• Aucun résultat trouvé

A framework for reconciliating data clusters from a fleet of nuclear power plants turbines for fault diagnosis

N/A
N/A
Protected

Academic year: 2021

Partager "A framework for reconciliating data clusters from a fleet of nuclear power plants turbines for fault diagnosis"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-01988977

https://hal.archives-ouvertes.fr/hal-01988977

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

To cite this version:

Sameer Al-Dahidi, Francesco Di Maio, Piero Baraldi, Enrico Zio, Redouane Seraoui. A framework for reconciliating data clusters from a fleet of nuclear power plants turbines for fault diagnosis. Applied Soft Computing, Elsevier, 2018, 69, pp.213-231. �10.1016/j.asoc.2018.04.044�. �hal-01988977�

(2)

power plants turbines for fault diagnosis

SameerAl-Dahidia,FrancescoDiMaioa,∗,PieroBaraldia,EnricoZioa,b,RedouaneSeraouic

aEnergyDepartment,PolitecnicodiMilano,Milan,Italy

bChaironSystemsScienceandtheEnergeticChallenge,FondationEDF,CentraleSupélec,Paris,France

cEDF–R&DSTEPSimulationetTraitementdel’informationpourl’exploitationdessystèmesdeproduction,Chatou,France

a r t i c l e i n f o

Articlehistory:

Received31July2015

Receivedinrevisedform21February2018 Accepted24April2018

Availableonline28April2018

Keywords:

Faultdiagnosis

Unsupervisedensembleclustering Incrementallearning

Clusterreconciliation

Fleetofnuclearpowerplants(NPPs) turbinesshut-down

a b s t r a c t

WhenafleetofsimilarSystems,StructuresandComponents(SSCs)isavailable,theuseofalltheavailable informationcollectedonthedifferentSSCsisexpectedtobebeneficialforthediagnosispurpose.Although differentSSCsexperiencedifferentbehavioursindifferentenvironmentalandoperationalconditions, theymaybeinformativefortheother(evenifdifferent)SSCs.Inthepresentwork,theobjectiveistobuild afaultdiagnostictoolaimedatcapitalizingtheavailabledata(vibration,environmentalandoperational conditions)andknowledgeofaheterogeneousfleetofPNuclearPowerPlants(NPPs)turbines.Tothisaim, aframeworkforincrementallylearningdifferentclusteringsindependentlyobtainedfortheindividual turbinesishereproposed.Thebasicideaistoreconciliatethemostsimilarclustersacrossthedifferent plants.Thedataofshut-downtransientsacquiredfromthepastoperationofthePNPPsturbinesare summarizedintoafinal,reconciliatedconsensusclusteringoftheturbinesbehaviorsunderdifferent environmentalandoperationalconditions.Eventually,onecandistinguish,amongthegroups,thoseof anomalousbehaviorandrelatethemtospecificrootcauses.Theproposedframeworkisappliedonthe shut-downtransientsoftwodifferentNPPs.Threealternativeapproachesforlearningdataareapplied tothecasestudyandtheirresultsarecomparedtothoseobtainedbytheproposedframework:results showthattheproposedapproachissuperiortotheotherapproacheswithrespecttothegoodnessofthe finalconsensusclustering,computationaldemand,datarequirements,andfaultdiagnosiseffectiveness.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Insafety-relevantindustriessuchasnuclear,oilandgas,auto- motiveandchemical, faultdiagnosisofSystems,Structuresand Components(SSCs)isconsideredacriticaltask[1–3].Inparticu- lar,efficientfaultdiagnosiscanaidtodecidepropermaintenance and, hence, increase production availability and system safety, whilereducingoverallcorrectivemaintenancecosts[4,5].Forthese reasons,thereisanincreasingdemandfromindustryforfaultdiag- nosistechniques[6–9].

Generally,faultdiagnosistechniquescanbecategorizedinto physics-basedanddata-driven[10,11].Physics-basedtechniques useexplicitphysicalmodelstodescribetherelationshipsbetween thecausesthatdeterminetheSSCsbehaviorandthesignalevo- lutions[11–13]. Severalmethods havebeenproposedandused

Correspondingauthor.

