• Aucun résultat trouvé

DYNAMICS OF LOCALIZED EXCITONS IN MIXED SEMICONDUCTING CRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "DYNAMICS OF LOCALIZED EXCITONS IN MIXED SEMICONDUCTING CRYSTALS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225058

https://hal.archives-ouvertes.fr/jpa-00225058

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

DYNAMICS OF LOCALIZED EXCITONS IN MIXED

SEMICONDUCTING CRYSTALS

A. Nakamura, M. Shimura, M. Hirai, S. Nakashima

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplement au n°10, Tome *6, octobre 1985 page C7-179

DYNAMICS OF LOCALIZED EXCITONS IN MIXED SEMICONDUCTING CRYSTALS

A. Nakamura, M. Shimura, M. H i r a i and S. Nakashima

Department of Applied Physios, Faculty of Engineering, Tohoku University, Sendai 980, Japan

Department of Applied Physics, Faculty of Engineering, Osaka University, Suita 565, Japan

Résumé - Nous présentons une étude expérimentale de la dynamique des excitons localisés dans les alliages semiconducteurs (Cd Zn^_x Te : x = 0.32) par spectroscopie subnanoseconde aux températures comprises entre 1.8 K et 21 K. Des excitons sont localisés dessous "d'un seuil effectif" et mobiles au-delà. Sous excitation résonante, nous avons mis en évidence, pour la première fois, la transition continue de diffusion Raman résonant dans la luminescence des alliages semiconducteurs en fonction des énergies incidentes.

Abs t r a c t - We r e p o r t an e x p e r i m e n t a l s t u d y o f d y n a m i c a l b e h a v i o r o f l o c a l i z e d e x c i t o n s i n Cd Z n . _ Te m i x e d s e m i c o n d u c t i n g c r y s t a l b y s u b - n a n o s e c o n d s p e c t r o s c o p y a t t e m p e r a t u r e s 1. 8K t o 21K. I t i s s h o w n t h a t e x c i t o n s a r e e f f e c t i v e l y l o c a l i z e d b e l o w " a n e f f e c t i v e e d g e " and m o b i l e a b o v e i t , h a v i n g a h i g h e r t r a n s f e r r a t e i n t o t h e t a i l s t a t e . W i t h r e s o n a n t e x c i t a t i o n , we f i n d f o r t h e f i r s t t i m e t h e c o n t i n u o u s t r a n s i t i o n o f r e s o n a n t Raman s c a t t e r i n g t o l u m i -n e s c e -n c e i -n m i x e d c r y s t a l s a s a f u -n c t i o -n o f i -n c i d e -n t e -n e r g i e s . I -INTRODUCTION

Recently, there has been considerable interest in the energy transfer between localized states in glasses / l / , mixed molecular crystals / 2 / , and mixed semiconducting crystals / 3 , 4 / . Random p o t e n -tial fluctuations which arise from random compositional disorder in mixed semiconducting crystals produce a band edge smearing and introduce a tail state of excitons in the forbidden gap. It is interesting to investigate relaxation dynamics of Mott-Wannier excitons with a radius of the order of 50 A within an inhomogeneously broadened band and a relationship between resonant Raman scattering and luminescence from localized excitons in the tail state by time-resolved spectroscopy / 5 / . We report an experimental study of dynamical behavior of excitons in A B._ C type semiconductors CCd Zn._ Te :x=0. 32) by sub-nanosecond spectroscopy with band-to-band excitatixon and resonant excitation. We will show the experimental evidence of the exciton transfer between random potential wells and the continuous transition of resonant Raman scattering to luminescence as a function of energies of incident light.

