• Aucun résultat trouvé

Non-destructive measurements for destructive experiments: how to assess damages ?

N/A
N/A
Protected

Academic year: 2021

Partager "Non-destructive measurements for destructive experiments: how to assess damages ?"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-02444443

https://hal.archives-ouvertes.fr/hal-02444443

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Non-destructive measurements for destructive experiments: how to assess damages ?

Guillaume Charrier, Thierry Ameglio

To cite this version:

Guillaume Charrier, Thierry Ameglio. Non-destructive measurements for destructive experiments:

how to assess damages ?. Journée thématique CEFE - Survie au stress, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE). FRA., Sep 2019, Montpellier, France. 15 p. �hal-02444443�

(2)

Non-destructive measurements for destructive experiments:

how to assess damages?

G. Charrier & T. Améglio 2019/09/09

Survie au stress – Stress survival Journée thématique CEFE

(3)

Context – Facing extreme climatic events

More heat-waves and drought events Still some frost events

(4)

Abiotic stress – Physiological damages

Charrier et al., Plant Physiology 2016 Charra-Vaskou et al., J. Exp. Bot. 2015

Living cellsHydraulicsystem

Drought Frost

Freezing/ Thawing

Frost

0.5 Osm 0.5 Osm

2.0 Osm 0°C Ψ≈0MPa -4°C Ψ=-4.8MPa

(5)

Non-invasive techniques to monitor damages in situ

Dendrometer

Water fluxes (drought and frost stress) Growth (resilience to stress)

Ultrasonic acoustic analysis

Cavitation events (drought and frost stress) Other signals ?

amplifier

(6)

Radial growth monitoring since 1919

Dendrographe: Fritts HC (1955) Daniel Trembly MACDOUGAL (1919)

Hydration and growth. Proc.

Amer. Phil. Soc. 58: 346-372.

Patent INRA ” Pepista”, JG Huguet (1985)

PECHER

-500 0 500 1000 1500

3-juil 4-juil 5-juil 6-juil 7-juil 8-juil 9-juil 10-juil 11-juil 12-juil 13-juil 14-juil 15-juil 16-juil 17-juil 18-juil 19-juil 20-juil 21-juil 22-juil 23-juil 24-juil

jour

microns

INRA-UMRPIAF

Peach Date

Stop irrigation Irrigation

Walnut

For automatic fruit trees irrigation

Pépi = thirst sta= stabilize

Zweifelet al. 2000

AMC

Steppe et al. 2012

(7)

From the Pépista to the PepiPIAF

Mini data logger integrated :

- LVDT (resolution <1m (16 bit acquisition) & Temperature sensor (± 0.5 ° C) Power Supply: 2 AA Autonomy for 12 months)

- Memorization: average according to selected frequency (1, 5, 10, 15, 30 mn, 1h, 3h)

- Memorization: from 2160 to 10800 measurements (ex, for 30 mn = a history over 45 to 225 days)

- Authorized distributor: Hydrasol licensed INRA Transfert

- PépiDataSoft remote download software, allowing to view and dialogue with the PépiPIAF and to edit the data in txt or excel format and to interpret them)

- PC Transmission; Radio HF 43.3 Mhz: range of 150 m to PS and Sigfox or LoRa

Acquisition of data Measurement of Tair°C Power supply (2 AA)

2.4 GHz Radio Transmitter and Sigfox or LoRa networks

A LVDT sensor and a sensor holder (invar)

Receiver USB

Pépidatasoft software

(8)

-900 -700 -500 -300 -100 100 300 500 700 900

180 190 200 210 220

Diameter variations (m)

Jours de l'année Control Tree

Drought Tree

No drought Light drought Production Drought accentuated to severe Extreme drought Death of the tree

Extreme drought conditions to determine mortality

Extreme drought and Mortality

Work in progress of a PhD student Lia Lamacque (UMR PIAF- Iteipmai) on the links between extreme drought and mortality on Lavanda

Diametervariations (µm)

Dmax1

Dmax2

Loss

Diam1 Total Loss Diam2

Damage 1

Resilience

Loss of Diameter (%) R²= 0.88

0 5 10 15 20 25 30

Damages (%)

0 20 40 80 60 100

(9)

Winter damages

Améglio et al. J.Exp.Bot., 2001

The Ψ of ice changes at about 1.16 MPa.K-1decrease in temperature.