E-mailaddress:francesco.dimaio@polimi.it(F.DiMaio).

for fault diagnosis in nuclear industry, suchas observer-based methods, parity space methods, Kalman filters and parameter identification-basedmethods[14–16].However,thecomplexityof thephenomenainvolvedandthehighlynon-linearrelationships betweenthecausesandthesignalevolutionsmayposelimitations ontheirpracticaldeployment[11,13].

Ontheotherhand,data-driventechniquesareempiricallybuilt tofitmeasuredprocessdata[17–19].Forexample,ArtificialNeu- ralNetworks(ANNs),expertsystemsandfuzzyandneuro-fuzzy approacheshavebeensuccessfullyappliedfor faultdiagnosisin thenuclearindustry[20–22].Inthiswork,wefocusonthedevel- opmentofadata-driventechniqueforfaultdiagnosis.

One attractive way forward for building effective diagnosis modelsistoconsidertheknowledgecomingfromthefleetofsimi- larSSCs[3,23].Intheindustrialcontext,thetermfleetreferstoaset ofPsystemsthatcansharesometechnicalfeatures,environmental andoperationalconditionsandusagecharacteristics.Onthisbasis, three types of fleet can be envisaged: identical, homogenous andheterogeneous.Table1summarizesthetypesoffleet,their https://doi.org/10.1016/j.asoc.2018.04.044

1568-4946/©2018ElsevierB.V.Allrightsreserved.

(3)

RUL Remainingusefullife

FKNN FuzzyK-nearestneighboursalgorithm ADASYN ADAptiveSYNtheticsamplingapproach

TOPSIS Techniquefororderpreferencebysimilaritytoan idealsolution

H Numberofbaseclusterings j Indexofbaseclustering

M Truenumberofclustersinthefinalconsensusclus- tering

Cjopt Optimumnumberofclustersofthej-thbaseclus- tering

P NumberoftheNPPturbinesofthefleet p IndexofthegenericNPPturbine,p=1,...,P NP Numberof shut-downtransients ofthep-thNPP

turbine,p=1,...,P

i Indexofatransient,i=1,...,Np

Z Numberofsignalsofeachi-thtransient z Indexofthegenericsignal,z=1,...,Z T Timehorizonofthegenericsignalz

Pp Optimumnumberofclustersinthefinalconsensus clusteringofthep-thNPPturbine

Cmin Minimumnumberofclustersinthefinalconsensus clusteringP

Cmax Maximumnumberofclustersinthefinalconsensus clusteringP

CCandidate Possiblenumberofclustersinthefinalconsensus clusteringP,CCandidate [Cmin,Cmax]

Pfinal ThefinalreconciliatedconsensusclusteringoftheP NPPsturbines

DB Davies-Boludinvalidityindex

NFF1/EE1 Numberofshut-downtransientsofFF1/EE1NPPs turbines

NaggregatedFF1,EE1 AggregatedsetoftransientsofFF1andEE1 NPPsturbines

PaggregatedFF1,EE1 Optimum numberof clustersin thefinal consensusclusteringoftheaggregatedsetoftran- sientsofFF1andEE1NPPsturbines

m IndexofthegenericconsensusclusterofFF1,m= 1,...,PFF1

Y= e/f

Vibrational measurements dataset of the e/f-th transientofEE1/FF1

e/f Indexofthegenericshut-downtransientofEE1/FF1, e=1,...,NEE1,f =1,...,NFF1

mef ThesimilaritybetweenY=

e

andY=

f

transientsofthe m-thconsensusclusterofFF1NPPturbine

ımef Thepointwisedifferencebetweenandtransientsof them-thconsensusofFF1NPPturbine

ye/fzt t-thvibrationalmeasurementofthez-thvibrational signalofmatrix/Y=

f

C Optimumnumberofclustersofthefinalconsensus clusteringandforthemeansimilarityvaluesofeach EE1transienttoFF1consensusclusters

X=FF1 FF1TrainingdatasetmatrixofFF1NPPturbine X=FF1 UpdatedFF1trainingdatasetbyADASYNapproach

Kmin MinimumnumberofKthnearestneighborstran- sientsfortheFKNNclassifier

Kmax MaximumnumberofKthnearestneighborstran- sientsfortheFKNNclassifier

KCandidate Possible number of Kth nearest neighbors transients for the FKNN classifier, KCandidate [Kmin,Kmax

