• Aucun résultat trouvé

Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna

N/A
N/A
Protected

Academic year: 2021

Partager "Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna"

Copied!
5
0
0

Texte intégral

(1)

The sub-lethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna

Tamzin A. Blewett1*, Perrine L.M. Delompré1*, Yuhe He1, Erik J. Folkerts1, Shannon L. Flynn2,

Daniel S. Alessi2, Greg G. Goss1,3

1

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

2

Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta,

Canada

3

National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, Canada

Corresponding author: Tamzin Blewett

tamzin.blewett@ualberta.ca Department of Biological Sciences University of Alberta

Edmonton, AB T6G 2R3

Supporting information (5 pages)

3 Tables : Exposure water chemistry and primer information

1 Figure : Relationship between oxygen consumption and neonate production

ICP QA/QC

Samples were analyzed as the average of 5 replicates each composed of 300 sweeps. After each run blank and standard counts were compared to previous run to ensure consistency and detect if

(2)

contamination had occurred. Instrumental drift was accounted for and corrected using an internal standard solution of 0.5 ppm indium solution in 2% nitric acid added to the sample using an online internal standard addition kit. After every 12 samples, blank and midrange standards were rerun to detect instrumental buildup of elements and as secondary check of instrumental drift. Replicate standards were found to vary by ± 4.9% through duration of a run. All standard curves

had R2>.98.

Table S1. Measured water chemistry (via ICP MS/MS) of FPW, control water, and estimated (Est.) elemental concentration in FPW if diluted in 18MΩ water, where TDS = total dissolved solids, TN = Total nitrogen TC= Total carbon. Reported values are means ± S.E.M, N=4.

Undiluted Control Est. FPW 0.004% Est. FPW 0.008% Est. FPW 0.04% (ppm) (ppm) (ppm) (ppm) (ppm) TDS 182533 7.30132 14.60264 73.0132 Na 59500 11.1 ± 2.3 2.38 4.76 23.8 Ca 6500 50.1 ± 2.5 0.26 0.52 2.6 K 2160 1.34 ± 0.2 0.0864 0.1728 0.864 Sr 931 0.5 ± 0.009 0.03724 0.07448 0.3724 Mg 706 13.9 ±0.7 0.02824 0.05648 0.2824 Br 297 - 0.01188 0.02376 0.1188 B 96 0.01 ± 0.0006 0.00384 0.00768 0.0384 Li 51.3 BDL 0.002052 0.004104 0.02052 Mn 7.32 0.01 ± 0.0002 0.0002928 0.0005856 0.002928 Ba 7.28 BDL 0.0002912 0.0005824 0.002912 Zn 1.24 BDL 0.0000496 0.0000992 0.000496 Fe 1.19 - 0.0000476 0.0000952 0.000476 TC 737 - 0.02948 0.05896 0.2948 TN 425 - 0.017 0.034 0.17 Cl 107000 - 4.28 8.56 42.8

(3)

Table S2. Measured water chemistry (via ICP MS/MS) of control, SW, AC and FPW exposure waters (mg/L). Means are ± SEM (N = 6, water taken over the course of 21 days). BDL = means below detectable limit calculated as 3x the blank counts

Ion concentr ation (mg/L) Detectio n Limit Control SW 0.004% SW 0.008% SW 0.04% AC 0.004% AC 0.008% AC 0.04% FPW 0.004% FPW 0.008% FPW 0.04% Na 0.67 11.1 ± 2.3 18.1 ± 0.2 21.1 ± 0.8 42.1±1.4 18.2 ± 0.8 21. 6 ± 0.3 40.0 ± 1.4 17.1 ± 1.2 20.4 ± 1.3 42.1 ± 1.5 Ca 0.0022 50.1 ± 2.5 54.1 ± 0.5 55.1 ± 0.7 60.8 ± 1.2 55.4± 1.0 54.6 ± 0.7 60.9± 3.2 61 ± 1.0 56.7 ± 1.2 60.1 ± 0.88 K 0.67 1.34 ± 0.2 2.3 ± 0.03 2.4 ± 0.02 2.6 ± 0.2 2.3 ± 0.03 2.27± 0.26 3.3 ± 0.2 2.7 ± 0.2 2.6 ±0.1 3.4 ± 0.1 Sr 0.0004 0.5 ± 0.009 0.5 ± 0.003 0.5 ± 0.002 0.5 ± 0.001 0.6 ± 0.007 0.6 ± 0.0007 0.9 ± 0.02 0.6 ± 0.006 0.6 ± 0.005 0.9 ± 0.003 Mg 0.042 13.9 ±0.7 15.2 ± 0.1 15.2±0.3 15.8 ± 0.3 16 ± 0.3 15.6 ± 0.2 15.3 ± 0.3 15.8 ± 0.2 15.6 ± 0.2 15.8 ± 0.3 Li 0.0027 BDL BDL BDL 0.02 ± 0.0004 0.005 ± 0.0003 0.02 ± 0.0009 0.02 ± 0.0005 0.005 ±0.0001 0.007 ± 0.0008 0.02 ± 0.0005 B 0.0079 0.01 ± 0.0006 0.01 ± 0.0003 0.01 ± 0.0001 0.05 ± 0.0.0004 0.02 ± 0.0008 0.03 ± 0.002 0.05 ± 0.0009± 0.02 ± 0.001 0.02 ± 0.0006 0.05 ± 0.0004 Ba 0.0016 BDL 0.07 ± 0.0003 0.06 ± 0.0002 0.07 ± 0.0005 0.07 ± 0.0006 0.06 ± 0.0006 0.07 ± 0.0009 0.07 ± 0.0004 0.07 ± 0.0005 0.07 ±0.002 Mn 0.00032 BDL 0.01 ± 0.0001 0.01 ± 0.0001 0.01 ± 0.0002 0.01 ± 0.0001 0.02 ± 0.001 BDL BDL BDL BDL Zn 0.011 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL Cu 0.00048 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL Ni 0.00021 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL Br 0.12 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL

(4)

Table S3. Forward and reverse primers, and their efficiency (Ef), for assessed genes.

Gene Abb GeneBank Forward primer Reverse primer Ef

prohibitin 2 phb2 DW724510 AATTGTTCAAGCCGAGG CGTCAAAGGAAACGTCAC 2.03

carboxypeptidase A1 precursor

cpa1 DW724601 CCGACATTCACGTCAGT CCTCGTAGGTGTGATAGTT 1.99

hemoglobin hgb DW724693 GGAAGCGGATTCACTG TGTCACCCATAGCCGA 2.07

doublesex-Mab related 93B dmrt93b AB361070 CGACAACAAGCTACCGAAGA GGTGAATCTCGTCCTCCAAATA 2.03

cuticle 12 cut DW985490 AGCCAGTGGAACTACG TCCAGCATCATCAGCG 2.01

vitellogenin 1 vtg1 AB252737 GCTACCCACGTCAAGTAATG GCTGCCGTAGTCTCAACAGAA 2.06

vitellogenin 2 vtg2 AB252738 GCACTCTTTCTCGTTATTGCTG GATCTTGACTGGGCTATTGATT 2.00

ecdysone receptor a ecr-a EF363705 CAGTTCGTCCATGTCGATGAG CGAAGGCGGTAAGGTAGAATG 2.05

ecdysone receptor b ecr-b AB274824 AGTCAGTTCGTCATCTTCTGTG CACGTGACCGTAAGGGTATTT 2.00

ultraspiracle usp AB274819 TAGGCCACTCGGGTTACTTAAA GAGTGGGTGGTTAGGTGGATAA 2.07

cytochrome P450 4 cyp4 AB257772 GCGGTCCTCAGTAGCAATAAA GCTACCTGTGCTCGTCAATAG 2.04

cytochrome P450 314 cyp314 AB257771 AGAGCGTGCATCGTAGAAAG CAGGAACGTGATAGCCTTGAA 2.00

cytochrome P450 18a1 cyp18a1 AB839173 AGAACGTAGTCGAAGGTGAAAC CTGCACTGGACAGCTCAAATA 1.90

glutathione-S-transferase gst KF736983 CGTCAATCTTATGGGAGGAGAAC GAATCCCGAGTCATCCAAAGTAG 2.01

(5)

MO2 (

mol/daphnia/h)

0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Aver

a

g

e

n

e

o

n

a

te

s

p

ro

d

u

c

e

d

p

e

r d

a

p

h

n

id

0 20 40 60 80 100

Figure S1. The average neonate production correlating with oxygen consumption in Daphnia

(µmol/Daphnia/h), means are ± S.E.M, p =0.001, R2 = 0.76

Figure

Table S1. Measured water chemistry (via ICP MS/MS) of FPW, control water, and estimated  (Est.) elemental concentration in FPW if diluted in 18MΩ water, where TDS = total dissolved  solids, TN = Total nitrogen TC= Total carbon
Table S2. Measured water chemistry (via ICP MS/MS) of control, SW, AC and FPW exposure waters (mg/L)
Table S3. Forward and reverse primers, and their efficiency (Ef), for assessed genes.
Figure S1. The average neonate production correlating with oxygen consumption in Daphnia  (µmol/Daphnia/h), means are ± S.E.M, p =0.001, R 2  = 0.76

Références

Documents relatifs

Die Zuwanderer haben ein großes Vertrauen in den schweizerischen Staat und seine Behörden. Das zuverlässige Funktionieren der staatlichen Be- hörden, das Fehlen von Korruption,

Fees for water abstraction and discharge exist for example in France (redevances), where revenues are significant and are re- invested in the water sector by water agencies

To help studies on pineapple ripening, this paper presents an easy technique to recover and measure the internal atmosphere of pineapple.. Experiments were performed with 30

We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such

Effects of the emotional induction on moral judgments In order to reduce variability, we computed the average rating across the eight vignettes of intermediate severity for

The link be- tween determinant line bundles equipped with the Quillen’s metric and the so-called holomorphic factorization property will be addressed in the case of free spin j

Adrien Kettaneh, Barbara Heude, Monique Romon, Jean-Michel Oppert, Jean-Michel Borys, Beverley Balkau, Pierre Ducimetière, Marie-Aline Charles. To cite

By studying this equilibrium point, we gain more rel- evant insight about the exchange process than by just study- ing three-isotope slopes which are obviously dependent on the