Rajashekar and Burke (1982) Rajashekar et al. (1983),

If the ice formation start at -5°C when the temperature decrease at -10°C,the Ψ decrease about -6,0 Mpa

Similar to Extreme drought stress!

(10)

Extreme stress at the treeline:

Winter drought

Charrier et al., Plant Physiology 2017

N N N N N N N

Nighttime shrinkage (Ψice)

Nighttime AEs:

Freezing-cavitation = bubbles formation

Daytime AEs:

Embolism development due to transpiration

Ψstem

Daytime shrinkage (E)

(11)

0%

20%

40%

60%

80%

100%

-40 -30 -20 -10 0

Betula pendula R² = 0.981 slope =-0.478

T50= -9.155

Sorbus aucuparia R² = 0.975

slope = -0.415

T50= -31.01 0%

20%

40%

60%

80%

100%

-40 -30 -20 -10 0

Temperature (°C)

cUAEs

Sigmoid relation with temperature,

(0.928 <R²< 0.994)

Wide variability in T50, (-10<T50<-32°C)

Charrier et al. (2014) Plant Physiology

Frost-induced acoustic emissions

Interspecific variability

(12)

Frost-induced acoustic emissions is related to drought resistance

Charrier et al. (2014) Plant Physiology

Freeze-Thaw expansion hypothesis with Ψice as driving force:

=> displacement of the air-water menisci in pits

=> cause bubble to expand or collapse

Drought-induced and frost-induced embolisms may share the same mechanism.

(13)

Are UEs only from vessel origin?

-1 0 1 2 3 4 5 6

0 2 4 6 8 10 12 14 16

0:00 1:00 2:00 3:00 4:00

Temperature difference (°C)

UAE (hits cm-3min-1)

Time (h) LTE HTE

-50 -40 -30 -20 -10 0 10

0 100 200 300 400 500 600

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00

Temperature (°C)

CumUAE (hits cm-3)

Time (h)

Kasuga et al. (2015) Journal of Experimental Botany

(14)

2 stages of AEs

1st => embolism & cell damages 2nd => cell damages

Are AEs only from vessel origin?

(15)

Capturing acoustic parameters across stages to predict PLC and cell damages

0%

20%

40%

60%

80%

100%

-20 -15 -10 -5 0

Embolism_Aes Cell Damages_AEs Embolism_Hydraulic

Sounds promising !

(16)

Thank you for your attention

guillaume.charrier@inra.fr thierry.ameglio@inra.fr

Références

Documents relatifs

Les résultats expérimentaux sont représentés sous forme de courbes donnant la fréquence pour les deux sondes de 2.25 et 5 MHz en fonction de la taille des grains.Les

The mode chosen to generate it the second longitudinal mode, for this mode the radial element of displacement is very weak in front of the axial element in the point produced

The mode chosen to generate it the second longitudinal mode, for this mode the radial element of displacement is very weak in front of the axial element in the point produced

Résumé:  Le  but  de  notre  étude  est  l’élaboration  de  Fe  pure  et  de  l’alliage  Fex,y,z  par  une  des  techniques   connues   pour  

Le travail proposé s’appuie principalement sur le développement d’un montage optique basé sur la méthode de moiré interférométrique, le contrôle des surfaces

Chapter 2 reviews the electromagnetic basic equations to simulate the radar assessment of concrete structures and the most commonly used numerical techniques to model the

Damages in reinforced concrete structures like friction in cracks, change in stiffness due to the alternately opening and closing of cracks under dynamic excitation or

In the case of wood industries, the implementation of ordinary identification systems used in other industries presents implantation problems, mainly due to the extremely