K Optimum numberofKthnearest neighborstran- sientsusedinFKNNclassifier

CV Crossvalidationanalysis

ai Averagedistanceofthei-thdatumfromtheother databelongingtothesamecluster

bi Minimumaveragedistanceofthei-thdatumfrom thedatabelongingtoadifferentcluster

Si Silhouettevalueofthei-thdatum

Cm m-thclusterinthefinalconsensusclustering Sm MeanSilhouettevalueforthem-thcluster nm Totalnumberofdatainthem-thclusterinthefinal

consensusclustering

SVCCandidate Silhouette validity value at CCandidate, CCandidate[Cmin,Cmax]

=A Adjacencybinarysimilaritymatrix Pairwisebinarysimilarityvalue

=S Co-association(Similarity)matrix

Sij Pairwisesimilarityvaluebetweenthei-thandj-th similarityvalues

di i-thentryofthediagonalmatrixD=

D= Diagonal matrix with diagonal entries d1,d2,...,dN

=I IdentitymatrixofsizeNxN

=Lrs NormalizedLaplacianmatrix Eigenvalueof=Lrs

Sme MeansimilarityvalueoftransienteofEE1tothe wholetransientsofm-thconsensusclusterofFF1 U= Eigenvectorsof

¯

uCcandidate TheCCandidate-theigenvectorof

characteristics and a selection of the most relevant research workperformedinthepast,makinganeffectiveuseoffleetdata:

Inidenticalfleet, thesystemsmight haveidenticaltechnical featuresandusage,andworkinthesameenvironmentalandopera- tionalconditions:knowledgederivedfromsuchfleethasbeenused fordefiningthresholdsforanomalydetection[5],RemainingUse- fulLife(RUL)estimation[24]andtechnicalsolutioncapitalization [25,26]foranysystemidenticaltothefleetmembers.

Inhomogenousfleet,thesystemsmightsharesomeidentical technicalfeaturesthatareinfluencedbysimilarenvironmentaland operationalconditions,butwithfewdifferenceseitherontheirfea- turesorontheirusage:knowledgederivedfromthistypeoffleet hasbeenusedfordevelopingdiagnosticsapproachesforenhancing maintenance planning [27]. However, in a context where cus- tomizedsystemsare common,theseapproaches maygivepoor results[3].

Inheterogeneousfleet,thesystemsmighthavedifferentand/or similartechnicalfeatures,butwithdifferentusageunderdifferent

(4)

improvetheefficiencyofthefaultdiagnosistask[2,3,23].

Mostoftheexistingfleet-wideapproachesforfaultdiagnosis treatonlytheinformationgatheredfromidenticaland/orhomoge- nousfleets,ratherthanfromheterogeneousones[23].Infact,the investigationonthebenefitofutilizingtheinformationofahetero- geneousfleetforfaultdiagnosishasbeenrarelyaddressedinthe literature[23].

Inthisregard,theobjectiveofthepresentworkistodevelopa frameworkforincrementallylearningdifferentturbinebehaviours ofaheterogeneousfleetofPNuclearPowerPlants(NPPs)turbines.

Thefinalgoalistosummarizethedataandknowledgeacquired fromthepast experienceof thefleet turbinesoperationsintoa final,reconciliatedconsensusclusteringofthedifferentturbines behaviorsunderdifferentenvironmentalandoperationalcondi- tions(namely normal condition, degraded condition,abnormal conditionandoutliers).

InthecontextoffaultdiagnosisofanindividualNPPturbine, theobjectiveistopartitiontheNpshut-downtransientsofthep-th plant,p=1,...,P,intoMdissimilargroups(whosenumberis“a priori”unknown)suchthattransientsbelongingtothesamegroup aremoresimilarthanthosebelongingtoothergroups.Inparticular, onecandistinguish,amongthegroups,anomalousbehaviorsofthe equipmentandrelatethemtospecificrootcauses[28–31].

Theproblemofgroupingtheoperationaltransientsofthetur- bine canbe formulated asan unsupervised clustering problem aimedatpartitioningthetransientdataintohomogeneous“apri- ori” unknownclustersfor which thetrue classes areunknown [30,32].