II - EXPERIMENTAL

A cw mode-locked Ar laser and a synchronously pumped dye laser were used for excitation of samples. Luminescence from the C110) surface of Cd Zn. Te crystal was colected by the backward scattering

(3)

C7-180 JOURNAL DE PHYSIQUE g e o m e t r y . The s p e c t r u m i s a n a l y s e d b y d o u b l e - m o n o c h r o m a t o r e q u i p e d w i t h a c o o l e d p h o t o m u l t i p l i e r . We e m p l o y e d a t i m e - c o r r e l a t e d s i n g l e p h o t o n c o u n t i n g m e t h o d f o r m e a s u r i n g d e c a y b e h a v i o r o f e m i s s i o n i n t e n s i t i e s . The f u l l w i d t h s a t h a l f maximum o f t h e t i m e r e s p o n s e o f t h e s y s t e m w e r e 425 p s a n d 350 p s f o r t h e p u l s e o f t h e m o d e - l o c k e d ~ r - l a s e r a n d t h a t o f t h e s y n c h r o n o u s l y pumped d y e l a s e r , r e s p e c t i v e l y . The t i m e r e s o l u t i o n o f a b o u t 5 0 p s f o r d e c a y t i m e s was o b t a i n e d b y u s i n g a c o n v o l u t i o n a n a l y s i s .

I 1 1

-

RESULTS AND DISCUSSIONS

(4)

be tween 6. 6 K and 21K. It ,is clear that these decay curves are not exactly exponential. In order to obtain decay times, we calculated decay kinetics by convoluting exponential functions with instrumental response. Assuming that a decay curve consists of three components: a fast decay component without a rise time, a fast decay component with a finite rise time and a slow component, we used the following kine tic function:

where r f , r , cr, al, a2, a3 are introduced as adjustable parameters. The convolutgd curves g ~ v i n g the best fits to the experimental ones are shown in Fig.

2

by open circles. Above 21K. we can get best fits by taking rr=O. The fast components are dominant and the decay time, 7 f, decreases with increase of temperatures. From the arguement of rate equations, we find that the fast component without a rise time corresponds to the decay of excitons which are initially distributed in the tail state by the exciting pulse. The fast component with a rise time is due to excitons transferred between random potential wells and the rise time corresponds to the average time of transfer. From the temperature dependence of 7f,. we can obtain activation energies of excitons. The Arrhenius plot gives us two kinds of acti- vation energies,

E

and

Ea2.

In fig.3 are summarized

Eal

and

Ea2

as a function of exalton energies. Smaller activation energy.

E

<open circles) decreases li early with exciton energy intercepting tfie

-P

E

=O axis at oer16830 cm

.

Larger one (crosses) is independent of eeciton energy and its value is in good agreement with the binding energy of free excitons in CdxZnl-xTe. Below we, excitons have an activation energy depending on the energy, whereas excitons above oe

have no activation energy within our experimental errors, indicating that they are delocalized. We note that

the activation energy of the

exc iton at the energy w x = 0.32

coincides well with the energy +

difference between o and the o

luminescence energy

6

of this exc i ton. Thus, exc i ton states below o are effectively

local izgd and their activation energies correspond to the localization energies from oe.

When the temperature is raised, these localized

exc i tons are thermally 16700 16800 16900 activated into the hopp ina WAVENUMBER (cm-I)

states above o

.

We cbnciude Fig. 3

-

Activation energies that there exigts "an as a function of exciton energies. effective edge" of exciton Emission spectrum at 1. 8

K

is also

transfer above which excitons shown in the figure. are mobile and have a hiah

-

transfer rate into the tail state.

111.2 Transformation of R R S into luminescence in a second order optical process

(5)

C7-182 JOURNAL DE PHYSIQUE

e n e r g i e s - p f p u r e CdTe a n d ZnTe c r y s t a l s , r e s p e c t i v e l y / 5 , 6 / . When o . S

(6)

o f t h e l a s e r p u l s e . A s s u m i n g t h a t d e c a y c u r v e s c a n b e f i t t e d by a sum o f two e x p o n e n t i a l ~ l f u n c t i o n s ( t h r e e e x p o n e n t i a l f u n c t i o n s f o r wi= 1 6 6 8 1 a n d 1 6 6 2 1 cm

