• Aucun résultat trouvé

Magnetic structure studies at Brookhaven National Laboratory

N/A
N/A
Protected

Academic year: 2021

Partager "Magnetic structure studies at Brookhaven National Laboratory"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00205827

https://hal.archives-ouvertes.fr/jpa-00205827

Submitted on 1 Jan 1964

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Magnetic structure studies at Brookhaven National Laboratory

L.M. Corliss, J.M. Hastings

To cite this version:

L.M. Corliss, J.M. Hastings. Magnetic structure studies at Brookhaven National Laboratory. Journal

de Physique, 1964, 25 (5), pp.557-562. �10.1051/jphys:01964002505055701�. �jpa-00205827�

(2)

557

D’autres corps tels que MnEr03 possèdent égale-

ment un faible ferromagnétisme et probablement

une structure antiferromagnétique analogue en ce qui concerne les atomes de Mn.

En somme MnY03 possède un antiferroma-

gnétisme « triangulaire », couplé avec un faible ferromagnétisme. Ce corps est également ferroélec- trique. Nous ne doutons pas que la série des com-

posés MnTO3 (T

=

Y ou terre rare) poseront au physicien d’autres problèmes intéressants.

BIBLIOGRAPHIE

[1] YAKEL (H.), KOEHLER (W. C.), BERTAUT (E. F.) et

FORRAT (F.), Acta Cryst., 1963, 16, 957.

[2] BERTAUT (E. F.), FORRAT (F.) et FANG (P.), C. R.

Acad. Sc., 1963, 256, 1958.

[3] BERTAUT (E. F.) et MARESCHAL (J.), C. R. Acad. Sc., 1963, 257, 867.

[4] BERTAUT (E. F.), J. Appl. Physics, 1962, 33, 1138 ; cf. C. R. Acad. Sc., 1961, 252, 76 ; J. Phys. Chem.

Sol., 1961, 21, 256 et notamment appendice p. 279.

[5] BERTAUT (E. F.), J. Physique Rad., 1961, 22, 839 et

aussi dans Treatise of Magnetism, vol. III, Éditeurs Suhl et Rado, Academic Press, 1963.

[6] DZYALOSHINSKI »I. E.), J. Phys. Chem. Sol., 1958, 4,

241.

[7] MORIYA (T.), Phys. Rev., 1960, 117, 635.

[8] BERTAUT (E. F.), PAUTHENET (R.) et MERCIER (M.), Phys. Letters, 1963, 7, 110, (~ 5, 2 7).

[9] SMART (J. S.), Treatise of Magnetism, vol. III, Éditeurs Suhl et Rado, Académic Press, 1963.

MAGNETIC STRUCTURE STUDIES AT BROOKHAVEN NATIONAL LABORATORY (1) By L. M. CORLISS and J. M. HASTINGS

Chemistry Department, Brookhaven National Laboratory, Upton, L. I., New York.

Résumé.

2014

La communication présenté rapporte les résultats de plusieurs études de structures

magnétiques et de transitions magnétiques, actuellement en progrès ou récemment complétées au

Laboratoire National de Brookhaven.

1° Le composé intermétallique Ni5Er possède une structure ferromagnétique uniaxiale ; la

diffraction magnétique est en accord avec un moment essentiellement nul du nickel comme les

mesures d’aimantation le suggèrent.

2° Le composé MnSn2 possède une transition brusque d’une structure antiferromagnétique vers

une configuration les amplitudes des moments, couplés antiferromagnétiquement, sont modu-

lées sinusoïdalement. L’effet d’une substitution partielle de l’étain par l’indium est décrit.

3° Les résultats d’une étude des réflexions antiferromagnétiques de MnSe2 en fonction de la

température, étude entreprise sur la suggestion de J. O. Dimmock, sont comparés avec ses pré- dictions, basées sur la théorie des transitions de second ordre de Landau-Lifshitz.

4° La structure magnétique de Cr2O3 a été réexaminée sur des poudres et sur un monocristal.

Elle est discutée en relation avec les idées et suggestions actuelles de la science.

Abstract.

2014

The present communication reports the results of several investigations of magnetic

structure and magnetic transitions currently in progress or recently completed at Brookhaven

National Laboratory.