Tothisaim,anunsupervisedclusteringapproach(sketchedin Fig.1)hasbeenproposedbysomeoftheauthorsforcombininginan ensembletheclusteringresultsofi)datarepresentativeofthetur- binebehavior,i.e.,sevensignalsoftheturbineshaftvibrations(j=1 baseclustering),and2)datarepresentativeoftheenvironmental andoperationalconditionsthatcaninfluencetheturbinebehavior, i.e.,nominalvaluesofturbineshaftspeed,vacuumandtempera- turesignals(j=2baseclustering)[32].Inbrief,theapproachis basedonthecombinationof:1)aCluster-basedSimilarityParti- tioningAlgorithm(CSPA)toquantifytheco-associationmatrixthat describesthesimilarityamongthetwobaseclusterings(referto AppendixAformoredetails);2)SpectralClustering embedding anunsupervisedK-Meansalgorithm tofindthefinalconsensus clusteringbasedontheavailableco-associationmatrix (referto AppendixBformoredetails);3)theSilhouetteindextoquantifythe goodnessoftheobtainedclustersbychoosingtheoptimumnumber ofclustersinthefinalconsensusclusteringasthatwiththemax- imumSilhouettevalue,i.e.,suchthatclustersarewellseparated andcompacted(refertoAppendixCformoredetails).

Inthisregard,thefinalensembleclusteringofthegenericp-th NPPturbinecomprisesPpclustersofshut-downtransients,repre- sentativeofdifferentbehaviorsoftheturbinethatareinfluenced and explainedby differentenvironmentaland operational con- ditions,amongthemsomeanomalousbehaviorsoftheturbines

shut-downtransients,respectively[32,33].

DuetothefactthatthePplantsofthefleet arehighlystan- dardized,someclustersrepresentativeofturbinesoperationsand independentlyobtainedfortheindividualplantsmightbesimilar (hereaftercalledthebestmatchingclusters)andcouldberecon- ciliatedintoauniqueclusterthatwouldgathermoreinformation collectedfrommultipleplantsand,thus,isexpectedtobemore reliableandrobust.

Morespecifically,whenanewdatasetofNp+1shut-downtran- sientsfromthegenericp+1-thNPPturbinebecomesavailable,the previouslyobtainedensembleclusteringisupdatedbasedonthe clustersidentifiedindependentlyforthetransientsofthep+1-th NPPturbine.

Thescopeofthisworkistoproposeaframeworkforidentifying thebestmatchingclustersamongtheplants:thesewillberecon- ciliatedintoauniqueconsensusclustercomposedbythetransients oftheclustersindependentlyobtainedfortheplants.

Theproposedframework is validatedonthetwo previously mentionedNPPturbinesFF1andEE1.Theapplicationoftheframe- workleadstoobtainafinal,reconciliatedconsensusclusteringPfinal of7and13clustersrepresentativeofuniqueturbinesoperations oftheFF1andEE1plants,respectively,and3consensusclusters representativeof similarturbinesoperationsof theplants (best matchingclusters).Theperformanceofthefinalreconciliatedcon- sensusclusteringPfinal isquantifiedintermsofclustersseparation andcompactness,byresortingtotheSilhouettevalidityindex([34];

seeAppendixC),C-index[35]andDavies-Boludin(DB)index[36].

Theexploitedknowledgeoftheturbinescan,then,beretrievedfor thepurposeof,forinstance,lifetracking,healthstateestimation andfaultdiagnosisofanewNPPturbine.

Forcomparison,threeotherapproachesareusedtoreconciliate theconsensusclustersoftheFF1NPPturbineonthebasisofthe receivedinformationfromtheEE1NPPturbine:1)clusteringofthe aggregatedshut-downtransientsofFF1andEE1NPPsturbinesby theunsupervisedensembleclusteringapproach,2)theinclusion oftheEE1transientsintotheFF1ensembleclusteringbyresort- ingtoFuzzysimilaritymeasure[37–39]and3)theclassificationof EE1transientsbyasupervisedclassifier,suchasaFuzzyK-Nearest Neighboursalgorithm(FKNN)[40–42]trainedonFF1clustering.