> ,

we h a v e d e t e r m i n e d d e c a y t i m e s o f s h o r t - l i v e d c o m p o n e n t . s a n d l o n g - 1 i v e d c o m p o n e n t . r L f r o m t h e c o n v o l u t i o n a n a l y s i s . Bhe b e s t f i t o f t h e s h o r t - l i v e d c o m p o n e n t s c o u l d b e o b t a i n e d w i t h v a l u e s o f z R l e s s t h a n 50 p s . S i n c e t h e t i m e r e s p o n s e o f t h e s h o r t - l i v e d c o m p o n e n t i s a s s h o r t a s t h a t o f t h e l a s e r p u l s e , t h i s c o m p o n e n t c a n b e a t t r i b u t e d t o RS. The l o n g - 1 i v e d componemts, h o w e v e r , e x h i b i t a n e x p o n e n t i a l d e c a y a n d t h e i r d e c a y t i m e s d e p e n d o n o . . The v a l u e s o f r L c o i n c i d e w e l l w i t h t h e l i f e t i m e s o f t h e l o c a f i z e d e x c i t o n s a t t h e e n e r g y o . , w h i c h w e r e d e t e r m i n e d u n d e r b a n d - t o - b a n d e x c i t a t i o n . T h e r e f o r e , t i e l o n g - l i v e d c o m p o n e n t o f t h e LO2 l i n e s i s a t t r i b u t e d t o t h e LO p h o n o n - a s s i s t e d l u m i n e s c e n c e o f t h e l o c a l i z e d e x c i t o n s t h a t a r e s e l e c t i v e l y e x c i t e d a s a r e a l s t a t e a t t h e e n e r g y o i . The e m i s s i o n

-

f p e c t r a i n f i g . 4 c a n b e c h a r a c t e r i z e d a s f o l l o w s : f o r a . S 1 6 7 4 7 cm

,

b o t h l u m i n e s c e n c e a n d RS p r o c e s s e s c o n t r i b u t e t o t h e " d a m a n - l i k e " l i n e s i n t h e s e c o n d a r y e m i s s i o n s p e c t r a . When o. i s t u n e d o n t o t h e l u m i n e s c e n c e p e a k o f l o c a l i z e d e x c i t o n s , s e c o n d o 8 d e r o p t i c a l p r o c e s s i s t r a n s f o r m e d i n t o t h e l u m i n e s c e n c e p r o c e s s k e e p i n g t h e s p e c t r a l s h a p e u n c h a n g e d . The c o n t i n u o u s t r a n s i t i o n o f RRS i n t o l u m i n e s c e n c e i n t h e m i x e d s e m i c o n d u c t i n g c r y s t a l c a n b e c o m p a r e d t o t h e e x p e r i m e n t o n i o d i n e m o l e c u l e s 7 The c o n t i n u o u s t r a n s i t i o n h a s b e e n a l s o o b s e r v e d i n I 2 b u t t h e i n t e n s i t y r a t i o o f l u m i n e s c e n c e t o RS b e c o m e s c o n s t a n t a t l a r g e v a l u e s o f o f f - r e s o n a n c e e n e r g y . T h i s r e s u l t h a s b e e n i n t e r - p r e t e d b y t h e t h e o r y /8/ i n t h e m o t i o n a l n a r r o w i n g l i m i t . I n o u r c a s e , h o w e v e r , t h e i n t e n s i t y r a t i o c o n t i n u e s t o d e c r e a s e when o f f - r e s o n a n c e e n e r g y i s i n c r e a s e d . T h e r e f o r e , t h i s t h e o r y c a n n o t a c c o u n t f o r o u r r e s u l t i n t h e o f f - r e s q n a n c e r e g i o n ; t h i s s u g g e s t s t h a t t h e non- m o t i o n a l n a r r o w i n g e f f e c t a s was p o i n t e d o u t b y A i h a r a /9/ i s s e e n i n t h e s e c o n d o r d e r o p t i c a l p r o c e s s i n t h e m i x e d s e m i c o n d u c t i n g c r y s t a l . I V . SUMMARY We h a v e m e a s u r e d t h e t i m e r e s p o n s e o f t h e s e c o n d a r y e m i s s i o n i n Cd Znl-xTe c r y s t a l s i n s u b - n a n o s e c o n d t i m e r e g i o n b y b a n d - t o - b a n d e x z i t a t i o n a n d r e s o n a n t e x c i t a t i o n . From t h e t e m p e r a t u r e d e p e n d e n c e a n d t h e e n e r g y d e p e n d e n c e o f e x c i t o n d y n a m i c s , we h a v e f o u n d t h e e f f e c t i v e e d g e o f e n e r g y t r a n s f e r i n t h e t a i l s t a t e o f e x c i t o n s . E x c i t o n s b e l o w t h e e d g e a r e e f f e c t i v e l y l o c a l i z e d , w h e r e a s a b o v e t h e e d g e t h e y a r e d e l o c a l i z e d . The t e m p o r a l b e h a v i o r o f t h e e m i s s i o n i n t e n s i t y u n d e r r e s o n a n t e x c i t a t i o n a l l o w e d u s t o f i n d . f o r t h e f i r s t t i m e , t h e c o n t i n u o u s t r a n s i t i o n f r o m RRS t o r e s o n a n t l u m i n e s c e n c e i n t h e m i x e d s e m i c o n d u c t i n g c r y a t a l a s a f u n c t i o n o f i n c i d e n t e n e r g i e s . REFERENCES / I / H e g a r t y . J . , H u b e r , D. L . , Yen, W. M., P h y s . Rev.

B23

(1981) 6 7 2 1 . /2/ K l a f t e r , J , a n d J o r t n e r .

J..

J. Chem. P h y s .

68

(1978) 1513. /3/ L a i S h u i a n d K l e i n . M. V . , P h y s . Rev. L e t t .

44

(1980) 1 0 8 7 . /4/ K a s h , J . A . . Ron, A. a n d Cohen. E . , P h y s . Rev.

B28

(1983) 6 1 4 7 . /5/ Nakamura. A , . S h i m u r a . M., H i r a i . M. a n d N a k a s h i m a . S . , S o l i d S t a t e Commun.

52

(1984) 583. / 6 / K l o c h i k h i n , A. A . , P l y u k h i n , A. G.

,

S u s l i n a , L. G. a n d S h a d r i n . E. B . . Sov. P h y s . S o l i d S t a t e

18

(1976) 1 1 1 2 . /7/ W i l l i a m s , P. F . , R o u s s e a u . D. L. a n d D w o r e t s k y , S. H . , P h y s . Rev. L e t t . 32 (1974) 1 9 6 .

/8/ ~ u k a r n e l , S . , Ben-Reuven. A. a n d J o r t n e r ' . J.. P h y s . Rev.

A12

(1975) 947.

Références

Documents relatifs

au bas de la bande de conduction et des trous au sommet de la bande de valence sont évaluées pour la solution solide CdGa2(SxSe1-x)4 en utilisant la structure de

At re- latively high temperature (above 60 K) the emission spectra show only four lines due to free - as well as bound - direct and indirect excitonic emissions and the excito-

Emission lines which are due to localised excitons, for instance impurity molecules or disturbed exciton states, have a very characteristic structure at lowest

In fact, the sole contribution of the halogen p orbitals at the Fermi level and the Mg 3s orbitals at the bottom of the conduction bands confirms the

Diffuse scattering pattems obtained using x-ray and neutron measurements have been shown to characterize the low-temperature phase of Ki _~(ND~)J with x &lt; x~. The essential

large Stokes shift of the luminescence C2 is considered to be due to a strong electron-phonon coupling. The process producing the luminescence C2 is displayed as G in

Ces deux expériences sont complémentaires, puisque l’absorption permet de sonder les états électroniques intrinsèques des nanotubes de carbone tandis que la photolu- minescence

Keywords: Excitons, indirect excitons, exciton-polaritons, nanostructures, quantum wells, quantum dots, microcavities, acousto-optic interactions, lasers, nonlinear