1° The intermetallic compound Ni5Er possesses a uniaxial ferromagnetic structure ; the magne- tic scattering is consistent with the assignment of essentially zero moment to the nickel, as sug-

gested by measurements of the saturation magnetization.

2° The compound MnSn2 has been shown to exhibit a sharp transition from an antiferromagnetic

structure to one in which the magnitude of the antiferromagnetically coupled moments exhibits a

sinusoïdal spatial modulation. The effect of partial substitution of tin by indium is described.

3° Results of a study of the temperature dependence of the antiferromagnetic reflections of

MnSe2, undertaken at the suggestion of J. O. Dimmock, are compared with predictions based on

the Landau-Lifshitz theory of second-order phase transitions.

4° The magnetic structure of Cr2O3 has been reinvestigated, using both single crystals and pow- dered specimens, and is discussed in relation to current ideas and suggestions in the literature.

LE JOURNAL DE PHYSIQUE TOME 25, MAI 1964,

N’5Er

Intermetallic compounds having the Cu,5Ca structure, in which the components are rare earth

and transition metals, have been investigated

(1) Research performed under the auspices of the U. S.

Atomic Energy Commission,

extensively in recent years by Wernick and Geller [1] and by Wallace and coworkers [2].

These hexagonal compounds, B5A, in which B is

an iron-group element and A a lanthanide, belong

to space group with A in (a) : 0, 0, 0, 2BI in (c) : -;~ (1 j3, 2/3, 0), and 3RII in (g) : 1 j2, 0, 1/2 ; 0, 1 j ~, ~ ~2 ;

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01964002505055701

(3)

--

’hhe Cu,Ca structure.

The magnetic measurements of Nesbitt et al. [3, 4]

indicate that compounds formed between cobalt and the heavier rare earths are f errimagnetic,

with the cobalt substructure antiparallel to that

of the lanthanide. This model has been recently

confirmed at Grenoble by the neutron diffraction

experiments of J ames et al. [5] for the case of Co5Ho. The Ni5R compounds, first obtained by

Wernick and Geller [1], appear to exhibit a diffe- rent magnetic structure. Nesbitt et al. [6] suggest

that in these compounds the nickel behaves as though it possessed zero moment, the three valence electrons of the rare-earth metal filling the holes

in the 3d band of the nickel. This hypothesis is

based on saturation moment data as well as on the absence of compensation points in the ferromagne-

tic compounds and of antif erromagnetism in N’5y’

Neutron diffraction studies of powdered Ni5Er

lend support to this supposition. The best fit of

intensity data taken at 4.2 OK was obtained for

-

0 and 03BCEr

=

7 .7, in agreement with the macroscopic magnetization. The moments are

directed along the c axis at helium temperatures.

The low value of the saturation moment is thus

probably to be associated with a low value for the atomic moment of erbium. The departure

of the erbium moment from the theoretical value of is not unusual f or the second half of the rare-earth series and may indicate that the ex-

change interaction and crystal field effects are of comparable magnitude.

MnSn2

Recent measurements by Kouvel and Harte- lius [7] of the magnetic and electrical properties

of the intermetallic compound MnSn2l indicate

a number of unusual features. The magnetic susceptibility passes through a weak maximum

at 325 OK, continues to rise on cooling to a pro- nounced peak at 86 OK, and then abruptly decre-

ases at 73 °li to a low vale which is maintained

down to helium temperatures. The salient fea- tures of the magnetic behavior are paralleled by

anomalies in the electrical conductivity and

volume.

MnSn2 has the body-centered tetragonal C16

structure (fag. 2), consisting of alternating layers

of Mn and Sn perpendicular to the c axis. Each

Mn atom is surrounded by eight Sn atoms which

connect it to its second and third nearest neighbors through angles of approximately and 146~, respectively. Nearest-neighbor Mn atoms have

no intervening Sn atoms and are separated by a

distance of 2.72 A in the c direction.

FIG. 2.

-

The C16 structure.

Cu Al2 type, b. c. tetragonal, M

=

4, I4/mcm

a = 6.647, c

=

5 .434. x

=

0.160.

Neutron diffraction studies show that above the abrupt transition at 73 OK, MnSn2 is antifer- romagnetic with a Néel temperature in the neigh-

borhood of 325 OK, the temperature of the upper

susceptibility maximum. The superstructure lines

characteristic of the antif erromagnetic state appear, however, to saturate in intensity near nitrogen temperatures and show no anomaly in passing through the region of the large susceptibility

maximum at 86 OK. The magnetic structure

consists of ferromagnetic 110 planes which alter- nate along the direction perpendicular to the

sheets. Individual moments are oriented parallel

to the direction of alternation and reach a magni-

tude of 2.35 yB at 77 oK. The abrupt transition

at 73 OK is marked by the disappearance ot the high-temperature antif erromagnetic diffraction pat-

tern and the appearance of a new pattern charac-

teristic of a modulated spin structure below this temperature. The low-temperature structure is

a simple modification of the spin arrangement

above the transition, in which the magnitude of

the moments is no longer constant but varies

sinusoidally along the direction perpendicuar to

the f erromagnetically aligned sheets. The obser-

ved modulation has an amplitude of 3.11 (.LB

and a wavelength of 18.8 A, wich is twice the

(4)

559

basal plane diagonal. For a particular choice of

the experimentally indeterminate phase of the modulation, the structure reduces to the simple

double sheet arrangement + + --.

Partial substitution of indium for tin [8] lowers

the Neel point and raises the temperatures of the

lower susceptibility maximum and of the sharp transition, while maintaining the same general shape. The temperature interval between the

abrupt transition and Xmax increases from about 130 in lVfnSn2 to about 300 for 20 percent indium substi- tution. Neutron measurements for MnSn1.8In.2

confirm the lowering of the Neel point and

show that the antiferromagnetic structure at intermediate temperatures and the modulated structure at low temperatures remain the same.

The temperature range over which the sample

transforms from the antiferromagnetic to the

modulated structure is broadened and raised,

however. Whereas in MnSn2 the transition appe-

ars to start at the break in susceptibility and end

at lower temperatures, in MnSnl.gIn’2 it appears to begin in the neighborhood of Xm.tx and end where

the- susceptibility drops abruptly. The coexis-

tence of the two magnetic phases of the indium- substituted compound can be seen in figure 3,

FIG. 3.

-

Temperature dependence of the 310 antiferro- magnetic reflection and the 310(+) satellite.

where the proportion of high-temperature antifer- romagnetic structure is indicated by the 310¡inten- sity and that of the modulated structure by the

310 satellite. Experiments involving further subs- titution of indium are currently in progress.

MnSe2

The low-temperature antiferromagnetic struc-

tures of the homologous series, MnSe,, and MnTe2, were reported [9] a number of years ago.

These compounds crystallize with the pyrite structure, a NaCl-like arrangement of M and X 2

groups with the axes of the X2 groups parallel to

the various body diagonals. While the location of Mn ions relative to the X 2 groups is the same as

in MnO or oc-MnS, the presence of nearly tetrahe-

dral Mn-X-Mn linkages suggests that nearest- neighbor interactions might predominate and this,

in fact, is what is observed. The disulfide exhibits

ordering of the " third " kind, the ditelluride, ordering of the " first " kind, and the diselenide,

an arrangement which is intermediate between the

two, having the same first neighbor correlations

as the other members of the series but differing in

the second neighbor environment. The magnetic

structures at helium temperatures are sllown in figure 4.

FIG. 4. - Magnetic structures of lVInS2, MnSe2, and MnTe2.

Positive and negative orientations of the dipoles are

shown by black and white spheres. The direction of the magnetic axis is shown by an arrow ; in the case of the ditelluride the orientation within the plane is unspe- cified.

Recently, Dimmock [10] has pointed out that according to the Landau-Lifshitz theory, the MnSe2 structure cannot exist in the immediate

vicinity of the transition point between the para-

magnetic and antiferromagnetic phases, provided

there is a single transition and that it is of second

order. The reason for this is that the spin distri-

(5)

bution does not transform as a basis function for

a single irreducible representation of the space group of the paramagnetic phase, as required for

a second order transition. Dimmock proposed a decomposition of the moment density observed

at 4. 2 0 K into two parts with different temperature dependences, such that the initial transition would take place to a modulated structure which, as the temperature was lowered, would transform conti-

nuously over into the observed low-temperature

structure. Experimentally, this results in a divi-

sion of the antiferromagnetic reflections into two groups (corresponding to the splitting of the mo-

ment density into two parts) with different tempe-

rature dependences.

Investigation of the behavior of the diffraction

pattern with temperature reveals that the tran- sition is in fact very sharp. At 51 OK the pattern

is well-developed and corresponds to 85 percent

of the moment at 4.2 OK. Furthermore, the

relative intensities of the two classes of reflections

are essentially the same as at helium temperatures.

However, at 56 OK, long-range magnetic order has

been replaced by short-range order, whereas the

expected Néel temperature, based on a Brillouin extrapolation from the 4.2~ and 51 OK points,

would be 90 °1(. These results are summarized in

figure 5. It is difficult, from these observations, to

FIG. 5.

-

Sublattice magnetization in MnSe2- conclude that the transition is actually first order, although this may very well be true. However,

the radical departure from Brillouin behavior makes it extremely unlikely that the theory of

second order transitions would be applicable to

this case. Work is in progress to further charac- terize the nature of the transition,

Cr2o3

The magnetic structure of CrO, shown in figure 6, was proposed by Brockhouse [11] about

FIG. 6.

-

The magnetic structure of Cr,O,.

ten years ago on the basis of preliminary data

which he was not able to extend at the time. The results were sufficiently precise to allow a choice

to be made among the three simple structures

which did not require enlargement of the unit cell,

but no assignment of the spin direction could be obtained. This information was subsequently supplied by the susceptibility measurements of McGuire and co-workers [12] and more directly by the polarized neutron studies ot Nathans et

at. [13] who found the spins to lie along the rhom-

bohedral axis. More recently, Cr103 has been the

subject of detailed experimental and theoretical

investigations which include the measurement of the magnetoelectric effect by Astrov [14] and by

Rado and Folen [15], the high-field antiferroma-

gnetic resonance experiments of Foner [16] and a

theoretical study of the magnetic and optical properties by Pratt and Bailey [17]. These inves-

tigations have raised a number of questions concer- ning the precise spin arrangement in Cr203’ One

would like to know the sublattice magnetization

at low temperatures as well as its temperature de- pendence up to the Néel point, whether spiralling

or canting of the spins occurs, and whether any unusual features appear in the paramagnetic scattering above the transition point. Investi- gations currently in progress, in collaboration with R. Nathans and G. Shirane, may provide some

of the answers to these questions.

Examination of a very pure powder sample of Cr20l [18] reveals that the Cr+2 moment is appro-

ximately eight percent lower than the spin-only

value at helium temperatures. In addition, the

sublattice magnetization departs markedly from

a Brillouin temperature dependence as shown in figure 7. These results were obtained from the

temperature variation of the 110 reflection, after

subtracting the nuclear contribution remaining

above the Néel point (approximately 15 percent

(6)

561

FIG. 7.

-

Temperature variation

of the sublattice magnetization in Cr 20 3"

of the total at low temperatures). Experiments performed on single crystals indicate the presence of weak diffracted intensity at a number of reci- procal lattice points to which the Cr2o3 structure

makes no contribution. These results cannot be

interpreted until several possible spurious effects

have been eliminated. Polarized neutron studies

are capable at present of eliminating canted struc-

tures in which the perpendicular component is

ordered either in the sequence +-+- (Cr203)

or + + - - (Fe203) along the rhombohedral axis.

Discussion

Pr RUNDLE. - Si vous avez un ordre a courte distance au-dessus de la temperature d’ordre a longue distance, pouvez-vous encore parler de

transition brusque ? Peut-on appliquer la th6orle

de Landau-Lifschitz a l’ordre a courte distance ? Dr CORLISS.

-

La transition brusque dont je parle ici est la transition conduisant a un ordre à

longue distance. Je ne pense pas que la th6orie de Landau et Lifschitz soit facile a appliquer au cas ou

l’ordre a courte distance est tr6s prononc6, bien qu’alors on puisse penser 1’appliquer a une 6chelle microscopique.

Pr OPECHOWSIKI.

-

Dans 1’6tude de MnSe2, vous prétendiez que la brutalite de la transition rend

1’application de la théorie de Landau-Lifschitz

impossible. Je n’ai pas très bien compris pourquoi

vous mettez 1’accent sur « brutalite o, ou bien voulez-vous dire que la manière dont Dimmock

applique la théorie de Landau-Lifschitz ne conduit nulle part ?

Dr CORLISS.

-

On peut supposer que la théorie des transitions du second ordre s’applique lorsque 1’6nergie libre varie lentement au voisinage de la temperature de transition. Dans une transition

brutale, l’intervalle de temp6rature est trop faible

pour permettre le genre de mesures envisag6es ici.

Pr PAOLETTI.

-

Je demande si les mesures

faites avec des neutrons polarisés sur Cr,O,

donnent des r6sultats identiques a ceux de Nathans

et Shull.

Dr CORLISS.

-

Les mesures originales ont été reprises par Nathans et Shirane sur le meme cristal que celui ayant servi a la pr6sente 6tude.

Dr PICKART.

-

Les mesures les plus r6centes

ont été faites avec une resolution bien meilleure que pr6c6demment.

Pr BERTAUT. - La situation de MnSn2 est exceptionnelle, car une situation modul6e sinu- soidalement se trouve ici loin de Trr et pr6c6d6e

d’une structure colin6aire antif erromagnetique. La

modulation sinusoidale observ6e dans les terres rares est d’une nature différente, elle corres- pond 4 un ordre de spins dans une direction (TN plus grand selon c que selon a ou b). Est-ce que dans MnSn2 on n’aurait pas de super6change superpose au couplage Rudermann-Kittel, car ce

corps est

-

je le suppose

-

un conducteur ! Dr CORLISS.

-

Nous n’avons aucune explica-

tion de la structure antiferromagnétique ainsi que de la structure modul6e. Le modele que vous pro- posez peut bien jouer un role assez important.

Dr SPARKS.

-

~.~ Les variations des parametres

cristallins de MnSn2 ont-elles été étudiées en

fonction de la temperature dans la region de la

transition brusque ?

20 Est-ce que le meme échantillon de MnSn2

utilise pour les mesures de susceptibilités a servi

a l’étude par diff raction neutronique ?

Dr CORLISS.

-

Les mesures de dialatations fai- tes par Kouvel sur des 6chantillons polycristallins

montrent une faible variation de volume au point

de transition. Les variations des param6tres cris-

tallins étaient trop faibles pour 6tre observ6es sur

notre diagramme enregistr6 aux petits angles. Des

mesures de suseeptibilit6s magn6tiques ont été entreprises sur de nombreux 6ehantillons parmi lesquels celui utilise lors de notre experience. Le broyage subi par 1’echantillon pour cette exp6-

rience 61argit neanmoins quelque peu la transi-

tion.

,

(7)

Pr WALLACE. - Je voudrais faire remarquer que Bleaney a fait des calculs de champ cristallin

pour le compose ANI ’5 et AiVi2. Les r6sultats de ses

calculs pour ErNi5 sont en bon accord av ec votre moment observe pour Er dans ErN’5’

Pr WALLACE. - L’expérience dans notre labo-

ratoire a montre que l’impuret6 d’oxyg6ne existant

a quelques parties pour mille peut dans le cas des compos6s AB changer les temperatures de Curie de quelques centaines de degr6s et même alterer le

couplage depuis I’antiferromagn6tisme jusqu’au ferromagnétisme. Avez-vous une indication sur votre impureté d’oxyg6ne dans ErNi5 ?

Dr CORLISS.

-

Nous n’avons pas d’indication

sur l’oxyg6ne contenu dans nos 6ehantillons.

Quoiqu’ll en soit, puisque les propriétés magn6- tiques sont les memes que celles des 6chantillons que vous avez prepares (avec de grandes pr6eau-

tions pour éliminer 0,) on peut penser que la contamination O2 est n6gligeable, ici.

Pr JAMES. - Dans notre travail sur YC05 et HOC05, nous observons de petits pics d’oxydes

ternaires parce que nous avons utilise des nacelles

d’alumine, alors que Lemaire et ses collaborateurs

pr6parent actuellement leurs echantillons par une

technique de levitation modifiée qui donne des

6chantillons de plus grande pureté.

Dr PRINCE.

-

Rado et Folen ont fait ressortir que la structure de Cr203 peut avoir deux types

de domaine qui peuvent montrer des eff ets d’inter-

férences destructives si les domaines sont suffit- samment petits, même si les deux structures son

en principe indiscernables (a grande distance).

Avez-vous vu des eff ets qui pouvaient s’expliquer

par un ph6nom6ne de ce types

Dr CORLISS. - Nos mesures ne permettent pas d’inf6rer un tel effet quoique ce soit peut-être

difficile a voir. Dans le cas extreme on pourrait

s’attendre a un 61argissement des raies ; ceci

n’a pas été observe.

,

REFERENCES

[1] WERNICK (J. H.) and GELLER (S.), Acta Cryst., 1959, 12, 662.

[2] NASSAU (K.), CHERRY (L. V.) and WALLACE (W. E),.

J. Phys. Chem. Solids, 1960, 16, 123 and 131.

[3] NESBITT (E. A.), WERNICK (J. H.) and CORENZWIT (E.),

J. Appl. Physics, 1959, 30, 365.

[4] NESBITT (E. A.), WILLIAMS (H. J.), WERNICK (J. H.)

and SHERWOOD (R. C.), J. Appl. Physics, 1961, 32,

342 S. See also ref. 2.

[5] JAMES (W.), LEMAIRE (R.) and BERTAUT (F.), C. R.

Acad. Sc., 1962, 255, 896.

[6] NESBITT (E. A.), WILLIAMS (H. J.), WERNICK (J. H.)

and SHERWOOD (R. C.), J. Appl. Physics, 1962, 33,

1674.

[7] KOUVEL (J. S.) and HARTELIUS (C. C.), Phys. Rev., 1961, 123, 124.

[8] KOUVEL (J. S.), Private communication.

[9] HASTINGS (J. M.), ELLIOTT (N.) and CORLISS (L. M.), Phys. Rev., 1959, 115, 13.

[10] DIMMOCK (J. O.), Phys. Rev., 1963, 130, 1337.

[11] BROCKHOUSE (B. N.), J. Chem. Physics, 1953, 21, 961.

[12] McGUIRE (T. R.), SCOTT (E. J.) and GRANNIS (F. H.), Phys. Rev., 1955, 90, 1562.

[13] NATHANS (R.), RISTE (T.), SHIRANE (G.) and SHULL (C. G.), M. I. T. structure of solids group, Technical

Report No. 4, 1958.

[14] ASTROV (D. N.), Soviet Phys. JETP, 1961, 13, 729.

[15] RADO (G. T.) and FOLEN (V. J.), J. Appl. Physics, 1962, 33, 1126.

[16] FONER (S.), Phys. Rev., 1963, 130, 183.

[17] PRATT (G. W.), Jr. and BAILEY (P. T.), Phys. Rev., in press.

[18] We are indebted to Mr. R. A. Stephens of C. K. Wil-

liams Co. for making this sample available to us.

Références

Documents relatifs

Abstract: Nanocrystalline Fe-35 wt%Ni-20 wt%Co has been prepared by using a high-energy planetary ball mill with increasing milling time from 4 to 36 h..

Microstructural characterisations showed the development of an face- centred cubic nanostructured Fe-35 wt%Ni-20 wt%Co alloy with an average crystallite size of 8 nm.. The magnetic

accord avec les intensit6s calcul6es, si on admet que la structure cristalline de TmRh2Si2 est quadratique,. avec un groupe

Nous avons remarqué que le plus souvent les parois d’antiphase sont issues de l’extrémité des défauts d’empilement. Elles ne semblent pas non

Keeping this in mind we have deduced the temperatures Tc for the other compounds by the linear approxim~ion (see Table I). - Temperature dependence of spontaneous

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The transition is well defined for sample A occurring at 214.5(1.0) K whereas for samples C and D there is a rather large temperature region in which both a para- and a

Recent studies using polarized neutron beam techniques are described and data presented on the ferromagnetic scattering by iron and nickel.. PHYSIQUE ET LE RADIUM TOME