Resultsarediscussedandcomparedwiththoseobtainedwiththe proposedapproach:itisconcludedthattheproposedapproachis abletoupdateeffectivelytheclustersoftheFF1NPPturbineonthe basisofthereceivedinformationfromtheEE1NPPturbine,and thatitissuperiortotheotherapproacheswithrespecttothegood- nessofthefinalconsensusclustering,computationaldemand,data requirements,andfaultdiagnosiseffectiveness.

Thus,theoriginalcontributioninthisworkisthedevelopment ofaframeworkforincrementallylearningtheinformationbrought byaheterogeneousfleetofdifferentNPPsturbinesbasedonthe combinationof:

(5)

Fig.1. Theunsupervisedensembleclusteringapproach[32].

1)theunsupervisedensembleclusteringapproach[32],thatover- comesthechallengetotheexisting clusteringtechniquesby determiningautomaticallytheoptimumnumberofclustersof theshut-downtransientsofeachindividualNPPturbine(which bymostindustrialapplications,isnotknown“apriori”);the clustersthatresultarewellseparatedandcompacted(asmea- suredbytheSilhouetteindex[34]);

2)a reconciliationprocedure for identifyingthe best matching clustersamongtheplants.Thegoodnessofthefinalreconcil- iatedclusteringisquantifiedintermsofclustersseparationand compactness.

Itis worthmentioningthatthedimensionalityand required completenessofthedatasets(thatneedsignalsrepresentativeof bothenvironmentalandoperationalconditions(i.e.,turbineshaft speed,vacuumandtemperature)andcomponentbehaviours(i.e., vibrations))make,inthiswork,difficulttoshowtheapplicationof theframeworktoadditionaldatasetfromotherindustries,because ofconfidentialityconstraintsofsuchdatasets.

Theremainingof this paperis organizedas follows.Section 2illustratestheproposedframeworkforreconciliatingtheclus- tersofafleetofindustrialcomponentsforfaultdiagnosis.Section 3andSection4describehowtheproposedapproachand three otheralternativeapproachesareusedforlearningnewdatacom- ingfromafleetofNPPturbinesandupdatingtheclusteringresults obtainedbyensemble-clusteringthetransientscomingfromNPPs, respectively.Alongwiththedescriptionoftheprocedures,their applicationtotheshut-downtransientscollectedfromafleetof NPPsisshown.Finally,conclusionsandperspectivesaredrawnin Section5.

2. Theframeworkforreconciliatingtheclustersofafleetof industrialcomponents

Inthissection,theframeworkforreconciliatingtheclustersof aheterogeneousfleetofPindustrialcomponentsisproposed.The frameworkentailstwostepsandissketchedinFig.2:

Step1: Clustering the transients of a genericp-th component bytheunsupervisedensembleclusteringapproach.Forthegeneric p-thcomponent,theobjective istopartitiontheNp shut-down transientsintodissimilargroupsoftransientsrepresentativeofdif- ferentcomponentbehaviorsinfluencedbydifferentenvironmental andoperationalconditions.Tothisaim,theunsupervisedensem- bleclusteringapproachofFig.1(seeAppendixA)hasbeensetforth tobuildaconsensusclusteringPfromthebaseclusterings:

1)j=1: Clustering of data representative of the component behaviour(suchasvibrations):theoutcomeofthisisgroupsof transientsrepresentingdifferentbehavioursofthecomponent, e.g.,normalcondition,degradedcondition,abnormalcondition andoutliers,

2)j=2:Clustering ofdata representativeof theenvironmental andoperationalconditionsthatcaninfluencethecomponent behaviour(such asrotating speed, vacuumvalues, tempera- tures,pressures,etc.):theoutcomeofthisisgroupsoftransients representingdifferentenvironmentalandoperationaconditions experiencedbythecomponent,e.g.,agroupmightbecharacter- izedbyhightemperaturevaluesandlowvacuumvalues.

The optimum number of clustersis selected among several candidatesCCandidate=[Cmin,Cmax] basedontheSilhouettevalid- ityindexthatmeasuresthesimilarityofthedatabelongingtothe sameclusterandthedissimilaritytothoseintheotherclusters(a largeSilhouettevalueindicatesthattheobtainedclustersarewell separatedandcompacted([34];seeAppendixC)).

