarded a s c o n s i s t i n g of c o h e r e n t domains bonnded by i n c o h e r e n t bands.

1. I n t r o d u c t i o n . The CSL and O - l a t t i c e g r a i n boundary models [ I l have p r e v i o n s l y been shown t o be widely a p p l i c a b l e t o cubic m e t a l s , and more r e c e n t l y t o i o n i c s o l i d s C21. Work d e s c r i b e d by Bonnet and Durand 131 a l s o shows t h a t t h e DSC-lattice c o n s t r u c t i o n can be nsed t o o b t a i n t h e Burgers v e c t o r s of phase boundary d i s l o c a t i o n s .

The o b j e c t of t h e work p r e s e n t e d here i s t o e s t a b l i s h i f such geometrical models a r e a p p l i c a b l e t o a metal-ceramic i n t e r f a c e where Au i s l a n d s a r e grown e p i t a x i a l l y on Mg0 (cube-cube o r i e n t a t i o n ) . The o b s e r v a t i o n s w i l l a l s o be compared t o t h e lock-in mode1 d e s c r i b e d by Fecht and G l e i t e r 141.

2. Geometricallv P r e d i c t e d Boundarv S t r u c t u r e . The O - l a t t i c e , and consequently t h e m i s f i t d i s l o c a t i o n s t r u c t u r e of t h e phase boundary, can be obtained a s follows. According t o Bollmann Cl1 t h e t r a n s l a t i o n v e c t o r s , Lx0], g i v i n g t h e p o s i t i o n s of p o i n t s of good f i t ( i . e . t h e O - l a t t i c e ) a r e g i v e n by

-1 -1 lx0] = I I - A 1 Cxl

where t h e v e c t o r s [XI d e f i n e t h e p r i m i t i v e r e f e r e n c e l a t t i c e ce11 ( s e e Pig. l a ) . Prom Pig. l a i t can a l s o be s e e n (choosing t h e Mg0 l a t t i c e a s r e f e r e n c e ) t h a t t h e a p p r o p r i a t e two-dimensional r e f e r e n c e m a t r i x i s g i v e n by

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985417

(2)

JOURNAL DE PHYSIQUE

F i a . 1. a ) An and Mg0 hard sphere s t r n c t u r e s , and b) (110) l a t t i c e p l a n e s viewed along t h e [ I l 0 1 d i r e c t i o n .

( w i t h a ' = l a t t i c e c o n s t a n t of Mg01 and t h e t r a n s f o r m a t i o n matrix. A. i s t h e prodnct of a r o t a t i o n m a t r i x , and a m a t r i x d e s c r i b i n g t h e d i s t o r t i o n n e c e s s a r y t o t r a n s f o r m t h e u n i t ce11 of t h e r e f e r e n c e l a t t i o e i n t o t h e u n i t ce11 of t h e o t h e r l a t t i c e . For t h e p r e s e n t c a s e t h i s d i s t o r t i o n i s simply t h e r a t i o of t h e l a t t i c e parameters, and t h e r o t a t i o n i s 0'. Hence

cos o0 - s i n o0

A = . [

-

s i n o0 cos o0 1

w i t h a = n ' ' / a ' (a" = l a t t i c e c o n s t a n t of Au).

This g i v e s

(3)

and

Hence

a '

w i t h a' = - 2(1-a) = 7.0 nm f o r t h e Au-Mg0 i n t e r f a c e .

I n t e r f a c e m i s f i t d i s l o c a t i o n s a r e e x p e c t e d t o r u n a l o n g t h e b o u n d a r i e s of t h e Wigner-Seitz ce11 of t h e O - l a t t i c e . i . e . a l o n g <110> d i r e c t i o n s w i t h a s p a c i n g e q u a l t o 7.0 n m = 9.9 nm.

F i g . l a shows a h a r d s p h e r e mode1 of t h e Mg0 and Au s t r u c t u r e s . One p o s s i b l e i n t e r f a c e s t r u c t u r e c o n f i g u r a t i o n i s d e p i c t e d i n F i g . l b . The f i g u r e shows how l a t t i c e p l a n e s g e t g r a d u a l l y more and more o u t o f r e g i s t e r , u n t i l midway between p o i n t s o f n e a r c o i n c i d e n c e a 1 1 2 . a ' <110> edge m i s f i t d i s l o c a t i o n i s accommodated. (The l a t t i c e p l a n e s a r e assnmed c o n t i n n o u s a c r o s s t h e i n t e r f a c e . ) Snch a d i s l o c a t i o n s t r u c t u r e i s c o n s i s t e n t w i t h t h e DSC l a t t i c e c a l c u l a t i o n s f o r f c c / f c c systems ( P i e r a g g i [ S I ) . Thus t h e i n t e r f a c e would c o n s i s t o f c o h e r e n t . s q u a r e domains bounded by p u r e e d g e - d i s l o c a t i o n s . Such d i s l o c a t i o n s s h o u l d b e r e s o l v e d on b r i g h - f i e l d a s w e l l a s on weak-beam images.

3. S ~ e c i m e n P r e ~ a r a t i o n . Specimens s u i t a b l e f o r face-on T M o b s e r v a t i o n s o f t h e i n t e r f a c e were p r e p a r e d a s f o l l o w s . 3 mm Mg0 d i s c s were p o l i s h e d t o o p t i c a l f l a t n e s s on one s i d e , t h e n dimpled and ion-beam t h i n n e d t o e l e c t r o n t r a n s p a r a n c y on t h e o t h e r . The p o l i s h e d f a c e was c l e a n e d by a glow d i s c h a e p r i o r t o e-beam c o a t i n g . B e f o r e and d u r i n g d e p o s i t i o n t h e vacuum r a s 7.10-SgPa and 7 - 1 0 - ~ Pa.

r e s p e c t i v e l y . The Au was d e p o s i t e d a t a r a t e of 0.05 nmls u n t i l a n a v e r a g e t h i c k n e s s of 25 nm was reached. The s u b s t r a t e t e m p e r a t u r e of 6 5 0 ' ~ was r e t a i n e d f o r 5 mins a f t e r c o a t i n g . Some samples were s u b s e q u e n t l y tempered f o r 2 h o n r s a t 350 C and a i r . T h i s a n n e a l i n g d i d n o t a f f e c t t h e r e s u l t s d i s c u s s e d below. O

4. R e s n l t s and D i s c u s s i o n . F i g . 2 a shows a t y p i c a l Au i s l a n d w i t h Moire f r i n g e s which a r e c h a r a c t e r i s t i c o f e p i t a x i a l cube-cube growth. The dimensions of t h e i s l a n d s s t u d i e d were (120 9 0 ) nm, and t h e f o l l o w i n g imaging c o n d i t i o n s were nsed i n s e a r c h i n g f o r t h e m i s f i t d i s l o c a t i o n s : ( i ) i l l u m i n a t i o n a l o n g t h e [O011 zone a x i s , and g two-beam b r i g h t f i e l d imaging, and ( i i i ) ( g , 4g) weak-beam imI:::2?$ith g g2?200) o r g = ( 2 2 0 ) ) . F i g . 2 shows examples o f s u c h images. The two most n o t i c a b l e f e a t u r e s observed a r e :

1 ) The p r e d i c t e d r e g u l a r a r r a y o f m i s f i t d i s l o c a t i o n s i s net d i r e c t l y observed. T h i s c a n b e i n t e r p r e t e d a s f o l l o w s . ( i ) The s t r a i n s u r r o u n d i n g t h e d i s l o c a t i o n s i s s o s m a l l t h a t no a p p r e c i a b l e c o n t r a s t c a n b e s e e n . ( i i ) The s p a c i n g of t h e d i s l o c a t i o n i s s o s m a l l t h a t i n d i v i d u a l d i s l o c a t i o n s c a n n o t b e r e s o l v e d , and ( i i i ) no d i s l o c a t i o n s a r e p r e s e n t a t a l l . F o r r e a s o n s d i s c u s s e d below. ( i i i ) i s n o t r e g a r d e d a s a p l a u s i b l e e x p l a n a t i o n f o r t h e p r e s e n t c a s e .

2) The Moire p a t t e r n s a r e r o t a t e d ( 7 . 5 9 . ~ ) ~ w.r.t. t h e Mg0 r e f e r e n c e l a t t i c e . T h i s c o r r e s p o n d s t o a i e a l r o t a t i o n of ( 0 . 2 2 0 . 0 7 ) ' of t h e Au i s l a n d s . The u n c e r t a i n t y i s n o t caused by e x p e r i m e n t a l e r r o r s ( t h e a c c u r a c y i n a n a l y z i n g t h e d i f f r a c t i o n p a t t e r n i s +0.7'),but b y s c a t t e r i n g f o r d i f f e r e n t e x p e r i m e n t s . S i x measurements were done f o r t h r e e d i f f e r e n t i s l a n d s which r e s u l t e d i n t h e

(4)

C4-144 JOURNAL DE PHYSIQUE

Fin. 2. a) shows 2 0 0 Moire cross-fringes (spacing 7.0 nm). illumination along 10011. b) g two-beam bright-field image (fringe spacing 7.0 nm), gZZO two-bea brigk?-field (fringe spacing 4.9 nm), and d) a weak-beam image, s = 0.02 A-T. Only weak thickness fringes are seen.

(5)

Gia. 3. Shows t h e c o n v e r g e n t beam 200 r e f l e c t i o n s from Mg0 and Au, convergence a n g l e e q u a l s 0.3 mrad.

d i f f e r e n t r o t a t i o n a n g l e s . Such r o t a t i o n s c a n a l s o b e confirmed b y c o n v e r g e n t beam r e f l e c t i o n s , a s shown i n F i g . 3.

S i m i l a r r o t a t i o n s of Moire p a t t e r n s a s a r e s u l t of m i c r o s t r u c t u r a l d i s t o r t i o n s have p r e v i o u s l y been observed i n PtIAu, SnlSnTe. Ag/MoS2 and Cul N i systems ( s e e 16, 71 f o r a r e v i e w ) . F o r a s t r o n g l y bound system, a s Au/MgO, one e x p e c t s t h a t t h e r o t a t i o n i n v o l v e s a d i s t o r t i o n of t h e l a t t i c e u n i t ce11 o f t h e Au i s l a n d . Such a d i s t o r t i o n c a u s e s t h e c r e a t i o n of m i s f i t d i s l o c a t i o n s and r e l a x a t i o n of m i s f i t s t r a i n . T h e r e f o r e , m i s f i t d i s l o c a t i o n s have t o be p r e s e n t a t t h e s t u d i e d m e t a l l c e r a m i c i n t e r f a c e .

With t h i s t h e o r y i n mind, and r e f e r r i n g t o t h e model d e s c r i b e d i n t h e i n t r o d u c t i o n , t h e TEM o b s e r v a t i o n s c a n be i n t e r p r e t e d a s b e i n g a n i n d i r e c t c o n f i r m a t i o n of t h e p r e s e n c e of m i s f i t d i s l o c a t i o n s . I n t h e v i c i n i t y of t h e d i s l o c a t i o n c o r e , however, t h e r e i s a l o s s of coherency. and t h e l a t t i c e p l a n e s a r e n o t c o n t i n u o n s a s d e p i c t e d i n P i g . l b . The r e d u c t i o n i n coherency s t r a i n i s s u f f i c i e n t t o r e n d e r t h e d i s l o c a t i o n s i n v i c i b l e . The i n t e r p h a s e c a n t h e r e f o r e b e t h o u g h t o f a s c o n s i s t i n g of c o h e r e n t , however s m a l l , domains bound by i n c o h e r e n t

m.

Such o b s e r v a t i o n s a r e c o n s i s t e n t w i t h t h e l o c k - i n model d e s c r i b e d by P e c h t and G l e i t e r [41. According t o t h i s model, a low e n e r g y c o n f i g u r a t i o n i s r e a c h e d when low index p l a n e s and close-packed d i r e c t i o n s ( < 1 0 0 > , <110>) o f t h e two p h a s e s a r e p a r a l l e l . The close-packed d i r e c t i o n s on t h e s u r f a c e of t h e i o n i c c r y s t a l s a r e s e p a r a t e d b y v a l l e y s , and i t i s i n t e r e s t i n g t o n o t e from t98 h a r d s p h e r e model of F i g . l a t h a t t h e v a l l e y s d e f i n e d by t h e row of Mg i o n s running i n <110> d i r e c t i o n s a r e w i d e r t h a n t h e v a l l e y s p a r a l l e l t o t h e c l o s e r packed <100> d i r e c t i o n s . The f o u r Au atoms o f t h e p r i m i t i v e u n i t c e 1 1 may form a l o c k - i n c o n f i g u r a t i o n by s i t t i n g o n t o p of f o u r Mg lock-in atoms. As t h e Au

(6)

C4-146 JOURNAL DE PHYSIQUE

i s l a n d grows i n t h e <110> d i r e c t i o n s , t h e 11101 p l a n e s p e r p e n d i c n l a r t o t h e i n t e r f a c e w i l l become more and more o n t of r e g i s t e r ( F i g . I b ) . However, a s t h e An atoms a r e capable of s l i d i n g along <110> v a l l e y s . b o t h coherency s t r a i n and t h e degree of coherency w i l l be rednced. It shonld a l s o be noted t h a t d u r i n g t h i s s l i d i n g p r o c e s s t h e Au atoms have t o overcome a c e r t a i n p o t e n t i a l b a r r i e r .

References

[ l ] Bollmann, W., Surface Science a (1972) p,. 1.

[2] Snn. C.P., and B a l l u f f i . R.W., P h i l . Mag. & (1982). p. 4962.

[31 Bonnet. R. and Durand. P., P h i l . Mag. (1975) 997.

[4] Fecht, H . J . , and G l e i t e r , H., Acta Met., t o be pnblished; J. de Physique, t h e s e proceedings.

[5] P i e r a g g i , B., i n : C h a r a c t e r of Grain Bonndaries, eds. M.F. Yan. and A.H.

Hener, Adv. i n Ceramics 6 (1983) p. 117.

[6] Matthews, J.W.. E p i t a x i a l Growth, P a r t B. Academic P r e s s , New York (1975), Chapter 8.

[7] Vincent. R., P h i l . Mag. (19691, p. 1127.

Références

Documents relatifs

Harris a pr´edit que le caract`ere pertinent ou non du d´esordre ne d´epend que de l’ordre ν de la transition de phase sans d´esordre : si ν &lt; 2, alors le d´esordre est

As for the CFD simulation of the FCC fluidized bed, when monodimensional Eulerian-Eulerian simulations of gas- particle flow in riser are conducted, a severe reformulation of

If orie considers that the ionic conducti\/ity of oxygen ions of calcia-stabili- zed ZrOz is very high, as is the electronic conductivity in metallic nicke1,the

An antiphase boundary (APB) forms wherever two such do- mains contact. Whether the ordering transition is first or second order is a very important factor for the

In this kind of interfaces, the two phases have generally different crystallographic structure and different atomic parameters so that the situation is much more difficult than

Abstract.-Anisotropic dipolar and quadrupolar hyperfine interactions caused by first and second neighbor atoms are considered in a model description of Mossbauer spectra for fee

Phases present and microstructure in the as deposited and annealed films are analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results

At this point, let us recall that bulk Ising frustrated systems, unlike unfrustrated counterparts, have differ- ent transition natures: the antiferromagnetic FCC and HCP Ising