Step2:Reconciliatingthemostsimilarconsensusclustersobtained individuallyforeachofthedifferentplants.Tocapitalizetheadded informationofanewcomingcomponent(i.e.,p+1-thcomponent) and,hence,toupdatethepreviousobtainedconsensusclustering Ppofthep-thcomponenttransientsdata,a reconciliationproce- dureishereproposed.Theunderlyingapproachisthatoflearning thenovelinformationcontentofthenewNp+1transientswithout forgettingthepreviouslyacquiredknowledgethatissummarized in the Ppconsensus clustering (as well shall see in Section 4).

Firstly,theNp+1transientshavetobepartitionedintogroupsrep- resentative of the p+1-th component behavior under varying environmentalandoperationalconditionsofthenewcomponent asdoneinStep1forthep-thcomponent.Oncetheconsensusclus- teringsPp andPp+1 ofthetwo componentsareavailable,those composedbytransientswithsimilarbehaviorsareidentifiedand reconciliatedintouniqueclusterswithinthefinalensembleclus- tering of thetwo plants Pp,p+1 . The remainingclustersare left disjointastheyarerepresentativeofuniqueoperationalconditions ofeachcomponent.

Theincrementallearningprocessandtheenvelopingreconcili- ationapproachisrepeatedforallthecomponentsavailableinthe fleettogetthefinalclusteringPfinal thatresumesthecharacteris- ticbehavioursofallthepossible(available)componentsoperating inaslargeaspossiblevarietyofenvironmentaland operational conditions.

OncethefinalclusteringPfinal isobtained,thegoodnessofthe finalclustersidentifiedisquantifiedintermsoftheirseparation andcompactness,asmeasuredbyinternalvalidityindexes.These indexesevaluatetheclusteringresultsbasedoninformationintrin- sictothedataitself,withoutresortingtoanyexternalinformation liketrueclusteringresults,whicharenotknown“apriori”inmost industrialapplications[43].Inparticular,weresorttothefollowing threeinternalindexes:

theSilhouette index ([34]; seeAppendix C): it measuresthe similarityofthedatabelongingtothesameclusterandthedis-

(6)

Fig.2. TheproposedframeworkforreconciliatingtheconsensusclusteringsforafleetofPcomponents.

similaritytothose in theotherclusters. TheSilhouette index variesintheinterval[–1,1]andshouldbemaximized;

theC-index[35]:itdefinestheratiobetweenthesumofwithin- clusterdistancesandthedistancesconsideringallthepairsofthe instances.TheC-indexrangesintheinterval[0,1]andshouldbe minimized;

the Davies-Boludin (DB) index [36]: it is based on the ratio ofwithin-clusterandbetween-clusterdistances.TheDBindex rangesintheinterval[0,)andshouldbeminimized.

LargeSilhouetteandsmallC-indexandDBvaluesindicatethat theobtainedclustersarewellseparatedandcompacted.

Itisimportanttopointoutthatthereexistotherclusteringvalid- ityindexes,thesocalledexternalvalidityindexes,thatevaluatethe goodnessoftheobtainedclusterswithrespecttoapre-specified structure (assumed to be known“a priori”), like false-positive, false-negativeandclassificationerror,etc.[43].However,thecal- culationsoftheseindexesarenotfeasibleinthisworkduetothe unavailabilityofthetrueclusteringresults.

Références

Documents relatifs

In Section 3.1, the fuzzy-based slope analysis feature extraction technique is applied to the raw signal data; Section 3.2 describes the calculation of the

We have developed a methodology for the identification of groups of transients with similar behaviour because originated by faults of the same type. We have combined Haar

Data from a targeted proteomics approach to discover biomarkers in saliva for the clinical diagnosis of periodontitis.. Data in Brief, Elsevier, 2018,

The authors have showed that an accurate estimate of the German PV power genera- tion can be obtained by using the statistical distribution of the orientation angle of PV panels as

Chronicles discovered by the proposed algorithm are various in length (the number of events of a chronicle) and in frequency.. They can be recognized on-line by a chronicle

As part of the categorical global approach, a sample O z is dense if C Oz is greater than or equal to the global density thresholds which are then the median and average of the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We consider the representation of the identified clusters of transients (Figure 10) in feature spaces completely different from those which have driven (supervised) the clustering: